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1. Introduction

The modeling of diffusion in a specific type of porous medium is one of the
most significant applications of fractional derivatives [10], [23]. An illustration
of this are the generalization of the fractional partial difference equation sug-
gested as a replacement of Fick’s law [22], the fractional-order diffusion equation
studied by Metzler, Glöckle and Nonnenmacher [16], and the fractional diffusion
equation in the form

∂2βu

∂t2β
= a2 ∂2u

∂z2
, 0 < β <

1
2
, (1)

introduced by Nigmatullin [20], [21]. The equation (1) is also known as the
fractional diffusion-wave equation [11], [12]. When the order of the fractional
derivative is 2β = 1, the equation becomes the classical diffusion equation,
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and if 2β = 2 it becomes the classical wave equation. The case 0 < 2β < 1
was employed for studying the so-called ultraslow diffusion, whereas the case
1 < 2β < 2 corresponds to the intermediate processes [6].

A space-time fractional diffusion equation, obtained from the standard
diffusion equation by replacing the second order space-derivative by a frac-
tional Riesz derivative, and the first order time-derivative by a Caputo frac-
tional derivative, has been treated by Saichev and Zaslavsky [26], Uchajkin
and Zolotarev [34], Gorenflo, Iskenderov and Luchko [7], Scalas, Gorenflo and
Mainardi [33], Metzler and Klafter [17]. The results obtained in [7], are com-
plemented in [13] where the fundamental solution of the corresponding Cauchy
problem is found by means of the Fourier-Laplace transform. Based on Mellin-
Barnes integral representation, the fundamental solutions of the problem under
question are also expressed in terms of proper Fox H-functions [14].

The Fourier-Laplace transform method was adopted also in a number
of papers by Saxena et al. [30], [31], [32] and Haubold et al. [8]. The same
approach was also implemented in [25], where solutions of generalized fractional
partial differential equations involving the Caputo time-fractional derivative and
the Weyl space-fractional derivative are obtained.

To avoid the utility of a convention to suppress the imaginary unit in
the Fourier transform of the Weyl fractional operator as in [30]-[32] and [25],
we employ in this paper a fractional generalization of the Fourier transform and
Laplace transform for solving Cauchy-type problems for the time-space frac-
tional diffusion-wave equation expressed in terms of the Caputo time-fractional
derivative of order γ and the Weyl space-fractional operator. We also distin-
guish the cases of ultraslow diffusion (0 < γ < 1) and the intermediate processes
(1 < γ < 2) to obtain the Green functions presented in the formal solutions, in
terms of Fox H-functions. Some of the already known results are also included
as particular cases.

2. Preliminaries

For a function u of the class S of a rapidly decreasing test functions on
the real axis R the Fourier transform is defined as

û(ω) = F [u(x);ω] =
∫ ∞

−∞
eiωxu(x) dx, ω ∈ R, (2)

whereas the inverse Fourier transform has the form

u(x) = F−1[û(ω);x] =
1
2π

∫ ∞

−∞
e−iωxû(ω) dω, x ∈ R. (3)
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Denote by V (R) the set of functions ν(x) ∈ S satisfying

dnν

dxn

∣∣∣∣
x=0

= 0, n = 0, 1, 2, . . .

Then the Fourier pre-image of the space V (R)

Φ(R) = {ϕ ∈ S : ϕ̂ ∈ V (R)}
is called the Lizorkin space. As it is stated in [9], the space Φ(R) is invariant
with respect to the fractional integration and differentiation operators.

In this paper we adopt the following fractional generalization of the
Fourier transform called Fractional Fourier Transform (FRFT), as introduced
in [9].

Definition 2.1. For a function u ∈ Φ(R) the FRFT of the order α
(0 < α < 1) is defined as

ûα(ω) = Fα[u(x);ω] =
∫ ∞

−∞
eα(ω, x)u(x) dx, ω ∈ R, (4)

where

eα(ω, x) :=





e−i|ω| 1α x, ω ≤ 0

ei|ω| 1α x, ω > 0
. (5)

Evidently, if α = 1 the kernel (5) of the FRFT (4), reduces to the kernel
of (2), that leads to the relation

ûα(ω) = Fα[u(x);ω] = Fα[u(x); k] = ûα(k), (6)

where

k =

{
−|ω| 1α , ω ≤ 0
|ω| 1α , ω > 0

. (7)

