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1. Classical finite polar spaces. The classical finite polar spaces
play an important role in incidence geometry. They consist of the non-singular
quadrics, the non-singular hermitian varieties, and the symplectic spaces in pro-
jective spaces of odd dimension (see [7] and [27] for an introduction to polar
spaces).

The interest in these incidence structures follows first of all from the fact
that they are classical geometrical objects. The study of substructures contained
in these classical finite polar spaces also contributes to their geometrical impor-
tance. The substructures involved include (partial) ovoids and (partial) spreads.

We survey the main results on these (partial) ovoids and (partial) spreads.
The focus is first of all put on the known (non-)existence results on ovoids and
spreads in classical finite polar spaces. Then the attention is drawn to the main
results on large partial ovoids and large partial spreads. This is then followed by
focusing on small maximal partial ovoids and small maximal partial spreads.

After the discussion of these results, attention is paid to the spectrum
problem on maximal partial ovoids and maximal partial spreads.

The main results are gathered in tables to make them easily accessible to
the readers. We also give information on some of the most important techniques
used in obtaining these results.

To present the results, we proceed as follows.
In Section 2, we first present the basic definitions and results on classi-

cal finite polar spaces. Section 3 presents an overview of the main results. To
conclude, we present in Section 4 the most important proof techniques.

2. Basic results.

2.1. Polar spaces. A polar space is a geometry that satisfies the “one
or all axiom”:

• Let l be a line and let P be a point not on l. Then either P is connected to
exactly one point of l by a line or P is connected to all points of l by lines.

A polar space contains projective spaces as subspaces. A projective sub-
space of maximal dimension is called a generator.

A polar space is classical if its points and lines are the totally isotropic
points and lines of a projective space with respect to some non-degenerate sesquilin-
ear form. There exist five different types of classical finite polar spaces:

• The elliptic quadric Q−(2n + 1, q), n ≥ 2, formed by all points of
PG(2n+1, q) which satisfy the standard equation x0x1+ · · ·+x2n−2x2n−1+
f(x2n, x2n+1) = 0 where f is an irreducible polynomial of degree 2 over Fq.
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• The parabolic quadric Q(2n, q), n ≥ 2, formed by all points of PG(2n, q)
which satisfy the standard equation x0x1 + · · · + x2n−2x2n−1 + x2

2n = 0.

• The hyperbolic quadric Q+(2n + 1, q), n ≥ 1, formed by all points of
PG(2n+1, q) which satisfy the standard equation x0x1+· · ·+x2nx2n+1 = 0.

• The symplectic polar space W (2n+1, q), n ≥ 1, which consists of all points
of PG(2n+1, q) together with the totally isotropic lines with respect to the
standard symplectic form θ(x, y) = x0y1−x1y0 + · · ·+x2ny2n+1−x2n+1y2n.

• The hermitian polar space H(n, q2), n ≥ 3, formed by all points of PG(n, q2)
which satisfy the standard equation xq+1

0
+ · · · + xq+1

n = 0.

For the results to come, it is useful to know the number of points and
generators of these polar spaces. We summarise these numbers in the following
theorems (for a proof, see for example [25]).

Theorem 1.

• Q−(2n + 1, q) has
(qn − 1)(qn+1 + 1)

q − 1
points.

• Q(2n, q) has
q2n − 1

q − 1
points.

• Q+(2n + 1, q) has
(qn + 1)(qn+1 − 1)

q − 1
points.

• W (2n + 1, q) has
q2n+2 − 1

q − 1
points.

• H(n, q2) has
(qn+1 + (−1)n)(qn − (−1)n)

q2 − 1
points.

Theorem 2.
• Q−(2n + 1, q) has (q2 + 1)(q3 + 1) · · · (qn+1 + 1) generators.

• Q(2n, q) has (q + 1)(q2 + 1)(q3 + 1) · · · (qn + 1) generators.

• Q+(2n + 1, q) has 2(q + 1)(q2 + 1) · · · (qn + 1) generators.

• W (2n + 1, q) has (q + 1)(q2 + 1) · · · (qn+1 + 1) generators.

• H(2n, q2) has (q3 + 1)(q5 + 1) · · · (q2n+1 + 1) generators.
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• H(2n + 1, q2) has (q + 1)(q3 + 1) · · · (q2n+1 + 1) generators.

2.2. Ovoids and spreads.

Definition 3. Let P be a classical finite polar space.

A partial ovoid O is a set of points with the property that no generator

contains more than one point of O. A partial ovoid O is maximal if it is not a

proper subset of an other partial ovoid. A partial ovoid O is called an ovoid if

every generator contains exactly one point of O.

A partial spread S is a set of pairwise disjoint generators. A partial

spread S is maximal if it is not a proper subset of an other partial spread. A

partial spread S is called a spread if all points of P are covered by the elements

of S.

From Theorem 1 and Theorem 2 we get directly the number of points in
an ovoid and the number of generators in a spread.

Theorem 4. An ovoid in Q−(2n − 1, q), Q(2n, q), Q+(2n + 1, q) or

W (2n − 1, q) has qn + 1 points. An ovoid of H(2n, q2) or H(2n + 1, q2) has

q2n+1 + 1 points.

A spread of Q−(2n+1, q), Q(2n, q), Q+(2n+1, q) or W (2n−1, q) contains

qn + 1 generators. A spread of H(2n, q2) or H(2n + 1, q2) contains q2n+1 + 1
generators.

P r o o f. One has to do the proof for all different types of polar spaces.
We show it on the example of a hyperbolic quadric Q+(2n + 1, q).

