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INTERVAL OSCILLATION FOR SECOND ORDER

NONLINEAR DIFFERENTIAL EQUATIONS WITH A
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Abstract. It is the purpose of this paper to give oscillation criteria for the
second order nonlinear differential equation with a damping term

(a (t) y′ (t))
′

+ p (t) y′ (t) + q (t) |y (t)|
α−1

y (t) = 0, t ≥ t0,

where α ≥ 1, a ∈ C1 ([t0,∞) ; (0,∞)) and p, q ∈ C ([t0,∞) ; R). Our results
here are different, generalize and improve some known results for oscilla-
tion of second order nonlinear differential equations that are different from
most known ones in the sencse they are based on the information only on
a sequence of subintervals of [t0,∞), rather than on the whole half-line and
can be applied to extreme cases such as

∫

∞

t0
q (t) dt = −∞. Our results are

illustrated with an example.

1. Introduction. We are concerned with the oscillatory behavior of
the second order nonlinear differential equation with a damping term

(1.1)
(

a (t) y′ (t)
)′

+ p (t) y′ (t) + q (t) |y (t)|α−1 y (t) = 0,
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where α ≥ 1, a ∈ C1 ([t0,∞) ; (0,∞)) and p, q ∈ C ([t0,∞) ; R). Our attention is
restricted to those solutions of equation (1.1) that satisfy sup {|y (t)| : t ≥ t1} > 0.
We make a standing hypothesis that (1.1) does possess such solutions. By a
solution of equation (1.1) we mean a continuously differentiable function y (t) :
[t0, t1) → R, t1 > t0 such that a (t) y′ (t) is continuously and differentiable for
t ∈ [t0, t1) and satisfies (1.1) for all t ∈ [t0, t1). In the sequel it will be always
assumed that solutions of equation (1.1) exist for any t0 ≥ 0. A solution of
equation (1.1) is called oscillatory if it has arbitrary large zeros, otherwise it is
called nonoscillatory.

In the last few decades, there has been increasing interest in obtaining
sufficient conditions for the oscillation and nonoscillation of solutions of different
classes of second order differential equations [1–43]. In particular, much work has
been done on the following particular cases of (1.1):

(1.2) y′′ (t) + q (t) y (t) = 0,

(1.3)
(

r (t) y′ (t)
)′

+ q (t) y (t) = 0,

(1.4) y′′ (t) + q (t) |y (t)|α−1 y (t) = 0.

An important tool in the study of the oscillatory behavior of solutions of these
equations is the averaging technique which goes back as far as the classical result
of Wintner [34] where it was proved that (1.2) is oscillatory if

(1.5) lim
t→∞

1

t

∫ t

t0

∫ s

t0

q (u) duds = ∞.

Hartman [15] proved that the limit in (1.5) cannot be replaced by the limit
supremum and proved that the condition

(1.6) −∞ < lim inf
t→∞

1

t

∫ t

t0

∫ s

t0

q (u) duds < lim sup
t→∞

1

t

∫ t

t0

∫ s

t0

q (u) duds ≤ ∞,

implies that every solution of (1.2) is oscillatory. Kamenev [18] improved Wint-
ner’s result by proving that the condition

(1.7) lim
t→∞

1

tn

∫ t

t0

(t− s)n q (s) ds = ∞, for some integer n > 1,

is sufficient condition for the oscillation of (1.2). Yan [39] proved that if

lim sup
t→∞

1

tn

∫ t

t0

(t− s)n q (s) ds <∞, for some integer n > 1,
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and there exists a function φ on [t0,∞) satisfying
∫ ∞

t0

φ2
+ (t) dt = ∞ where φ+ (t) = max{φ (t) , 0},

and

(1.8) lim sup
t→∞

1

tn

∫ t

t0

(t− s)n q (s) ds > sup
u≥t0

φ (u) ,

then every solution of equation (1.2) is oscillatory. Philos [27] further improved
Kamenev’s result by proving the following: Suppose there exist continuous func-
tions

H, h : D := {(t, s) : t ≥ s ≥ t0} → R,

such that

H (t, t) = 0, t ≥ t0, H (t, s) > 0, t > s ≥ t0,

and H has a continuous and nonpositive partial derivative on D with respect to
the second variable and satisfies

(1.9)
∂H (t, s)

∂s
= −h (t, s)

√

H (t, s).

