Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Serdica
Mathematical Journal

Cepauka

MareMaTnuyeCcKo CIIMCAHUE

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on

Serdica Mathematical Journal
which is the new series of

Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica

or contact: Editorial Office

Serdica Mathematical Journal

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg



Serdica Math. J. 34 (2008), 783-790 Serdica
Mathematical Journal

Bulgarian Academy of Sciences
Institute of Mathematics and Informatics

NEW UPPER BOUND FOR THE EDGE FOLKMAN
NUMBER F,(3, 5; 13)

Nikolay Kolev"

Communicated by V. Drensky

ABSTRACT. For a given graph G let V(G) and E(G) denote the vertex and
the edge set of G respevtively. The symbol G' % (ay,...,a,) means that in
every r-coloring of E(G) there exists a monochromatic a;-clique of color i for
some i € {1,...,7}. The edge Folkman numbers are defined by the equality

F.(ay,...,a,;q) = min{|[V(G)|: G5 (a1,...,a,;q) and cl(G) < ¢}.

In this paper we prove a new upper bound on the edge Folkman number
F,.(3,5;13), namely
F.(3,5;13) < 21.

This improves the bound
F.(3,5;13) < 24,

proved in [5].
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1. Introduction. Only finite non-oriented graphs without multiple
edges and loops are considered. We call a p-clique of the graph G a set of p
vertices each two of which are adjacent. The largest positive integer p such that
G contains a p-clique is denoted by cl(G). A set of vertices of the graph G
none two of which are adjacent is called an independent set. The largest positive
integer p such that G contains an independent set on p vertices is called the
independence number of the graph G and is denoted by «(G). In this paper we
shall also use the following notations:

V(G) is the vertex set of the graph G;

e E(Q) is the edge set of the graph G;

N(v), v € V(G) is the set of all vertices of G adjacent to v;

e G[V], V CV(G) is the subgraph of G induced by V;

K, is the complete graph on n vertices;
e G is the complementary graph of G.

Let G and G4 be two graphs without common vertices. We denote by
G1 + Go the graph G for which V(G) = V(G1) UV (Gs) and E(G) = E(Gy) U
E(G2) UE" where E' = {[z,y] : ® € V(G1),y € V(G2)}. It is clear that

(1) Cl(Gl + GQ) = Cl(Gl) + CI(GQ)

Definition 1. Let a1,...,a, be positive integers. The symbol G =
(a1,...,a,) means that in every r-coloring of V(G) there is a monochromatic
a;-clique in the i-th color for somei € {1,...,r}.

Definition 2. Let ay,...,a, be positive integers. We say that an r-
coloring of E(Q) is (a1,...,a,)-free if for each i = 1,...,r there is no monochro-
matic a;-clique in the i-th color. The symbol G = (ai,...,a,) means that there

is no (ai,...,a,)-free coloring of E(G).

The smallest positive integer n for which K,, = (a1,...,a,) is called a
Ramsey number and is denoted by R(a1,...,a,). Note that the Ramsey number
R(aq,a2) can be interpreted as the smallest positive integer n such that for every
n-vertex graph G either cl(G) > a; or a(G) > ay. The existence of such numbers
was proved by Ramsey in [16]. We shall use only the values R(3,3) = 6 and
R(3,4) =9, [3].



New upper bound for the edge Folkman number F,(3,5;13) 785

The edge Folkman numbers are defined by the equality
F.(a1,...,ar;q) = min{|V(G)| : G 5 (a1,...,a,;q) and cl(G) < ¢}.

It is clear that G % (ay,...,a,) implies cl(G) > max{ay,...,a,}. There exists
a graph G such that G 5 (a4,...,a,) and cl(G) = max{ay,...,a,}. In the case
r = 2 this was proved in [1] and in the general case in [14]. Therefore

Fe(ai,...,a,;q) exists if and only if ¢ > max{aq,...,a,}.
It follows from the definition of R(ay,...,a,) that
F.(a1,...,a:;q9) = R(a1,...,a,) if ¢ > R (ay,...,a,).

The smaller the value of ¢ in comparison to R(a, ...
the problem of computing the number F,(a1,...,a;;q).

Among the edge Folkman numbers of the kind F,(aq,...,a,; R(a1,...,a,))
only the following ones are known:

, a,) the more difficult

Fe(3,3;6) = [2];
F.(3,4;9) = 14 [11];
F.(3,5;14) =16,  [4];
F.(4,4;18) =20, [4];
F.(3,3,3;17) =19 [4].

Only three edge Folkman numbers of the kind F¢(aq,...,a; R(ay,...,a,)—
1) are known, namely F.(3,4;8) = 16, F.(3,3;5) = 15 and F,(3,3,3;16) = 21.
The number F,(3,4;8) = 16, was computed in the papers [6], [5]. The inequality
F.(3,3;5) < 15 was proved in [12] and the inequality F.(3,3;5) > 15 was ob-
tained by the means of computer in [15]. The inequality Fe(3,3,3;16) > 21 was
proved in [4] and the opposite inequality F(3,3,3;16) < 21 in [8]. At the end of
this exposition we shall mention that we know only one edge Folkman number of
the kind F,(a1,...,a,; R(a1,...,a,)—2), namely F¢(3,3,3;15) = 23, [9] and only
one edge Folkman number of the kind Fe(ay,...,a,; R(a1,...,a,) — 3), namely
F.(3,3,3;14) = 25, [10]. No other edge Folkman numbers are known.