Thus, if
Fα[u(x);ω] = F [u(x); k] = û(k),

then
u(x) = F−1

α [ûα(ω);x] = F−1
α [û(k);x]. (8)

The Caputo fractional derivative is defined as (see [2])

Dα
∗ f(t) =





1
Γ(n− α)

∫ t

0

f (n)(τ)
(t− τ)α+1−n

dτ, n− 1 < α < n

dnf(t)
dtn

, α = n

, (9)
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where n > 0 is integer.
The method we follow makes the rule of the Laplace transform

L[f(t); s] =
∫ ∞

0
e−stf(t) dt (10)

of the Caputo derivative of key importance (Podlubny [23]),

L[Dα
∗ f(t); s] = sαL[f(t); s]−

n−1∑

k=0

f (k)(t)sn−1−k, n− 1 < α ≤ n. (11)

The Weyl fractional operator of order α is defined by ([27])

Dα
∗ f(x) =

dn

dxn

[
In−α
+ f(x)

]
=

1
Γ(n− α)

dn

dxn

∫ x

−∞
f(t)

(x− t)α−n+1
dt, (12)

where x ∈ R, α > 0, n = [α] + 1 and

In
+f(x) =

1
Γ(α)

∫ x

−∞
(x− t)α−1f(t) dt

is the left-sided Riemann-Liouville integral operator.
The one-parameter generalization of the exponential function was intro-

duced by Mittag-Leffler [18] as

Eα(z) =
∞∑

n=0

zn

Γ(αn + 1)
.

Its further generalization was done by Agarwal [1] who defined the two-parameter
function of the Mittag-Leffler type in the form

Eα,β(z) =
∞∑

n=0

zn

Γ(αn + β)
, α > 0, β > 0. (13)

Let us notice also that the effect of the application of the Laplace transform
(10) on the function (13) is given by the formulas [23, 1.2.2., (1.80)],

L

[
tαm+β−1 dm

dtm
Eα,β(±αtα); s

]
=

m!sα−β

(sα ∓ a)m+1
, Re s > |a| 1α . (14)

By the Fox H-function we mean a generalized hypergeometric function,
represented by the Mellin-Barnes type integral

Hm,n
p,q (z) = Hm,n

p,q

[
z

∣∣∣∣∣
(ap, Ap)
(bq, Bq)

]



Solutions of Fractional Diffusion-Wave Equations . . . 39

:= Hm,n
p,q

[
z

∣∣∣∣∣
(a1, A1), ..., (ap, Ap)
(b1, B1), ..., (bq, Bq)

]
=

1
2πi

∫

L

θ(ξ) z−ξdξ,

where

θ(ξ) =

[∏m
j=1 Γ(bj + Bjξ)

]
[
∏n

i=1 Γ(1− ai −Aiξ)][∏q
j=m+1 Γ(1− bj −Bjξ)

] [∏p
i=n+1 Γ(ai + Aiξ)

] ,

and the contour L is defined as in [30]. In terms of the usual notations, N0 =
(0, 1, 2, . . .), R = (−∞,∞), R+ = (0,∞) and C being the complex numbers
field, the orders m, n, p, q ∈ N0 with 1 ≤ n ≤ p, 1 ≤ m ≤ q, Aj , Bj ∈ R+,
aj , bj ∈ R+ or C (i = 1, 2, . . . , p; j = 1, 2, . . . q ; such that

Ai(bj + k) 6= Bj(ai − l − 1), k, l ∈ N0, i = 1, 2, . . . , n, j = 1, 2, . . .m.

The empty product is always interpreted as unity.
It has been established in [28] that, if α ∈ C for Re α > 0

Eα,β(z) = H1,1
1,2

[
−z

∣∣∣(0,1)
(0,1),(1−β,α)

]
. (15)

If we set in (15) β = 1 we see that

Eα,1(z) = Eα(z) = H1,1
1,2

[
−z

∣∣∣(0,1)
(0,1),(0,α)

]
. (16)

According to [24], [29], the cosine transform of the H-function is given by
∫ ∞

0
tp−1 cos(kt) Hm,n

p,q

[
atµ

∣∣∣∣∣
(ap, Ap)
(bq, Bq)