Further, suppose that

(1.10) lim
t→∞

1

H (t, t0)

∫ t

t0

[

H (t, s) q (s) −
1

4
h2 (t, s)

]

ds = ∞.

Then every solution of equation (1.2) is oscillatory. We note, however, that when

q (t) =
γ

t2
, (1.2) reduces to the well-known Euler–Cauchy equation

(1.11) u′′ (t) +
γ

t2
u (t) = 0, t ≥ 1,

to which none of the above mentioned oscillation criteria is applicable. In fact,

the Euler–Cauchy equation (1.11) is oscillatory if γ >
1

4
, and nonoscillatory if

γ ≤
1

4
, see [19]. For oscillation of equation (1.3), Leighton [20] proved that, if

(1.12)

∫ ∞

t0

dt

r (t)
= ∞ and

∫ ∞

t0

q (t) dt = ∞,

then every solution of equation (1.3) is oscillatory. Willett [32] used the trans-
formation

τ =

(
∫ ∞

t

ds

r (s)

)−1

and u (t) = τ−1 (y (t)) ,
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to establish a new version of Leighton’s criterion and obtained the following
oscillation criterion. If

(1.13)

∫ ∞

t0

dt

r (t)
= ∞ and

∫ ∞

t0

q (t)

(
∫ ∞

t

ds

r (s)

)2

dt = ∞,

then every solution of (1.3) is oscillatory. We note, however, that the oscillation
criteria of Leighton and Willett are not applicable to the equation

(1.14)
(

t2u′ (t)
)′

+ γu (t) = 0, t > 0,

where γ is a positive constant. Kong [19], Li [21], Li and Yeh [26], Rogovechenkov
[28], and Yu [42] used the generalized Riccati technique and have given several
sufficient conditions for oscillation of (1.3) which can be applied to (1.14); in

fact every solution of (1.14) oscillates if γ >
1

4
, (see [26], [27]). In [35], Wong

extended the mentioned results of equation (1.2) to equation (1.4) and showed
that equation (1.4) is oscillatory, for every α > 0, if

lim inf
t→∞

∫ t

t0

q (s) ds > 0,

and

lim sup
t→∞

1

tn−1

∫ t

t0

(t− s)n−1 q (s) ds = ∞, for some integer n > 2.

Most oscillation results involve the interval of q (t) and hence require the infor-
mation of q (t) on the entire half-line [t0,∞). It is difficult to apply them to
the cases where q (t) has a “bad” behavior on a big part of [t0,∞), e.g., when
∫ ∞

t0
q (t) dt = −∞. However, from the Sturm Separation Theorem (see [16]), we

see that oscillation is only an interval property, i.e., if there exists a sequence
of subintervals [ai, bi] of [t0,∞), as ai → ∞, such that for each i there exists a
solution of equation (1.2) that has at least two zeros in [ai, bi], then every so-
lution of equation (1.2) is oscillatory, no matter how “bad” equation (1.2) is on
the remaining parts of [t0,∞). El-Sayed [10] established an interval criterion for
oscillation of a forced second order equation, but the result is not very sharp,
because a comparison with equations of constant coefficient is used in the proof.

As pointed out in Kong [19], oscillation is an interval property, that is, it
is more reasonable to investigate solutions on an infinite set of bounded intervals.
Therefore, the problem is to find oscillation criteria which use only the informa-
tion about the involved functions on these intervals; outside of these intervals the
behavior of the functions is irrelevant. Such type of criteria are referred to as
interval oscillation criteria. The first beautiful interval criteria in this direction
was due to Kong [19], who employed the technique in the work of Philos [27]
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for the second-order differential equations, and presented sharp several interval
oscillation criteria for equation (1.2) involving the Kamenev’s type condition.