By Theorem 2, Q+(2n + 1, q) has 2(q + 1)(q2 + 1) · · · (qn + 1) generators.
Going to the factor space of one point, one sees a hyperbolic quadric Q+(2n−1, q),
i.e. every point lies in 2(q + 1)(q2 + 1) · · · (qn−1 + 1) generators. Thus an ovoid
must have [2(q + 1)(q2 + 1) · · · (qn + 1)]/[2(q + 1)(q2 + 1) · · · (qn−1 + 1)] = qn + 1
elements.

By Theorem 1, Q+(2n+1, q) has
(qn + 1)(qn+1 − 1)

q − 1
points. Each gener-

ator is a projective space of dimension n, that contains
qn+1 − 1

q − 1
points. Thus a

spread must contain

[

(qn + 1)(qn+1 − 1)

q − 1

]

/

[

qn+1 − 1

q − 1

]

= qn + 1 elements. �

2.3. Useful observations. There exist several relations between classi-
cal finite polar spaces that can be used to translate results. In this subsection,
we summarise these relations.
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2.3.1. Isomorphisms and anti-isomorphisms.

• Q(4, q) is isomorphic to the dual of W (3, q). Thus every result on spreads
of Q(4, q) is also a result on ovoids of W (3, q) and vice versa. Similarly,
every result on ovoids of Q(4, q) is also a result on spreads of W (3, q) and
vice versa [39].

• For q even, Q(4, q) and W (3, q) are self-dual. In this case, every result on
ovoids is also a result on spreads [39].

• For q even, Q(2n, q) is isomorphic to W (2n − 1, q). Thus every result on
Q(2n, q), q even, is also a result on W (2n − 1, q), q even [46].

• Q−(5, q) is isomorphic to the dual of H(3, q2) [39].

2.3.2. The Klein correspondence. The generators of Q+(5, q) fall
into two groups. Two planes from the same group always intersect in a point.
Two planes from different groups are either disjoint or intersect in a line. The
geometry with the generators of type 1 as “points”, the points of Q+(5, q) as
“lines” and the generators of type 2 as “planes” is a 3-dimensional projective
space PG(3, q) (see [26] for details). By these properties, every (partial) ovoid of
Q+(5, q) corresponds to a (partial) line spread of PG(3, q).

An ovoid of Q+(5, q) is an elliptic quadric Q−(3, q) if and only if the cor-
responding line spread of PG(3, q) is regular. An ovoid of Q+(5, q) is contained in
a parabolic quadric Q(4, q) contained in Q+(5, q) if and only if the corresponding
line spread of PG(3, q) is also a spread of a symplectic geometry W (3, q).

2.3.3. Triality. In Q+(7, q), the generators fall into two groups; each
group has size (q + 1)(q2 + 1)(q3 + 1) which is exactly the number of points of
Q+(7, q). We call two generators from different groups incident if they intersect
in a point. With this definition, the three classes of objects points, generators
of group 1, and generators of group 2 become interchangeable (see [25] for more
details and further references).

This means that every result on (partial) ovoids of Q+(7, q) is also a result
on (partial) spreads and vice versa.

2.3.4. Intersections. Let S be a partial spread of Q+(2n + 1, q). A
hyperplane of PG(2n+1, q) which is not a tangent hyperplane intersects Q+(2n+
1, q) in a parabolic quadric Q(2n, q). The intersection of S with that hyperplane
forms a partial spread of this Q(2n, q). Similar intersection arguments prove:
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Theorem 5. If Q+(2n+1, q) has a partial spread of size s, then Q(2n, q)
has a partial spread of size s. Especially Q(4n+2, q) has a spread if Q+(4n+3, q)
has a spread.

If Q(2n, q) has a partial spread of size s, then Q−(2n− 1, q) has a partial

spread of size s. Especially Q−(2n − 1, q) has a spread if Q(2n, q) has a spread.

If H(2n+1, q2) has a partial spread of size s, then H(2n, q2) has a partial

spread of size s.

One can also show that a partial spread of size s in Q(2n + 2, q) implies
a partial spread of size s in Q+(4n + 3, q) (see Theorem 9).

If a polar space P can be embedded in an other polar space P ′, we know
that every partial ovoid of P also is a partial ovoid of P ′. We summarise these
observations in the following theorem.

Theorem 6. If Q−(2n− 1, q) has a partial ovoid of size s, then Q(2n, q)
has a partial ovoid of size s.

If Q(2n, q) has a partial ovoid of size s, then Q+(2n + 1, q) has a partial

ovoid of size s. Especially Q+(2n + 1, q) has an ovoid if Q(2n, q) has an ovoid.

If H(2n, q2) has a partial ovoid of size s, then H(2n+ 1, q2) has a partial

ovoid of size s.

2.3.5. Quadratic extensions. Consider the polar space Q−(4n + 1, q).
The ambient space PG(4n + 1, q) can be embedded in a quadratic extension
PG(4n+1, q2). The polar space Q−(4n+1, q) extends to Q+(4n+1, q2). On this
Q+(4n + 1, q2), it is possible to choose a projective 2n-space π with π ∩ πσ = ∅,
where πσ is the conjugate of π with respect to the quadratic extension Fq2 of Fq.
The lines of Q−(4n+1, q) whose extensions intersect π and πσ form a line spread
L of Q−(4n + 1, q) and the intersections of these lines with π form a hermitian
variety H(2n, q2). Let G be a generator of this H(2n, q2), then the union of lines
of L whose extensions intersect in G form a generator G′ of Q−(4n + 1, q). Thus
every (partial) spread of H(2n, q2) defines a (partial) spread of Q−(4n + 1, q).
Let O be a partial ovoid of Q−(4n + 1, q). The lines of L through the points of
O intersect H(2n, q2) in the points of a partial ovoid of H(2n, q2).

A similar correspondence exists between Q+(4n+3, q) and H(2n+1, q2).
We summarise these correspondences in the following theorem.

Theorem 7. If Q−(4n + 1, q), n ≥ 2, has a partial ovoid of size s, then

H(2n, q2) also has a partial ovoid of size s.