This paper is dedicated to the Folkman number F,(3,5;13).

The best known lower bound on this number is F,(3,5;13) > 18, which
was proved by Lin in [4]. Later Nenov proved in [13] that equality F,(3,5;13) = 18
can be achieved only for the graph Kg+C5+C5. Thus if Kg+C5+C5 — (3,5) then
F.(3,5;13) = 18 and otherwise F¢(3,5;13) > 18. So far nobody was able to check
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whether Kg+C5+Cs — (3,5). The best known upper bound is F,(3,5;13) < 24,
[5].

We consider the graph @, which was first introduced in [3] and whose
complementary graph is given in the Figure 1.

13

Fig. 1. Graph Q

We shall use the following properties of the graph Q:

(2) (@) =4, [3];
(3) (@) =2, [3];
(4) Q = (3,4), [7).

The goal of this paper is to prove the following

Theorem. Let G = Kg + Q. Then G5 (3,5).

It follows from (1) and (2) that cl(G) = 12. Since |V (G)| = 21 we obtain
from the Theorem the following

Corollary. F,(3,5;13) < 21.

2. Proof of the theorem. Assume the opposite: that there exists a
(3,5)-free 2-coloring of E(Q)

(5) E(G) = F1 U E», EiNEy=0.
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We shall call the edges in £ blue and the edges in F» red.
We define for an arbitrary vertex v € V(G) and index i = 1,2 :

N;(v) ={z € N(v) | [v,z] € E;},
Gi(v) = G[N;(v)]
Ai(v) = Ni(v) N V(Q)

Let H be a subgraph of G. We say that H is a monochromatic subgraph
in the blue-red coloring (5) if E(H) C Ey or E(H) C Ey. If E(H) C E; we say
that H is a blue subgraph and if E(H) C Es we say that H is a red subgraph.

It follows from the assumption that the coloring (5) is (3,5)-free that

(6) cl(G1(v)) <4 and cl(Ga(v)) < 8 for each v € V(QG)

Indeed, assume that cl(G1(v)) > 5. Then there must be no blue edge connecting
any two of the vertices in cl(G1(v)) because otherwise this blue edge together
with the vertex v would give a blue triangle. As we assumed cl(G1(v)) > 5 then
we have a red 5-clique. Analogously assume cl(G2(v)) > 9. Since R(3,4) = 9,
then we have either a blue 3-clique or a red 4-clique in Ga(v). If we have a blue
3-clique in G2(v) then we are through. If we have a red 4-clique then this 4-clique
together with the vertex v gives a red 5-clique. Thus (6) is proved.
We shall prove that

(7) cl(G[A1(v)]) + cl(G[A2(v)]) < 5 for each v € V(K(5)
Assume that (7) is not true, i.e. that there exists a vertex v € V(Kg) such that
cl(G[A1(v)]) + cl(G]A2(v)]) > 6.

Then as there are seven more vertices in V(Kg) with the exception of v,
it follows that
cl(G1(v)) + cl(Ge(v)) > 13.

It follows from the pigeonhole principle that either cl(G1(v)) > 5 or cl(G2(v)) > 9,
which contradicts (6). Thus (7) is proved.
Now we shall prove that

(8) cl(G[A1(v)]) =4 or cl(G[A2(v)]) = 4 for each v € V(K(5)
By (2) we have

(9) A(G[A;(v)]) €4, i=1,2.
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Assume that (8) is not true. Then we obtain from (9) that
(10) cl(G[A1(v)]) < 3 and cl(G[Az2(v)]) < 3 for some v € V(K3).

It follows from (4) that in every 2-coloring of V(Q), in which there are
no 4-cliques in none of the two colors then there are 3-cliques in the both colors.
Therefore the inequalities in (10) are in fact equalities, which contradicts (7).
Thus (8) is proved.

We shall prove that there are at least 7 vertices v € V(Kg) such that

(Gl As(v)]) = 4.

Assume the opposite. Then it follows from (8) that there are at least 2 vertices
v1,v9 in V(K3g) such that cl(G[A1(v1)]) = cl(G[A1(v2)]) = 4. Now we conclude
from (6) that all edges from vy, va to all vertices in V(K3) (including the edge
[v1,v9]) are red. Since R(3,3) = 6 there is a monochromatic 3-clique in the other
6 vertices in V' (Kg) excluding vy, vg. If this monochromatic 3-clique is blue then
we are through. If it is red then this monochromatic 3-clique together with the
edge [v1,v9] forms a red 5-clique which is a contradiction. Thus we proved that
there are at least 7 vertices v € V(K3g) such that cl(G[A2(v)]) = 4.

We obtain from R(3,3) = 6 that there is a monochromatic 3-clique among
these 7 vertices sufficing cl(G[A2(v)]) = 4. This 3-clique is red (otherwise we are
through). Let us denote its vertices by a1, ag, ag. It follows from (7) that

A(G[A1(a;)]) <1, i =1,2,3.

Now we have from (3) that |Aj(a;)] < 2. Then there are at least 7 vertices
in V(Q) from which there are only red edges to a1, ag, as. As R(3,3) = 6 and
a(Q) = 2 it follows that there is a 3-clique among these 7 vertices. If this 3-clique
is monochromatic blue then we are through. Therefore it is not monochromatic
blue and hence there is a red edge in it. This red edge together with a1, as, ag

gives a monochromatic red 5-clique.

The Theorem is proved. O
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