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Abstract. For a given graph G let V (G) and E(G) denote the vertex and

the edge set of G respevtively. The symbol G
e
→ (a1, . . . , ar) means that in

every r-coloring of E(G) there exists a monochromatic ai-clique of color i for
some i ∈ {1, ..., r}. The edge Folkman numbers are defined by the equality

Fe(a1, . . . , ar; q) = min{|V (G)| : G
e
→ (a1, . . . , ar; q) and cl(G) < q}.

In this paper we prove a new upper bound on the edge Folkman number
Fe(3, 5; 13), namely

Fe(3, 5; 13) ≤ 21.

This improves the bound

Fe(3, 5; 13) ≤ 24,

proved in [5].
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1. Introduction. Only finite non-oriented graphs without multiple
edges and loops are considered. We call a p-clique of the graph G a set of p

vertices each two of which are adjacent. The largest positive integer p such that
G contains a p-clique is denoted by cl(G). A set of vertices of the graph G

none two of which are adjacent is called an independent set. The largest positive
integer p such that G contains an independent set on p vertices is called the
independence number of the graph G and is denoted by α(G). In this paper we
shall also use the following notations:

• V (G) is the vertex set of the graph G;

• E(G) is the edge set of the graph G;

• N(v), v ∈ V (G) is the set of all vertices of G adjacent to v;

• G[V ], V ⊆ V (G) is the subgraph of G induced by V ;

• Kn is the complete graph on n vertices;

• G is the complementary graph of G.

Let G1 and G2 be two graphs without common vertices. We denote by
G1 + G2 the graph G for which V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪
E(G2) ∪ E′ where E′ = {[x, y] : x ∈ V (G1), y ∈ V (G2)}. It is clear that

(1) cl(G1 + G2) = cl(G1) + cl(G2).

Definition 1. Let a1, . . . , ar be positive integers. The symbol G
v
→

(a1, . . . , ar) means that in every r-coloring of V (G) there is a monochromatic

ai-clique in the i-th color for some i ∈ {1, . . . , r}.

Definition 2. Let a1, . . . , ar be positive integers. We say that an r-

coloring of E(G) is (a1, . . . , ar)-free if for each i = 1, . . . , r there is no monochro-

matic ai-clique in the i-th color. The symbol G
e
→ (a1, . . . , ar) means that there

is no (a1, . . . , ar)-free coloring of E(G).

The smallest positive integer n for which Kn

e
→ (a1, . . . , ar) is called a

Ramsey number and is denoted by R(a1, . . . , ar). Note that the Ramsey number
R(a1, a2) can be interpreted as the smallest positive integer n such that for every
n-vertex graph G either cl(G) ≥ a1 or α(G) ≥ a2. The existence of such numbers
was proved by Ramsey in [16]. We shall use only the values R(3, 3) = 6 and
R(3, 4) = 9, [3].
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The edge Folkman numbers are defined by the equality

Fe(a1, . . . , ar; q) = min{|V (G)| : G
e
→ (a1, . . . , ar; q) and cl(G) < q}.

It is clear that G
e
→ (a1, . . . , ar) implies cl(G) ≥ max{a1, . . . , ar}. There exists

a graph G such that G
e
→ (a1, . . . , ar) and cl(G) = max{a1, . . . , ar}. In the case

r = 2 this was proved in [1] and in the general case in [14]. Therefore

Fe(a1, . . . , ar; q) exists if and only if q > max{a1, . . . , ar}.

It follows from the definition of R(a1, . . . , ar) that

Fe(a1, . . . , ar; q) = R(a1, . . . , ar) if q > R (a1, . . . , ar).

The smaller the value of q in comparison to R(a1, . . . , ar) the more difficult
the problem of computing the number Fe(a1, . . . , ar; q).

Among the edge Folkman numbers of the kind Fe(a1, . . . , ar;R(a1, . . . , ar))
only the following ones are known:

Fe(3, 3; 6) = 8, [2];
Fe(3, 4; 9) = 14, [11];
Fe(3, 5; 14) = 16, [4];
Fe(4, 4; 18) = 20, [4];
Fe(3, 3, 3; 17) = 19 [4].

Only three edge Folkman numbers of the kind Fe(a1, . . . , ar;R(a1, . . . , ar)−
1) are known, namely Fe(3, 4; 8) = 16, Fe(3, 3; 5) = 15 and Fe(3, 3, 3; 16) = 21.
The number Fe(3, 4; 8) = 16, was computed in the papers [6], [5]. The inequality
Fe(3, 3; 5) ≤ 15 was proved in [12] and the inequality Fe(3, 3; 5) ≥ 15 was ob-
tained by the means of computer in [15]. The inequality Fe(3, 3, 3; 16) ≥ 21 was
proved in [4] and the opposite inequality Fe(3, 3, 3; 16) ≤ 21 in [8]. At the end of
this exposition we shall mention that we know only one edge Folkman number of
the kind Fe(a1, . . . , ar;R(a1, . . . , ar)−2), namely Fe(3, 3, 3; 15) = 23, [9] and only
one edge Folkman number of the kind Fe(a1, . . . , ar;R(a1, . . . , ar) − 3), namely
Fe(3, 3, 3; 14) = 25, [10]. No other edge Folkman numbers are known.

This paper is dedicated to the Folkman number Fe(3, 5; 13).