If H(2n, q2) has a partial spread of size s, then Q−(4n + 1, q) also has a

partial spread of size s.
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If Q+(4n + 3, q), n ≥ 1, has a partial ovoid of size s, then H(2n + 1, q2)
also has a partial ovoid of size s.

If H(2n+1, q2) has a partial spread of size s, then Q+(4n+3, q) also has

a partial spread of size s.

An other application of a quadratic extension can be found in [42].

3. Overview of the results. This section contains tables that sum-
marise the known results on partial ovoids and partial spreads.

3.1. Ovoids and spreads. Tables 1 and 2 give the main known results
on the (non-)existence of ovoids and spreads.

Space Existence References

Q−(2n + 1, q) n > 1: No [46]

Q(4, q) Yes [28, 32, 40, 49]

Q(6, q) q even: No [46]

q = 3n: Yes [28, 45, 46]

q > 3, q prime: No [38]

Q(2n, q) n ≥ 4: No [21, 46]

Q+(3, q) Yes

Q+(5, q) Yes [26]

Q+(7, q) q = 3h: Yes [8, 28, 50]

q = 2h : Yes [15, 28]

q = ph, p ≡ 2 mod 3, p prime, h odd: Yes [28]

q prime: Yes [10, 36]

Q+(2n + 1, q) q = ph, p prime, pn >

(

2n + p

2n + 1

)

−
(

2n + p − 2

2n + 1

)

: No [4]

W (3, q) q even: Yes [44]

q odd: No [44]

W (2n + 1, q) n > 1: No [46]

H(2n, q2) n ≥ 2: No [46]

H(3, q2) Yes [39, 47, 49]

H(5, 4) No [13]

H(2n + 1, q2) q = ph, p prime, p2n+1 >

(

2n + p

2n + 1

)2

−
(

2n + p − 1

2n + 1

)2

: No [37]

Table 1. Existence and non-existence results on ovoids

Non-existence proofs for ovoids and spreads are normally good upper
bounds on the size of a partial ovoid or partial spread; see the next subsection
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for an overview on large partial ovoids and large partial spreads. Some rare
exceptions to this rule are non-existence proofs for ovoids that use a classification
of ovoids in a lower dimension. The non-existence of ovoids of Q(6, q), q > 3, q
prime [3], and H(5, 4) [13] are examples for this type of proof.

Space Existence References

Q−(5, q) Yes [39, 47, 49]

Q−(2n + 1, q) q even: Yes [15, 45, 46]

Q(2n, q) n ≥ 2, q even: Yes [15, 45, 46, 49]

Q(6, q) q odd, q prime: Yes

q odd, q 6≡ 1 mod 3: Yes [8, 10, 28, 36, 50]

Q(4n, q) q odd: No [44, 48]

Q+(4n + 1, q) No

Q+(3, q) Yes

Q+(7, q) q odd, q prime: Yes

q odd, q 6≡ 1 mod 3: Yes [8, 10, 28, 36, 50]

Q+(4n + 3, q) q even: Yes [15, 45, 46]

W (2n + 1, q) Yes

H(2n + 1, q2) No [46, 48]

H(4, 4) No [5]

Table 2. Existence and non-existence results on spreads

The existence of ovoids and spreads is proved by the construction of ex-
amples. The most difficult and interesting of these constructions are ovoids of
Q+(7, q): see Subsection 4.3 for an example.

Open problems. The most interesting open problems on ovoids and
spreads are:

• Lower the bound on n in Corollaries 12 and 14 stating that H(2n + 1, q2)
and Q+(2n + 1, q), n large, have no ovoid.

Conjecture: H(5, q2) and Q+(9, q) have no ovoid.

• Does Q(6, q), q > 3 odd, q not a prime, have an ovoid?

• Construct ovoids for Q+(7, q).

3.2. Large partial ovoids and large partial spreads. After the study
of ovoids and spreads, the next natural question is the size of the largest partial
ovoid or spread, when ovoids or spreads do not exist. Indeed, most non-existence
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results are in fact upper bounds on the largest size of a partial ovoid or partial
spread.

For partial ovoids, we can obtain recursive bounds on the size of partial
ovoids. Table 3 summarises these recursions. In Table 3, xn,q denotes the upper
bound on the size of a partial ovoid on the corresponding classical finite polar
space in PG(2n, q) or PG(2n + 1, q).

Space Recursion References

Q−(2n + 1, q) xn,q ≤ 2 +
qn + 1

qn−1 + 1
(xn−1,q − 2) [29]

Q(2n, q) xn,q ≤ 1 + q(xn−1,q − 1) [12]

Q+(2n + 1, q) xn,q ≤ 2 +
qn − 1

qn−1 − 1
(xn−1,q − 2) [12]

W (2n + 1, q) xn,q ≤ 2 + (q − 1)xn−1,q [12]

H(2n, q2) xn,q2 ≤ q2xn−1,q2 − q2 + 1 [11]

H(2n + 1, q2) xn,q2 ≤ q2xn−1,q2 − q2 + 1 [11]

Table 3. Recursive bounds on the size of partial ovoids

Bounds on the size of partial ovoids in high dimension are obtained by
applying these recursions to the bounds in small dimensions. Therefore, Table 4
lists only the small dimensions. The table contains only the cases in which the
non-existence of ovoids has been proven. For convenience, we include Table 5
which gives the bounds of Table 4 combined with the recursive bounds of Table 3.