]
dt (17)

=
π

kρ
Hn+1,m

q+1,p+2

[
kµ

a

∣∣∣∣∣
(1− bq, Bq), (1+ρ

2 , µ
2 )

(ρ, µ), (1− ap, Ap), (1+ρ
2 , µ

2 )

]
,

where

Re

[
ρ + µ min

1≤j≤m

(
bj

Bj

)]
> 1; kµ > 0;

Re
[
ρ + µ max

1≤j≤n

(
ai − 1

Ai

)]
<

3
2
; |arg a| < 1

2
πa;

θ > 0 and θ =
n∑

i=1

Ai −
p∑

i=n+1

Ai +
m∑

j=1

Bj −
q∑

j=m+1

Bj .

We also use the following property of the H-function ([15], [24])

Hm,n
p,q

[
xδ

∣∣∣∣∣
(ap, Ap)
(bq, Bq)

]
=

1
δ
Hm,n

p,q

[
x

∣∣∣∣∣
(ap, Ap/δ)
(bq, Bq/δ)

]
, where δ > 0. (18)
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3. FRFT of Weyl operator

The application of the conventional Fourier transform (2) for solving
fractional differential equations encounters in most of the cases inconveniences
caused by multi-valued complex factors that the transform produces when ap-
plied on a fractional derivative [13], [17]. To prevail over complications of this
type, it is reasonable to employ fractional Fourier transforms as (4) that act on
a fractional derivative exactly the same way as the Fourier transform (2) does.
To describe the effect of the application of the FRFT (4) on the Weyl operator
(12) we use that if x ∈ R, ω ∈ R, ω 6= 0 and 0 < σ < 1 (see [9]),

Iσ
−[eiωt; x] = eiωx|ω|−σ

[
cos

σπ

2
+ i sign ω sin

σπ

2

]
, (19)

where
Iσ
−f(x) =

1
Γ(σ)

∫ ∞

x
(t− x)σ−1f(t) dt (20)

is the right-sided Riemann-Liouville fractional integral operator.
We also take the advantage of the rule for integration by parts ([27]),

according to which for the functions u and v from the Lizorkin space Φ(R):
∫ ∞

−∞
v(x)Dα

+[u; x] dx =
∫ ∞

−∞
u(x)Dα

−[v;x] dx, (21)

where Dα− is the Weyl right-sided differential operator defined for x ∈ R, α > 0
and n = [α] + 1, defined as

Dα
−f(x) = (−1)n dn

dxn
[In−α
− u(x)] =

(−1)n

Γ(n− α)
dn

dxn

∫ ∞

x

f(t)dt

(t− x)α−n+1
.

Lemma 3.1. Let ω ∈ R, ω 6= 0 and 0 < σ < 1. Then

Dσ+1
− [eiωt;x] = −ω2|ω|σ−1

[
sin

σπ

2
+ i sign ω cos

σπ

2

]
eiωx.

P r o o f. From (19) it follows that

Dσ+1
− [eiωt; x] =

d2

dx2

{
[I1−σ
− [eiωt; x]

}

=
d2

dx2

{
eiωx|ω|σ−1

[
sin

σπ

2
+ isignω cos

σπ

2

]}
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= −ω2|ω|σ−1
[
sin

σπ

2
+ i sign ω cos

σπ

2

]
eiωx.

Theorem 3.1. If 0 < α ≥ 1, 0 ≤ σ < 1 and u ∈ Φ(R), then

Fα[Dσ+1
+ u(x);ω] = c(σ)|ω|σ+1

α Fα[u(x);ω],

where
c(σ) = − sin

σπ

2
− i sign ω cos

σπ

2
.

P r o o f. If α = 1 and σ = 0 according to (6),

F [D1
+u(x);ω] = F [u′(x);ω] = −iωF [u(x);ω]

and thus the statement of the theorem reduces to the classical result for the
conventional Fourier transform (2).

Consider now the case 0 < α < 1, 0 < σ < 1 and ω = 0. Since Φ(R) is
closed with respect to fractional differentiation it becomes clear from (4) that

Fα[Dσ+1
+ u(x); 0] =

∫ ∞

−∞
Dσ+1

+ u(x) dx = Dσ
+u(x)

∣∣∞−∞ = 0.