Recently, Li and Agarwal [23] extended Kong’s criterion to the equation
(

a (t) y′ (t)
)′

+ p (t) y′ (t) + q (t) f (y (t)) = 0,

and also, Li [24], Zheng [43], and other extended Kong’s criterion to more general
equation under restriction

(1.15) f ′ (y) ≥ µ > 0 or
f (y)

y
≥ µ > 0, for y 6= 0.

Note that assumption (1.15) does not allow f to be of superlinear or sunlinear
growth. Also, some other results can be found in ([22], [40]).

Motivated by idea of El-Sayed [10], Kong [19] and Elabbasy et al [9] in
this paper, we use the generalized Riccati transformation technique to establish
interval oscillation criteria for equation (1.1), that is, criteria given by the be-
havior of equation (1.1) only on a sequence of subintervals of [t0,∞) and can be
apply to extreme cases such as

∫ ∞

t0
q(t)dt = −∞. Finally, an interesting example

that illustrate the importance of our results is also included. In the sequel, when
we write a functional inequality we will assume that it holds for all sufficiently
large values of t. Throughout this paper. we say that a function H = H (t, s)
belongs to a function class X, denoted by H ∈ X, if H ∈ C (D,R+), where

D := {(t, s) : t0 ≤ s ≤ t <∞} ,

which satisfies

(1.16) H (t, t) = 0, for t ≥ t0, H (t, s) > 0, for t > s ≥ t0,

and has partial derivatives
∂H

∂t
and

∂H

∂s
on D such that

(1.17)
∂H

∂t
= h1 (t, s)

√

H (t, s),
∂H

∂s
= −h2 (t, s)

√

H (t, s),

for some locally integrable functions h1 and h2. Also, given a differentiable func-
tion φ(t) and a positive differentiable function Φ(t), we let, for some a positive
constant N

P (t) :=
−1

Φ (t)

(

p (t)Φ (t) − a (t) Φ′ (t)
)

,

A (t) :=
−1

a (t) σ (t)
(P (t) σ(t) + 2Na (t)φ (t)) , B (t) :=

N

a (t)σ (t)Φ (t)
,

ψ (t) := Φ (t)

[

q (t) + P (t)φ (t) +
Na (t)φ2 (t)

σ (t)
−
a (t)φ (t) Φ′ (t)

Φ (t)
− (a (t)φ (t))′

]

,
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σ (t) :=

∫ t

t0

ds

a (s)Φ (s)
,

and

G1 (t, v) : =
1

4B (t)

[

h1 (t, v) −
√

H (t, v)A (t)
]2
,

G2 (u, t) : =
1

4B (t)

[

h2 (u, t) +
√

H (u, t)A (t)
]2
.

Main results. In this section, we will establish oscillation criteria of
equation (1.1) when α > 1.

Theorem 2.1. Suppose that there exist a differentiable function φ(t), a
positive differentiable function Φ(t) such that

(2.1) P (t) ≥ 0, (P (t)Φ (t))′ ≤ 0,

and

(2.2) lim
t→∞

σ (t) = ∞, and lim inf
t→∞

∫ t

t0

Φ(s) q (s) ds > −∞.

If, for a sufficiently large T > t0, there exist H ∈ X and a, b, c ∈ R such that
T ≤ a < b < c and

(2.3)
1

H (b, a)

∫ b

a
[H (s, a)ψ (s) −G1 (s, a)] ds

+
1

H (c, b)

∫ c

b
[H (c, s)ψ (s) −G2 (c, s)] ds > 0,

then every solution of equation (1.1) is oscillatory.