Space Upper bound Lower bound References

Q−(5, q) q = 2:
1

2
(q3 + q + 2) = 6 q = 2: 6 [11, 26]

q = 3:
1

2
(q3 + q + 2) = 16 q = 3: 16 [11, 16]

1

2
(q3 + q + 2) q2 + 1 [1, 11]

Q(6, q) q > 13, q prime: q3 − 2q + 1 [12]

Q(8, q) q odd, q not a prime: q4 − q
√

q [12]

W (5, q) 1 +
q

2
(
√

5q4 + 6q3 + 7q2 + 6q + 1 − q2 − q − 1) [12]

H(4, q2) q5 − q4 + q3 + 1 q4 + 1 [11, 33]

Table 4. Large partial ovoids in small dimensions
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Space Upper bound Ref.

W (2n + 1, q),
q > 2

2
(q − 1)n−2 − 1

q − 2
+ (q − 1)n−2 · q3 + 1 − q(

√
q − 1)(q −√

q + 1) [12]

Q(2n + 2, q),
q even, q > 2

2
(q − 1)n−2 − 1

q − 2
+ (q − 1)n−2 · q3 + 1 − q(

√
q − 1)(q −√

q + 1) [12]

Q(2n, q), n ≥ 4,
q odd, q not prime

qn + 1− qn−4(q
√

q + 1) [12]

Q(2n, q), n ≥ 3,
q > 13 prime

qn − 2qn−2 + 1 [12]

Q−(2n + 1, q),
n ≥ 3

2 +
1

2
· qn − 1

q + 1
· (q2 + q + 2) [12]

H(2n, q2),
n ≥ 3

q2n+1 + 1 − q2(n−3)(q6 − q5 − 1) − q3 · q2(n−2) − 1

q2 − 1
[11]

H(2n + 1, q2),
n ≥ 2

q2n+1 + 1 [11]

Table 5. Large partial ovoids

Most of these results are proven by double counting (see Subsection 4.1).
The upper bounds on the size of partial spreads use as additional proof technique
extension results (see Subsection 4.2) and a special geometric property of H(2n+
1, q2) (see Subsection 4.6). The upper bound qn+1−δ is related to the problem of
the classification of the blocking sets in PG(2, q). In the table entry for Q(4n, q),
n ≥ 2, q odd, there always holds that δ ≥ ε where q + 1 + ε is the size of the

Space Upper bound Lower bound References

Q(4n, q) q odd: qn + 1 − δ [20]

Q+(4n + 1, q) 2 2

H(3, q2) q = 2: 6 q = 2: 6 [11, 26]

q = 3: 16 q = 3: 16 [11, 16]
1

2
(q3 + q + 2) q2 + 1 [1, 11]

H(5, q2) q3 + 1 q3 + 1 [14]

H(2n + 1, q2) n odd: q2n+1 − q
1

2
(3n+4) + q

1

2
(3n+3) [11]

n even: q2n+1 + 1 + qn(q − 1)

−qn
√

qn+1(q − 1) + (q − 1)2 [11]

Table 6. Large partial spreads
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smallest non-trivial blocking sets in PG(2, q). In cases that the smallest non-
trivial blocking sets in PG(2, q) are characterized, larger values of δ are allowed.
For instance, for q an odd square, q > 16, the results of [19] imply that δ ≥
q5/8/

√
2 + 1.
The lower bounds in Table 4 and Table 6 indicate the largest known partial

ovoid or partial spread in the classical finite polar space. Note the sharpness of
the bound q3 + 1 on the size of a partial spread in H(5, q2).

Open problems

• Little is known about the construction of large partial ovoids and large
partial spreads. Find good constructions (i.e. lower bounds) and improve
the upper bounds.

• A very interesting case is that of large partial spreads of H(3, q2). The
upper bound in this case is known to be sharp for q = 2 and q = 3. What

happens for q ≥ 4? The proof of the upper bound
1

2
(q3 + q +2) gives many

properties that a potential example must have (see Subsection 4.6 and [11]).

3.3. Small maximal partial ovoids and small maximal partial
spreads. Small maximal partial ovoids and small maximal partial spreads have
recently drawn much attention. The proof techniques in this area are mostly
variations of the triple counting technique (see Subsection 4.5), sometimes com-
bined with a geometric property like the one described in Subsection 4.6. Table 7
and Table 8 present the known results on small maximal partial ovoids and small
maximal partial spreads.

3.4. Spectrum results. A spectrum result on maximal partial ovoids
or maximal partial spreads is a result stating that for a large interval for the
parameter k, there exist maximal partial ovoids or maximal partial spreads of
size k for every integer in that interval. In Tables 9 and 10, we present results on
the spectrum of maximal partial ovoids and maximal partial spreads on Q(4, q),
q even. (Here, bxc denotes the largest integer smaller than or equal to x.) Note
that these results are also valid for W (q), q even, since this classical generalised
quadrangle is isomorphic to Q(4, q), q even (see Subsection 2.3.1).

By the Klein correspondence (Subsection 2.3.2), partial ovoids of Q+(5, q)
are linked to partial spreads of PG(3, q), for which there are important results of
Heden [22, 23, 24].

The results of [22, 23, 24] originally were stated as a spectrum result on
maximal partial spreads of PG(3, q). As an additional application, they were
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Space Upper bound Lower bound
Refe-
rences

Q−(5, q) q = 22h+1, h ≥ 1: q ≥ 4: 2q + 2 [12, 16, 35]

q2 + 7q + 8
√

2q + 10

2
+(2q + 4

√
2q + 4) log(q4 − q2)

Q−(2n + 1, q) n ≥ 3: 2q + 1 [12]

Q(2n, q) n = 2, q odd: 1.419q [9, 12]

n = 3, q = 3, 5, 7: 2q [12]

n = 3, q odd, q ≥ 9: 2q − 1 [12]

n = 4, q = 3: 2q [12]

n ≥ 4, q odd,

(n, q) 6= (4, 3): 2q + 1 [12]

q even: q + 1 q even: q + 1 [9, 12]

Q+(5, q) 2q [12, 17]

Q+(2n + 1, q) n ≥ 3, q > 3: 2q + 1 [12]