Let 0 < α < 1, 0 < σ < 1 and ω > 0. Then (4), (5), (21) and Lemma 3.1 yield

Fα[Dσ+1
+ u(x);ω] =

∫ ∞

−∞
ei|ω| 1α x{Dσ+1

+ [u; x]} dx =
∫ ∞

−∞
u(x){Dσ+1

− [ei|ω| 1α t; x]} dx

=
∫ ∞

−∞
u(x)

{
−|ω| 2α |ω|σ−1

α

[
sin

σπ

2
+ i cos

σπ

2

]
ei|ω| 1α x

}
dx

= −|ω|σ+1
α

(
sin

σπ

2
+ i cos

σπ

2

) ∫ ∞

−∞
ei|ω| 1α xu(x) dx

= c(σ)|ω|σ+1
α Fα[u(x);ω].

Likewise we consider the remaining case 0 < α < 1, 0 < σ < 1, ω < 0. Using
again (21) and Lemma 3.1, we get

Fα[Dσ+1
+ u(x);ω]=

∫ ∞

−∞
e−i|ω| 1α x{Dσ+1

+ [u; x]} dx=
∫ ∞

−∞
u(x){Dσ+1

− [e−i|ω| 1α t; x]}dx

=
∫ ∞

−∞
u(x)

{
−|ω| 2α |ω|σ−1

α

[
sin

σπ

2
− i cos

σπ

2

]
e−i|ω| 1α x

}
dx
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= −|ω|σ+1
α

(
sin

σπ

2
− i cos

σπ

2

) ∫ ∞

−∞
u(x)e−i|ω| 1α x dx

= c(σ)|ω|σ+1
α Fα[u(x);ω],

that accomplishes the proof.

4. Fractional diffusion equation

In this section we apply the FRFT (4) for solving the Cauchy-type prob-
lem for the fractional diffusion equation

Dγ
∗u(x, t)− µ2Dσ+1

+ u(x, t) = q(x, t), x ∈ R, t > 0, (22)

subject to the initial condition

u(x, t)|t=0 = f(x), (23)

when 0 ≤ γ ≤ 1, f(x) ∈ Φ(R) and µ is a diffusivity constant.

Theorem 4.1. If 0 < γ ≤ 1 and 0 < σ ≤ 1 the Cauchy-type problem
(22)-(23) is solvable and the solution u(x, t) is given by

u(x, t)=
∫ ∞

−∞
G1(x− ξ, t)f(ξ)dξ +

∫ t

0
(t− τ)γ−1

{∫ ∞

−∞
G2(x−ξ, t−τ)q(ξ, τ)dξ

}
dτ,

where

G1(x, t) =
1

(σ + 1)x
H2,1

3,3

[
|x|

(−µ2c(σ)tγ)
1

σ+1

∣∣∣∣∣
(1, 1

σ+1), (1, γ
σ+1), (1, 1

2)
(1, 1), (1, 1

σ+1), (1, 1
2)

]
,

G2(x, t) =
1

(σ + 1)x
H2,1

3,3

[
|x|

(−µ2c(σ)tγ)
1

σ+1

∣∣∣∣∣
(1, 1

σ+1), (γ, γ
σ+1), (1, 1

2)
(1, 1), (1, 1

σ+1), (1, 1
2)

]
.

P r o o f. Denote L[u(x, t); s] = ū(x, s) and Fα[u(x, t);ω] = ûα(ω, t). First
consider the case 0 < γ ≤ 1 and 0 < σ < 1. According to (11) and Theorem 3.1,
the application of the Laplace transform (10) followed by the FRFT (4) to the
equation (22) and the initial condition (23) leads to the following representation
of the Laplace-FRFT transform of the solution

ˆ̄uα(ω, s) =
sγ−1

sγ − µ2c(σ)|ω|σ+1
α

f̂α(ω) +
ˆ̄qα(ω, s)

sγ − µ2c(σ)|ω|σ+1
α

. (24)

Using now (6), (8) and (14), the equation (24) converts into

u(x, t) =
1
2π

∫ ∞

−∞
e−ikxf̂(k) Eγ,1[µ2c(σ)|k|σ+1tγ ] dk
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+
1
2π

∫ ∞

−∞
e−ikx

{∫ t

0
(t− τ)γ−1Eγ,γ [µ2c(σ)|k|σ+1(t− τ)γ ]q̂(k, τ) dτ

}
dk.