P r o o f. Assume (1.1) has a nonoscillatory solution on [t0,∞). Then
without loss of generality, y (t) is a positive solution of (1.1) on [t0,∞). Consider
the generalized Riccati substitution

(2.4) w (t) := a (t)Φ (t)

(

y′ (t)

yα (t)
+ φ (t)

)

.

From (1.1) and (2.4), we find, for t ≥ t0

w′ (t) = −Φ(t) q (t) −
(

p (t)Φ (t) − a (t) Φ′ (t)
) y′ (t)

yα (t)
(2.5)

−αa (t)Φ (t)
(y′ (t))2

yα+1 (t)
+ (a (t)φ (t)Φ (t))′ .
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It follows from the definition of P (t) that

w′ (t) = −Φ(t) q (t) + P (t)Φ (t)
y′ (t)

yα (t)
(2.6)

−αa (t)Φ (t)

(

y′ (t)

yγ (t)

)2

+ (a (t)φ (t)Φ (t))′ ,

where γ :=
α+ 1

2
. We consider the following two cases.

Case 1. The integral
∫ t
t0
αa (s)Φ (s)

(

y′ (s)

yγ (s)

)2

ds converges as t → ∞.

Then there exists a positive constant N1 such that

∫ t

t0

αa (s)Φ (s)

(

y′ (s)

yγ (s)

)2

ds ≤ N1, for all t ≥ t0.

By Schwarz’s inequality, we get

∣

∣

∣

∣

∫ t

t0

y′(s)

yγ(s)
ds

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∫ t

t0

√

1

αa (s)Φ (s)

√

αa (s)Φ (s)
y′ (s)

yγ (s)
ds

∣

∣

∣

∣

∣

2

≤

∫ t

t0

1

αa (s)Φ (s)
ds

[

∫ t

t0

αa (s)Φ (s)

(

y′ (s)

yγ (s)

)2

ds

]

≤
N1

α
σ (t) .

Hence, for t ≥ t0

∣

∣y1−γ (t) − y1−γ (t1)
∣

∣ ≤ (1 − γ)

√

N1

α

√

σ (t).

Therefore, there exists a constant N and T > t0 such that

(2.7) yγ (t) ≤ yα (t)

√

α

N

√

σ(t), for t ≥ T.

Using (2.7) in (2.6), we get, for t ≥ T

w′ (t) ≤ −Φ(t) q (t) + P (t)Φ (t)
y′ (t)

yα (t)

−
Na (t)Φ (t)

σ (t)

(

y′ (t)

yα (t)

)2

+ (a (t)φ (t)Φ (t))′ .

By the definitions of w (t) , ψ (t), A (t) and B (t), we have

w′ (t) ≤ −ψ (t) −A (t)w (t) −B (t)w2 (t) , for t ≥ T > t0.
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Case 2. The integral
∫ t
t0
αa (s)Φ (s)

(

y′ (s)

yγ (s)

)2

ds diverges as t → ∞.

Integrating (2.6) from t0 to t, we get

Φ (t)
a (t) y′(t)

yα (t)
= C −

∫ t

t0

Φ(s)q (s) ds+

∫ t

t0

P (s)Φ (s)
y′(s)

yα (s)
ds(2.8)

−

∫ t

t0

αa (s)Φ (s)

(

y′ (s)

yγ (s)

)2

ds,

where C := w (t0) − a (t0)φ (t0)Φ (t0). Then, by Bonnet’s Theorem (see [1]),
since P (t)Φ (t) is nonnegative and nonincreasing, for a fixed t ≥ t0, there exists
ξ ∈ [t0, t] such that
∫ t

t0

P (s)Φ (s)
y′(s)

yα (s)
ds = P (t0) Φ (t0)

∫ ξ

t0

y′(s)

yα (s)
ds = P (t0)Φ (t0)

∫ y(ξ)

y(t0)
u−αdu

=
P (t0) Φ (t0)

1 − α

(

y1−α (ξ) − y1−α (t0)
)

<
P (t0)Φ (t0)

α− 1
y1−α (t0) =: M.