W (2n + 1, q) q + 1 q + 1 [12, 9]

H(3, q2) q > 2 even: q2 + 1 q > 2, q even: q2 + 1 [2]

q odd: q2 + 1 + 4
9q [34]

H(4, q2) q2 + q + 2 [35]

H(n, q2) n ≥ 5: q2 + q + 1 [11]

Table 7. Small maximal partial ovoids

Space Upper bound Lower bound References

Q−(2n + 1, q) n ≥ 3: q2 + 1 [12]

Q+(4n + 3, q) q ≥ 7 and n ≥ 1: 2q + 1 [31]

W (2n + 1, q) q ≥ 5 and n ≥ 2: 2q + 1 [31]

H(2n, q2) n ≥ 3: q3 + 1 [12]

H(2n + 1, q2) q ≥ 13 and n ≥ 2: 2q + 3 [31]

Table 8. Small maximal partial spreads

used to obtain a spectrum-like result on maximal partial spreads of the elliptic
quadric Q−(5, q).

Theorem 8 (see [6]). Suppose that S is a maximal partial spread of
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Space Interval References

Q(4, q),

q = 24h,

h ≥ 2

q2 + 194q + 10qb48 log(q + 1)c − 190

10
≤ k ≤ 9q2 − 69q + 440

10
[41]

Q(4, q),

q = 24h+1,

h ≥ 2

q2 + 198q + 10qb48 log(q + 1)c − 230

10
≤ k ≤ 9q2 − 68q + 430

10
[41]

Q(4, q),

q = 24h+2,

h ≥ 1

q2 + 196q + 10qb48 log(q + 1)c − 210

10
≤ k ≤ 9q2 − 66q + 410

10
[41]

Q(4, q),

q = 24h+3,

h ≥ 1

q2 + 192q + 10qb48 log(q + 1)c − 170

10
≤ k ≤ 9q2 − 67q + 420

10
[41]

Table 9. Spectrum on maximal partial spreads

Space Interval References

Q+(5, q),

q odd,

q ≥ 7

q2 + 13

2
≤ k ≤ q2 − q + 2 [22, 23, 24]

Q+(5, q),

q even,

q ≥ q0

5q2 + q + 16

8
≤ k ≤ q2 − q + 2 [18]

Q(4, q),

q = 24h,

h ≥ 2

q2 + 194q + 10qb48 log(q + 1)c − 190

10
≤ k ≤ 9q2 − 69q + 440

10
[41]

Q(4, q),

q = 24h+1,

h ≥ 2

q2 + 198q + 10qb48 log(q + 1)c − 230

10
≤ k ≤ 9q2 − 68q + 430

10
[41]

Q(4, q),

q = 24h+2,

h ≥ 1

q2 + 196q + 10qb48 log(q + 1)c − 210

10
≤ k ≤ 9q2 − 66q + 410

10
[41]

Q(4, q),

q = 24h+3,

h ≥ 1

q2 + 192q + 10qb48 log(q + 1)c − 170

10
≤ k ≤ 9q2 − 67q + 420

10
[41]

Table 10. Spectrum on maximal partial ovoids
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PG(3, q) of size q2 +1−δ. Then there exists a maximal partial spread of Q−(5, q)
of size q3 + 1 − qδ.

Theorem 9 (see [48]). Let n ≥ 1. Then Q+(4n + 3, q) has a maximal

partial spread of size s if and only if Q(4n + 2, q) has a maximal partial spread

of size s.

P r o o f. We will use the intersection technique from Subsection 2.3.4.

The generators of Q+(4n+3, q) fall into two groups and generators of the
same group intersect in a space of odd dimension, while generators of different
groups intersect in a space of even dimension. Thus every partial spread of
Q+(4n + 3, q) must consist of generators of the same class.

Now take a hyperplane π of PG(4n + 3, q) intersecting Q+(4n + 3, q) in a
parabolic quadric Q(4n + 2, q).

Let S be a partial spread of generators of type 1 of Q+(4n + 3, q). Then
the intersections of elements of S with π define a partial spread S ′ of Q(4n+2, q).

On the other hand, let S ′ be a partial spread of Q(4n+2, q). Every element
G of S ′ lies in two generators of Q+(4n+3, q); one of each type. Thus there exists
a unique set S of generators of type 1 in Q+(4n + 3, q) with the property that
the intersection of the elements of S with π defines S ′. Furthermore, since S ′ is
a partial spread of Q(4n + 2, q), two different elements of S can share at most
a point. But since the intersection of two generators of type 1 must be of odd
dimension, this means that each two generators in S must be skew, i.e. S is a
partial spread of Q+(4n + 3, q).

This establishes a one-to-one correspondence between the partial spreads
of Q+(4n + 3, q) which only contain generators of type 1 and the partial spreads
of Q(4n + 2, q), which proves the theorem.

The same proof shows the equivalence between the maximality of the
partial spread of Q+(4n+3, q) and the induced partial spread of Q(4n+2, q). �

4. Proof techniques. We now present a number of the most important
techniques involved in obtaining the results of the tables.

4.1. Double counting. Double counting is one of the most basic proof
techniques in combinatorics. One of the simplest applications of double counting
in this topic on partial spreads and partial ovoids is the non-existence of ovoids
in Q−(2n+1, q), W (2n+1, q), and H(2n, q2) for n > 1, see [46]. We demonstrate
the technique for Q−(2n + 1, q). For a classical finite polar space P , let O(P ) be
the size of the largest partial ovoids of P .
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Theorem 10 (see [29]). For n ≥ 3, we have

(1) O(Q−(2n + 1, q)) ≤ qn + 1

qn−1 + 1
(O(Q−(2n − 1, q)) − 2) + 2.