The best known lower bound on this number is Fe(3, 5; 13) ≥ 18, which
was proved by Lin in [4]. Later Nenov proved in [13] that equality Fe(3, 5; 13) = 18
can be achieved only for the graph K8+C5+C5. Thus if K8+C5+C5

e
→ (3, 5) then

Fe(3, 5; 13) = 18 and otherwise Fe(3, 5; 13) > 18. So far nobody was able to check
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whether K8 +C5 +C5

e
→ (3, 5). The best known upper bound is Fe(3, 5; 13) ≤ 24,

[5].

We consider the graph Q, which was first introduced in [3] and whose
complementary graph is given in the Figure 1.

Fig. 1. Graph Q

We shall use the following properties of the graph Q:

cl(Q) = 4, [3];(2)

α(Q) = 2, [3];(3)

Q
v
→ (3, 4), [7].(4)

The goal of this paper is to prove the following

Theorem. Let G = K8 + Q. Then G
e
→ (3, 5).

It follows from (1) and (2) that cl(G) = 12. Since |V (G)| = 21 we obtain
from the Theorem the following

Corollary. Fe(3, 5; 13) ≤ 21.

2. Proof of the theorem. Assume the opposite: that there exists a
(3, 5)-free 2-coloring of E(G)

(5) E(G) = E1 ∪ E2, E1 ∩ E2 = ∅.
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We shall call the edges in E1 blue and the edges in E2 red.
We define for an arbitrary vertex v ∈ V (G) and index i = 1, 2 :

Ni(v) = {x ∈ N(v) | [v, x] ∈ Ei},

Gi(v) = G[Ni(v)]

Ai(v) = Ni(v) ∩ V (Q)

Let H be a subgraph of G. We say that H is a monochromatic subgraph
in the blue-red coloring (5) if E(H) ⊆ E1 or E(H) ⊆ E2. If E(H) ⊆ E1 we say
that H is a blue subgraph and if E(H) ⊆ E2 we say that H is a red subgraph.

It follows from the assumption that the coloring (5) is (3,5)-free that

(6) cl(G1(v)) ≤ 4 and cl(G2(v)) ≤ 8 for each v ∈ V (G)

Indeed, assume that cl(G1(v)) ≥ 5. Then there must be no blue edge connecting
any two of the vertices in cl(G1(v)) because otherwise this blue edge together
with the vertex v would give a blue triangle. As we assumed cl(G1(v)) ≥ 5 then
we have a red 5-clique. Analogously assume cl(G2(v)) ≥ 9. Since R(3, 4) = 9,
then we have either a blue 3-clique or a red 4-clique in G2(v). If we have a blue
3-clique in G2(v) then we are through. If we have a red 4-clique then this 4-clique
together with the vertex v gives a red 5-clique. Thus (6) is proved.

We shall prove that

(7) cl(G[A1(v)]) + cl(G[A2(v)]) ≤ 5 for each v ∈ V (K8)

Assume that (7) is not true, i.e. that there exists a vertex v ∈ V (K8) such that

cl(G[A1(v)]) + cl(G[A2(v)]) ≥ 6.

Then as there are seven more vertices in V (K8) with the exception of v,

it follows that
cl(G1(v)) + cl(G2(v)) ≥ 13.

It follows from the pigeonhole principle that either cl(G1(v)) ≥ 5 or cl(G2(v)) ≥ 9,
which contradicts (6). Thus (7) is proved.

Now we shall prove that

(8) cl(G[A1(v)]) = 4 or cl(G[A2(v)]) = 4 for each v ∈ V (K8)

By (2) we have

(9) cl(G[Ai(v)]) ≤ 4, i = 1, 2.
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Assume that (8) is not true. Then we obtain from (9) that

(10) cl(G[A1(v)]) ≤ 3 and cl(G[A2(v)]) ≤ 3 for some v ∈ V (K8).

It follows from (4) that in every 2-coloring of V (Q), in which there are
no 4-cliques in none of the two colors then there are 3-cliques in the both colors.
Therefore the inequalities in (10) are in fact equalities, which contradicts (7).
Thus (8) is proved.

We shall prove that there are at least 7 vertices v ∈ V (K8) such that

cl(G[A2(v)]) = 4.

Assume the opposite. Then it follows from (8) that there are at least 2 vertices
v1, v2 in V (K8) such that cl(G[A1(v1)]) = cl(G[A1(v2)]) = 4. Now we conclude
from (6) that all edges from v1, v2 to all vertices in V (K8) (including the edge
[v1, v2]) are red. Since R(3, 3) = 6 there is a monochromatic 3-clique in the other
6 vertices in V (K8) excluding v1, v2. If this monochromatic 3-clique is blue then
we are through. If it is red then this monochromatic 3-clique together with the
edge [v1, v2] forms a red 5-clique which is a contradiction. Thus we proved that
there are at least 7 vertices v ∈ V (K8) such that cl(G[A2(v)]) = 4.

We obtain from R(3, 3) = 6 that there is a monochromatic 3-clique among
these 7 vertices sufficing cl(G[A2(v)]) = 4. This 3-clique is red (otherwise we are
through). Let us denote its vertices by a1, a2, a3. It follows from (7) that

cl(G[A1(ai)]) ≤ 1, i = 1, 2, 3.

Now we have from (3) that |A1(ai)| ≤ 2. Then there are at least 7 vertices
in V (Q) from which there are only red edges to a1, a2, a3. As R(3, 3) = 6 and
α(Q) = 2 it follows that there is a 3-clique among these 7 vertices. If this 3-clique
is monochromatic blue then we are through. Therefore it is not monochromatic
blue and hence there is a red edge in it. This red edge together with a1, a2, a3

gives a monochromatic red 5-clique.

The Theorem is proved. �

Acknowledgements. I am grateful to prof. N. Nenov whose important
comments improved the presentation of the paper.
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