Therefore, for t ≥ t0, we find from (2.8) that

Φ (t)
a (t) y′(t)

yα (t)
≤ L−

∫ t

t0

q (s)Φ (s) ds−

∫ t

t0

αa (s)Φ (s)

(

y′ (s)

yγ (s)

)2

ds,

where L := C +M . Also, from (2.2), we can find a constant E such that

(2.9) −Φ(t)
a (t) y′(t)

yα (t)
≥ E +

∫ t

t0

αa (s)Φ (s)

(

y′ (s)

yγ (s)

)2

ds, for t ≥ t0.

Now, we can choose t1 ≥ t0 so that

V := E +

∫ t1

t0

αa (s)Φ (s)

(

y′ (s)

yγ (s)

)2

ds > 1,

which means that y′ (t) < 0 for t ≥ t1. Therefore, (2.9) yields

(2.10) −
αy′ (t)

y (t)
≤

αa (t) Φ (t)

(

y′ (t)

yγ (t)

)2

E +
∫ t
t0
αa (s)Φ (s)

(

y′ (s)

yγ (s)

)2

ds

, for t ≥ t1

Integrating (2.10) from t1 to t, t ≥ t1, we get

log

E +
∫ t
t0
αa (s)Φ (s)

(

y′ (s)

yγ (s)

)2

ds

V
≥ α log

y (t1)

y (t)
.
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Hence

E +

∫ t

t0

αa (s)Φ (s)

(

y′ (s)

yγ (s)

)2

ds ≥ V

(

y (t1)

y (t)

)α

≥

(

y (t1)

y (t)

)α

, for t ≥ t1.

So, (2.9) yields

y′(t) ≤
−yα (t1)

a (t)Φ (t)
, for t ≥ t1,

which implies that

y(t) ≤ y (t1) − yα (t1)

∫ t

t1

ds

a (s)Φ (s)
→ −∞ as t→ ∞,

since limt→∞ σ (t) = ∞, which contradicts the fact that y is a positive solution
of (1.1). Therefore, we can choose a sequence {Ti} ⊂ [T,∞) such that Ti → ∞
as i → ∞. By the assumption, for each i ∈ N, there exist ai, bi, ci ∈ R such that
Ti ≤ ai < bi < ci, i ∈ N. Then, we get for s ∈ (ai, bi], for i ∈ N

(2.11) ψ (s) ≤ −w′ (s) −A (s)w (s) −B (s)w2 (s) .

Multiplying both sides of (2.11) by H (s, t), integrating with respect to s from t

to b for t ∈ (ai, bi],
∫ bi

t
H (s, t)ψ (s) ds ≤ −

∫ bi

t
H (s, t)w′ (s) ds−

∫ bi

t
H (s, t)A (s)w (s) ds

−

∫ bi

t
H (s, t)B (s)w2 (s) ds.

Integrating by parts and using (1.16) and then (1.17), we obtain
∫ bi

t
H (s, t)ψ (s) ds ≤ −H (bi, t)w (bi)

−

∫ bi

t

{

H (s, t)B (s)w2 (s) −
[

h1 (s, t)
√

H (s, t) −H (s, t)A (s)
]

w (s)
}

ds

= −H (bi, t)w (bi)

−

∫ bi

t

{

√

H (s, t)B (s)w (s) −
1

2
√

B (s)

[

h1 (s, t) −
√

H (s, t)A (s)
]

}2

ds

+
1

4

∫ bi

t

1

B (s)

[

h1 (s, t) −A (s)
√

H (s, t)
]2
ds
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≤ −H (bi, t)w (b) +
1

4

∫ bi

t

1

B (s)

[

h1 (s, t) −A (s)
√

H (s, t)
]2
ds.

Letting t→ a+
i in the above, we have

(2.12)
1

H (bi, ai)

∫ bi

ai

[H (s, ai)ψ (s) −G1 (s, ai)] ds ≤ −w (bi) .