P r o o f. Let O be a partial ovoid of Q−(2n+1, q), with |O| = O(Q−(2n+
1, q)). Let θ be the polarity of PG(2n + 1, q) corresponding to Q−(2n + 1, q).
Let x, y ∈ O, with x 6= y. Define π = (xy)θ. Then π is a (2n − 1)-dimensional
subspace and π ∩ Q−(2n + 1, q) is an elliptic quadric Q−(2n − 1, q) = Q. Since
x, y ∈ πθ, we conclude that π ∩ O = ∅.

Now we count the number N of pairs (u, v), with u ∈ Q, v ∈ O\{x, y},
such that uv is a line of Q−(2n+1, q). For each possible v, the point u must lie in

the non-singular quadric (xyv)θ ∩Q−(2n+1, q). This quadric contains
q2n−2 − 1

q − 1

points, i.e. N = (O(Q−(2n + 1, q)) − 2)
q2n−2 − 1

q − 1
.

On the other hand, for each u ∈ Q, the points of O ∩ uθ define a partial
ovoid in uθ/u. Since x, y ∈ O ∩ uθ, for each possible u ∈ Q, there exist at most
O(Q−(2n − 1, q)) − 2 corresponding points v of O. Therefore we have

N ≤ (qn−1 − 1)(qn + 1)

q − 1
(O(Q−(2n − 1, q)) − 2).

All together we get:

(O(Q−(2n + 1, q)) − 2)
q2n−2 − 1

q − 1
≤ (qn−1 − 1)(qn + 1)

q − 1
(O(Q−(2n − 1, q)) − 2).

Simplifying, we get (1). �

Perhaps the most surprising application of double counting is the case of
H(2n + 1, q2).

Lemma 11 (see [29]). Let O be an ovoid of H(2n + 1, q2). Let π be

a plane which intersects H(2n + 1, q2) in a polar space of type H(2, q2). Let

m = |π ∩O| ≥ 2.
Then there exists an ovoid O′ of H(2n − 1, q2) and a plane π′, which

intersects H(2n−1, q2) in a polar space of type H(2, q2), and with |π′ ∩ O′| > m.

An inductive application of this lemma gives the following corollary.

Corollary 12 (see [29]). The hermitian polar space H(2n+1, q2), n > q3,

has no ovoid.
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This bound is weaker than the bound found by algebraic methods (see
Subsection 4.4), but it gives additional information about the possible ovoids in
small dimension. In [13], J. De Beule and K. Metsch use Lemma 11 together with
the classification of ovoids of H(3, 4) to prove that H(5, 4) has no ovoid.

We will not prove Lemma 11 in this article. Instead, we will present a
similar argument for hyperbolic quadrics.

Lemma 13. Assume that the hyperbolic quadric Q+(2n + 1, q), n > 2,
has an ovoid O. Let π be a 3-dimensional space that contains m ≥ 1 points of O
and which intersects Q+(2n + 1, q) in an elliptic quadric Q−(3, q).

Then the number a of points of O that generate together with π a 4-space
that intersects Q+(2n + 1, q) in a cone over the elliptic quadric Q−(3, q) is

a = qn−1 − qn−2 − q + 1 + m(qn−2 − 1).

P r o o f. The proof is inspired by Thas [48].
Let b be the number of points of O that generate together with π a 4-

space that intersects Q+(2n + 1, q) in a parabolic quadric Q(4, q). Then a + b =
qn + 1 − m.

Now we count the number N of pairs (P,O) with the following properties:
P lies in Q+(2n + 1, q) ∩ π⊥, O is a point of O not in π, and PO is a line of
Q+(2n + 1, q).

Now π⊥ intersects Q+(2n+1, q) in an elliptic quadric Q−(2n−3, q). Each
point of that Q−(2n − 3, q) is connected to qn−1 + 1 points of the ovoid O, thus

N =
(qn−2 − 1)(qn−1 + 1)

q − 1
(qn−1 + 1 − m).

For each of the a points O that generate together with π a 4-space that
contains a cone over the elliptic quadric Q−(3, q), we find that 〈π,O〉⊥ intersects
Q+(2n+1, q) in a cone over an elliptic quadric Q−(2n− 5, q), not containing any
points of O, for otherwise these points of O would be collinear with the points of

O in π. Thus each of these points is counted in
(qn−3 − 1)(qn−2 + 1)

q − 1
q + 1 pairs.

Similarly, for each of the b other points of O \ π, we find that 〈π,O〉⊥
intersects Q+(2n + 1, q) in a parabolic quadric Q(2n − 4, q), i.e. these points are

counted in
q2n−4 − 1

q − 1
pairs. Thus

N = a(
(qn−3 − 1)(qn−2 + 1)

q − 1
q + 1) + b

q2n−4 − 1

q − 1
.
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Now we have two linear equations in a and b. Solving the system proves
the lemma. �

As a corollary, we obtain the following result.

Corollary 14. Q+(2n + 1, q), n > q2, has no ovoid.

P r o o f. Suppose that Q+(2n + 1, q) has an ovoid. Then we can find a
3-dimensional space π intersecting Q+(2n + 1, q) in an elliptic quadric Q−(3, q)
that contains at least 3 points of the ovoid. By Lemma 13, there exists a cone
over that elliptic quadric that contains more than 3 points of O. Projecting this
cone, we find an ovoid of Q−(2n−1, q) with a 3-dimensional space π ′ intersecting
Q−(2n+1, q) in an elliptic quadric Q−(3, q) that contains at least 4 points of this
ovoid.

Repeating the argument n−2 times, we find an ovoid of Q+(5, q) which has
n+1 points inside a 3-space intersecting Q+(5, q) in an elliptic quadric Q−(3, q).
Since Q−(3, q) has only q2 + 1 points, we find n ≤ q2. �

4.2. Extension results.

Extension results have the following form.

Suppose that a partial ovoid or partial spread of a classical finite polar

space P has almost as many points or generators as an ovoid or spread of P ,

then it can be extended to an ovoid or spread of P .

Depending on whether an ovoid or a spread exists or not, we either obtain
a spectrum result or an upper bound on the size of a partial ovoid or spread. Let
us have a look at an example.

Theorem 15 (see [30]). Suppose that S is a maximal partial spread of

Q(4, q). Then either S is a spread or |S| ≤ q2 − q + 1.

P r o o f. Put δ := q2 + 1 − |S|. We assume that 0 < δ < q and derive a
contradiction. Let H be the set of δ(q + 1) points of Q(4, q) not covered by the
elements of S. We call these points holes. Since S is maximal, H contains no
line.

Embed Q(4, q) in the natural way in PG(4, q). Every hyperplane of
PG(4, q) meets Q(4, q) in 1 (mod q) points. As |S| = q2 + 1 − δ, it follows
that every hyperplane meets H in δ (mod q) points. As δ < q, this implies that
every hyperplane contains at least δ holes.

Consider a hole P . The tangent hyperplane P ⊥ on P meets Q(4, q) in a
cone with vertex P over a parabolic quadric Q(2, q). Every line of S meets P ⊥

in a unique point. As P⊥ contains q2 + q + 1 points of Q(4, q), then P⊥ contains
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q + δ holes. If π is a plane of P⊥, then each of the q hyperplanes on π other
than P⊥ contains at least δ holes. As the number of holes is (q + 1)δ and as P ⊥

contains more than δ holes, it follows that π must contain a hole. Hence, P ⊥∩H
meets every plane of P⊥, i.e. the q + δ holes in P⊥ form a blocking set w.r.t. the
planes in P⊥.

Blocking sets which lie in a quadric were studied in [30], where it was
shown that in the case above, the blocking set must contain a line. This is
however a contradiction to the maximality of S. �

Since for q odd, it is known that Q(4, q) has no spread (Table 2), this
proves that a partial spread of Q(4, q), q odd, has at most q2 − q + 1 elements.
This was first proven in [43]. For q even, Q(4, q) has a spread (Table 2) and the
above result gives us information on the upper part of the spectrum (which was
first proven in [6]). The above proof is the first that works for all q. It can also
be generalised to Q−(5, q).

Theorem 16 (see [30]). Suppose that S is a maximal partial spread of

Q−(5, q). Then either S is a spread or |S| ≤ q3 − q + 1.

4.3. Ovoids of Q+(7, q). The hyperbolic quadric Q+(7, q) is the only
polar space for which ovoids are known to exist for some q but no construction
is known for all q. Currently, no ovoids of Q+(7, q) are known for q ≡ 1 (mod 6)
and q not a prime. For all other q, ovoids are known.

The known constructions of ovoids are via coordinates and large auto-
morphism groups. As an example of the methods used in this case, we sketch
the construction of ovoids of Q+(7, q), q = ph, p ≡ 2 (mod 3), h odd, found by
Kantor [28].

In Fq, we let ᾱ = αq, Tr(α) = α + ᾱ and N(α) = α · ᾱ.

Let

J =





0 0 1
0 1 0
1 0 0





and let

V = {M | trace(M) = 0, J−1MJ = M̄ tr}

=











α β c
γ a β̄
b γ̄ ᾱ





∣

∣

∣

∣

α, β, γ ∈ Fq2 , a, b, c ∈ Fq, a + Tr(α) = 0







.
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Q =











α β c
γ a β̄
b γ̄ ᾱ





∣

∣

∣

∣

α2 + αᾱ + ᾱ2 + Tr(βγ) + bc = 0







defines a hyperbolic quadric Q+(7, q) on V . Let

O =











0 0 1
0 0 0
0 0 0











∪











ρ̄ ρ̄σ N(ρ)
σ̄ N(σ) ρσ̄
1 σ ρ





∣

∣

∣

∣

Tr(ρ) + N(σ) = 0







.

Note that PG(3, q) acts 2-transitively on O, so to prove that O is an ovoid, it is
sufficient to see that





0 0 1
0 0 0
0 0 0



 and





0 0 0
0 0 0
1 0 0





are not collinear on Q.

4.4. Algebraic techniques. For each classical finite polar space P, we
define the incidence matrix I(P) = (iP,G), where P runs over all points of P and
G runs over all generators of the polar space P, by iP,G = 1 if P ∈ G and iP,G = 0
if P /∈ G.

Now let O be a partial ovoid of P. For each P ∈ O, choose a generator
GP through P and let O′ = {GP | P ∈ O}.

The incidence matrix I(P) contains the submatrix (iP,G)P∈O,G∈O′ , which
is the identity matrix. Therefore, I(P) has at least the rank |O|.

Thus we get an upper bound on the size of the partial ovoids in P if we
compute the rank of I(P). We are still free to choose the characteristic of the
underlying field. The appropriate rank to compute is the p-rank, where p is the
characteristic of the field we used in the definition of P.

The determination of the p-ranks is rather complicate, so we state only
the results. For the proofs, see [4, 37].

Result 17. Let q = pe, p prime, e ≥ 1, then

rankp(I(PG(n, q))) =

(

p + n − 1

n

)e

+ 1.

If Q is the incidence structure of all points of a non-singular quadric of PG(n, q)
and all hyperplanes of PG(n, q), then

rankp(I(Q)) =

[(

p + n − 1

n

)

−
(

p + n − 3

n

)]e

+ 1.
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If H is the incidence structure of all points of a non-singular hermitian variety

in PG(n, q2) and all hyperplanes of PG(n, q2), then

rankp(I(H)) =

[

(

2n + p

2n + 1

)2

−
(

2n + p − 1

2n + 1

)2
]e

+ 1.

If n and q are even, then for any quadric Q∗(n, q),

rankp(I(Q∗(n, q))) = ne + 1.