Similarly, Multiplying both sides of (2.11) by H (t, s) , integrate with respect to
s from bi to t for t ∈ [bi, ci),

∫ t

bi

H (t, s)ψ (s) ds ≤ −

∫ t

bi

H (t, s)w′ (s) ds−

∫ t

bi

H (t, s)A (s)w (s) ds

−

∫ t

bi

H (t, s)B (s)w2 (s) ds.

Integrating by parts and using (1.16) and then (1.17), we obtain
∫ t

bi

H (t, s)ψ (s) ds ≤ H (t, bi)w (bi)

−

∫ t

bi

{

H (t, s)B (s)w2 (s) +
[

h2 (t, s)
√

H (t, s) +H (t, s)A (s)
]

w (s)
}

ds

= H (t, bi)w (bi)

−

∫ t

bi

{

√

H (t, s)B (s)w (s) +
1

2
√

B (s)

[

h2 (t, s) +A (s)
√

H (t, s)
]

}2

ds

+
1

4

∫ t

bi

1

B (s)

[

h2 (t, s) +A (s)
√

H (t, s)
]2
ds

≤ H (t, bi)w (bi) +
1

4

∫ t

bi

1

B (s)

[

h2 (t, s) +A (s)
√

H (t, s)
]2
ds.

Letting t→ c−i in the above, we get

(2.13)
1

H (ci, bi)

∫ ci

bi

[H (ci, s)ψ (s) −G2 (ci, s)] ds ≤ w (bi) .

From (2.12) and (2.13), we obtain

(2.14)
1

H (bi, ai)

∫ bi

ai

[H (s, ai)ψ (s) −G1 (s, ai)] ds
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+
1

H (ci, bi)

∫ ci

bi

[H (ci, s)ψ (s) −G2 (ci, s)] ds ≤ 0,

for any one interval (ai, ci) , bi ∈ (ai, ci), i ∈ N, which contradicts the assumption
(2.3). Then every solution y (t) has at least one zero υi ∈ (ai, ci), i ∈ N. Thus,
every solution of equation (1.1) is oscillatory and the proof is complete. �

Example 2.2. Consider the nonlinear differential equation

(2.15) y′′ (t) − y′ (t) + q (t) |y (t)|α−1 y (t) = 0, t ≥ 1,

where

q (t) =







α1, 3n ≤ t ≤ 3n+ 2,

α2, 3n+ 2 < t ≤ 3n+ 3
,

and

α1 =
e
(

2e3n+1 − e2 + 2
)

2N (e2 − 2e− 1)
+ ε, α2 = −2

(

e3n+2

N (e2 − 2e− 1)
+ ε

)

,

for n ∈ N0 = {0, 1, 2, . . . } and ε ∈ (0, 1). For any T > 1 there exists n ∈ N0 such

that 3n ≥ T . Let φ (t) =
1

2
and Φ (t) = e−t, then

P (t) = 0, σ (t) = et − e, ψ (t) =
q (t)

et
+

2
(

et − e
)

+N

4et (et − e)
,

and

A (t) =
N

e− et
, B (t) =

N

1 − e1−t
.

It is clear that conditions (2.1) and (2.2) are satisfied. By taking a = 3n, b =
3n + 1, c = 3n+ 2 and H (t, s) = (t− s)2. Note that h1 (t, s) = h2 (t, s) = 2. It
is easy to see that

G1 (t, a) =
1 − e1−t

4N

(

2 +
N (t− 3n)

et − e

)2

,

G2 (c, t) =
1 − e1−t

4N

(

2 −
N (3n+ 2 − t)

et − e

)2

,

and

1

H (b, a)

∫ b

a
[H (s, a)ψ (s) −G1 (s, a)] ds

+
1

H (c, b)

∫ c

b
[H (c, s)ψ (s) −G2 (c, s)] ds = 2ε

(

e2 − 2e− 1
)

e−2−3n > 0.