Again, the exact values for the rank of these incidence matrices imply
upper bounds on the sizes of partial ovoids of the considered classical finite polar
spaces P. In fact, for large dimensions n, depending on the characteristic p of
the underlying field over which P is defined, these dimensions are smaller than
the size of ovoids of P; hence, they exclude the possibility of ovoids of P. For the
precise bounds, we refer to Table 1.

It is remarkable that even the p-rank of the incidence matrix of PG(n, q)
already excludes ovoids in large dimensions.

4.5. Counting of triples. In 1982, Glynn introduced a new count-
ing technique to prove a lower bound on the size of maximal partial spreads of
PG(3, q) [17]. By the Klein correspondence, this is equal to a result on small
maximal partial ovoids of Q+(5, q). The proof of Glynn becomes simpler inside
Q+(5, q); indeed it has a simple generalisation to (hyperbolic) quadrics of any
dimension.

Theorem 18 (see [12]). A maximal partial ovoid of Q+(5, q) has at least

2q points. A maximal partial ovoid of Q+(2n + 1, q), n ≥ 3, has at least 2q + 1
points.

P r o o f. Let O be a maximal partial ovoid of Q+(2n + 1, q). Let w = |O|
and denote by ni the number of points of Q+(2n + 1, q)\O that are joined to
exactly i points of O by lines of Q+(2n + 1, q). Then we have:

∑

i

ni = |Q+(2n + 1, q)| − w,

∑

i

nii = wq|Q+(2n − 1, q)|,
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∑

i

nii(i − 1) = w(w − 1)|Q+(2n − 1, q)|,
∑

i

nii(i − 1)(i − 2) = w(w − 1)(w − 2)|Q(2n − 2, q)|.

The first equation just states that every point of Q+(2n + 1, q) \ O is
counted once. The second equation is obtained by double counting pairs (u, v),
with u ∈ Q+(2n+1, q)\O and v in O, such that uv is a line of Q+(2n+1, q). The
third equation is obtained by counting triples (u, v1, v2), with u ∈ Q+(2n+1, q)\O
and v1 6= v2 in O, such that uv1 and uv2 are lines of Q+(2n + 1, q). The last
equation is obtained by counting quadruples (u, v1, v2, v3), with u ∈ Q+(2n +
1, q)\O and v1, v2, v3 distinct points of O, such that uv1, uv2 and uv3 are lines
of Q+(2n + 1, q). Note that three points of O always span a plane that meets
Q+(2n+1, q) in a conic Q(2, q), so that their polar space intersects Q+(2n+1, q)
in a parabolic quadric Q(2n − 2, q).

As the partial ovoid O is maximal, we have n0 = 0. Hence,

0 ≤
∑

i

ni(i − 1)(i − 3)(i − 4)

=
∑

i

nii(i − 1)(i − 2) − 5
∑

i

nii(i − 1) + 12
∑

i

nii − 12
∑

i

ni.

Solving this inequality, we obtain w > 2q − 1 for n = 2 and w > 2q for
n ≥ 3. �

4.6. A geometric property of H(2n+1, q2). This section is devoted
to results that use a special property of hermitian spaces, first proven in [48].

Result 19. Let π1, π2 and π be mutually skew generators of H(2n+1, q2).
Then the points of π that lie on a line of H(2n + 1, q2), meeting π1 and π2, form

a hermitian variety H(n, q2) in π.

One of the best applications of this property is an upper bound on the
size of maximal partial spreads of H(3, q2).

Theorem 20 (see [11]). A partial spread of H(3, q2) has at most
1

2
(q3 +

q + 2) elements.

P r o o f. Suppose that S is a partial spread of H(3, q2) and that |S| =
q3 + 1 − δ. Then the number of points of H(3, q2) not covered by lines of S is
h = δ(q2 + 1). We call these points holes.

Consider triples (S1, S2, P ), where S1 and S2 are different elements of S
and where P is a hole. We shall estimate how many of these triples have the
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property that the unique line of PG(3, q2) on P that meets S1 and S2 belongs to
H(3, q2).

To do so, we consider a hole P . Then P lies on q + 1 lines of H(3, q2). If
xi, i = 1, . . . , q + 1, is the number of points on the i-th line on P covered by an
element of S, then we have

∑

xi = |S| and hence

∑

xi(xi − 1) ≥ (q + 1)
|S|

q + 1

( |S|
q + 1

− 1

)

.

Since the number of holes is δ(q2 + 1), we find a lower bound on the
number of triples.

Now choose a pair (S1, S2) of distinct spread elements. There are q2 + 1
lines of H(3, q2) that meet S1 and S2. These lines cover (q2 +1)(q2 − 1) points of
H(3, q2) not on S1 and S2. By Result 19, every line of S\{S1, S2} contains q + 1
of these points. Thus there are (q2 + 1)(q2 − 1) − (|S| − 2)(q + 1) holes.

Together with the lower bound, this gives

|S|(|S|−1)[(q2+1)(q2 − 1)−(|S|−2)(q+1)]≥(q3+1−|S|)(q2+1)|S|
( |S|

q+1
−1

)

.

After simplification, we obtain |S| ≤ 1

2
(q3 + q + 2). �

What makes this bound so remarkable is that for q = 2 and q = 3, the
bound is sharp [15, 16]. But for q ≥ 4, we do not know whether this bound is
sharp [11].

An other theorem that makes use of the geometric property (Result 19)
is the following result on small maximal partial spreads.

Theorem 21 (see [31]). For n ≥ 2 and q ≥ 13, every maximal partial

spread of H(2n + 1, q2) has at least 2q + 3 generators.

In [31], similar geometric properties were proven for Q+(4n + 3, q) and
W (2n + 1, q), leading to lower bounds on small maximal partial spreads in these
polar spaces (see Table 8).
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