726 Taher S. Hassan

Hence, every solution of equation (2.15) is oscillatory by Theorem 2.1. Note that
in this equation, we have

∫ ∞

1 q (t) dt = −∞.

Corollary 2.3. If

(2.16) lim sup
t→∞

∫ t

l
[ψ (s)H (s, l) −G1 (s, l)] ds > 0,

and

(2.17) lim sup
t→∞

∫ t

l
[ψ (s)H (t, s) −G2 (t, s)] ds > 0,

for each l ≥ T > t0, then every solution of equation (1.1) is oscillatory.

P r o o f. For any T1 ≥ T, let a = T1. In (2.16), we choose l = a. Then
there exists b > a such that

(2.18)

∫ b

a
[H (s, a)ψ (s) −G1 (s, a)] ds > 0.

In (2.17), we choose l = b. Then there exists c > b such that

(2.19)

∫ c

b
[H (c, s)ψ (s) −G2 (c, s)] ds > 0.

Combining (2.18) and (2.19), we get (2.3). The conclusion thus comes from
Theorem 2.1. The proof is complete. �

Next define

H (t, s) = [σ (t) − σ (s)]λ , t ≥ s ≥ T > t0,

where λ > 1 is a constant.

Corollary 2.4. If

(2.20) lim sup
t→∞

1

σλ−1(t)

∫ t

l

{(

ψ(s) −
A2(s)

4B(s)

)

[σ(s) − σ(l)]λ

+
λA(s)[σ(s) − σ(l)]λ−1

2B(s)a(s)Φ(s)
−
λ2(σ(s) − 1)

4Na(s)Φ(s)
[σ(s) − σ(l)]λ−2

}

ds

>
λ2

4N(λ− 1)
,

and

(2.21) lim sup
t→∞

1

σλ−1 (t)

∫ t

l

{(

ψ(s) −
A2(s)

4B(s)

)

[σ (t) − σ (s)]λ
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−
λA (s) [σ (t) − σ (s)]λ−1

2B (s) a (s)Φ (s)
−
λ2(σ(s) − 1)

4Na (s)Φ (s)
[σ (t) − σ (s)]λ−2

}

ds

>
λ2

4N(λ− 1)
,

for each l ≥ T > t0, then every solution of equation (1.1) is oscillatory.

P r o o f. From (1.17), we can find

h1 (t, s) = λ [σ (t) − σ (s)](λ−2)/2 1

a (t) Φ (t)
,

and

h2 (t, s) = λ [σ (t) − σ (s)](λ−2)/2 1

a (s)Φ (s)
.

Note that
∫ t

l

1

4B (s)
h2

1 (s, l) ds =
λ2

4N

∫ t

l

σ(s)

a (s)Φ (s)
[σ (s) − σ (l)]λ−2 ds

=
λ2

4N

∫ t

l
{
(σ(s) − 1)

a (s)Φ (s)
[σ (s) − σ (l)]λ−2 +

1

a (s)Φ (s)
[σ (s) − σ (l)]λ−2}ds

=
λ2

4N

∫ t

l

(σ(s) − 1)

a (s)Φ (s)
[σ (s) − σ (l)]λ−2 ds+

λ2

4N(λ− 1)
[σ (t) − σ (l)]λ−1 ,

and
∫ t

l

1

4B (s)
h2

2 (t, s) ds =
λ2

4N

∫ t

l

σ(s)

a (s)Φ (s)
[σ (t) − σ (s)]λ−2 ds

=
λ2

4N

∫ t

l
{
(σ(s) − 1)

a (s)Φ (s)
[σ (t) − σ (s)]λ−2 +

1

a (s)Φ (s)
[σ (t) − σ (s)]λ−2}ds

=
λ2

4N

∫ t

l

(σ(s) − 1)

a (s)Φ (s)
[σ (t) − σ (s)]λ−2 ds+

λ2

4N(λ− 1)
[σ (t) − σ (l)]λ−1 .

Since limt→∞ σ (t) = ∞, we get

(2.22) lim
t→∞

1

σλ−1 (t)

∫ t

l

1

4B (s)
h2

1 (s, l) ds

= lim
t→∞

λ2

4Nσλ−1(t)

∫ t

l

(σ(s) − 1)

a (s)Φ (s)
[σ (s) − σ (l)]λ−2 ds+

λ2

4N(λ− 1)
,



728 Taher S. Hassan

and

(2.23) lim
t→∞

1

σλ−1 (t)

∫ t

l

1

4B (s)
h2

2 (t, s) ds

= lim
t→∞

λ2

4Nσλ−1(t)

∫ t

l

(σ(s) − 1)

a (s)Φ (s)
[σ (t) − σ (s)]λ−2 ds+

λ2

4N(λ− 1)
.

From (2.20) and (2.22), we have

lim sup
t→∞

1

σλ−1 (t)

∫ t

l
{(ψ (s) −

A2 (s)

4B (s)
) [σ (s) − σ (l)]λ

+
λA (s)

2B (s) a (s)Φ (s)
[σ (s) − σ (l)]λ−1 −

1

4B (s)
h2

1 (s, l)}ds

= lim sup
t→∞

1

σλ−1 (t)

∫ t

l
{(ψ (s) −

A2 (s)

4B (s)
) [σ (s) − σ (l)]λ

+
λA (s)

2B (s) a (s)Φ (s)
[σ (s) − σ (l)]λ−1 −

λ2(σ(s) − 1)

4Na (s)Φ (s)
[σ (s) − σ (l)]λ−2}ds

−
λ2

4N(λ− 1)
> 0,

which implies that (2.16) holds. Similarly, from (2.21) and (2.23), we have

lim sup
t→∞

1

σλ−1 (t)

∫ t

l
{(ψ (s) −

A2 (s)

4B (s)
) [σ (t) − σ (s)]λ

−
λA (s)

2B (s) a (s)Φ (s)
[σ (t) − σ (s)]λ−1 −

1

4B (s)
h2

2 (s, l)}ds

= lim sup
t→∞

1

σλ−1 (t)

∫ t

l
{(ψ (s) −

A2 (s)

4B (s)
) [σ (t) − σ (s)]λ

−
λA (s)

2B (s) a (s)Φ (s)
[σ (t) − σ (s)]λ−1 −

λ2(σ(s) − 1)

4Na (s)Φ (s)
[σ (t) − σ (s)]λ−2}ds

−
λ2

4N(λ− 1)
> 0,

which implies that (2.17) holds. By Corollary 2.3, (1.1) is oscillatory. �
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Remark 2.5. These results are extendable to equation (1.1) when
α = 1. In this case The details are left to the reader.

Remark 2.6. The results in this paper are in a form with a high degree
of generality, and so with an appropriate choice of the functions H (t, s), φ (t)
and Φ(t), we can get other interval oscillation criteria for equation (1.1). For
instance, if we choose, for some a constant λ > 1,

H (t, s) = (t− s)λ ,

H (t, s) =

(

log
t

s

)λ

,

H (t, s) =

(
∫ t

s

dx

β (x)

)λ

,

for (t, s) ∈ D, where β is a positive continuous function on [t0,∞) such that
∫ ∞

t0

dx

β (x)
= ∞, then φ (t) and Φ(t) may be chosen 1 or t, etc. Also, if we replace

the condition (1.17) by

∂H

∂t
= h1 (t, s)

√

H (t, s) +A (t)H (t, s) ,

and

∂H

∂s
= −h2 (t, s)

√

H (t, s) +A (t)H (t, s) ,

or

∂H

∂t
= h1 (t, s) ,

∂H

∂s
= −h2 (t, s) ,

we get other oscillation criteria for equation (1.1).
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