By means of the convolution theorem for the Fourier transform (2), the above
representation leads to

u(x, t)=
∫ ∞

−∞
G1(x−ξ, t)f(ξ)dξ+

∫ t

0
(t−τ)γ−1

{∫ ∞

−∞
G2(x−ξ, t−τ)q(ξ, τ)dξ

}
dτ,

where
G1(x, t) =

1
2π

∫ ∞

−∞
e−ikxEγ,1[µ2c(σ)|k|σ+1tγ ] dk (25)

and
G2(x, t) =

1
2π

∫ ∞

−∞
e−ikxEγ,γ [µ2c(σ)|k|σ+1tγ ] dk. (26)

The formulas (16) and (18) with allow from (25) to obtain

G1(x, t) =
2

(σ + 1)π

∞∫

0

cos kx H1,1
1,2

[
(−µ2c(σ)tγ)

2
σ+1

∣∣∣∣∣
(0, 1

σ+1)
(0, 2

σ+1), (0, 2γ
σ+1)

]
dk.

Taking finally into account (17) and (18) again, we get

G1(x, t) =
1

(σ + 1)x
H2,1

3,3

[
|x|

(−µ2c(σ)tγ)
1

σ+1

∣∣∣∣∣
(1, 1

σ+1), (1, γ
σ+1), (1, 1

2)
(1, 1), (1, 1

σ+1), (1, 1
2)

]
.

Similarly by (15), (17) and (18), we obtain from (26),

G2(x, t) =
1

(σ + 1)x
H2,1

3,3

[
|x|

(−µ2c(σ)tγ)
1

σ+1

∣∣∣∣∣
(1, 1

σ+1), (γ, γ
σ+1), (1, 1

2)
(1, 1), (1, 1

σ+1), (1, 1
2)

]
.

We accomplish the proof of the statement with the remark that its validity in
the case 0 < γ ≤ 1 and σ = 1 was confirmed by the results obtained in [3] and
[30].

Corollary 4.1. ([19], [30]) If 0 < γ ≤ 1, σ = 1, f(x) ∈ Φ(R) and
q(x, t) ≡ 0 the solution of the Cauchy-type problem (22)-(23) is given by the
integral

u(x, t) =
∫ ∞

−∞
G(x− ξ, t)f(ξ) dξ,

where

G(x, t) =
1
2x

H2,1
3,3

[
|x|

(µ2tγ)1/2

∣∣∣∣∣
(1, 1

2), (1, γ
2 ), (1, 1

2)
(1, 1), (1, 1

2), (1, 1
2)

]
.
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By means of (15), (17) and the formula [5, p.611, (5)],

F−1
[√

π

α
e−ω2/4a;x

]
= e−ax2

,

it might be seen that the solution provided by Theorem 4.1 occurs as a gener-
alization of the fundamental solution of the classical diffusion problem.

Corollary 4.2. If γ = 1, σ = 1, f(x) ∈ Φ(R) and q(x, t) ≡ 0 the
solution of the Cauchy-type problem (22)-(23) is given by the integral

u(x, t) =
1√

4πµt

∫ ∞

−∞
e−(x−ξ)2/4µtf(ξ) dξ.

5. Fractional wave equation

We consider a Cauchy-type problem for the equation (22), but under the
assumptions 1 < γ ≤ 2 and 0 < σ ≤ 1 subject to the initial conditions

u(x, t)|t=0 = f(x), ut(x, t)|t=0 = g(x), x ∈ R. (27)

Theorem 5.1. If 1 < γ ≤ 2, 0 < σ ≤ 1 f(x) ∈ Φ(R) and g(x) ∈ Φ(R),
then the Cauchy-type problem (22)–(27) is solvable and its solution is given by

u(x, t) =
∫ ∞

−∞
G1(x− ξ, t)f(ξ) dξ +

∫ ∞

−∞
G2(x− ξ, t)g(ξ) dξ

+
∫ t

0
(t− τ)γ−1

{∫ ∞

−∞
G3(x− ξ, t− τ)q(ξ, τ) dξ

}
dτ,

where

G1(x, t) =
1

(σ + 1)x
H2,1

3,3

[
|x|

(−µ2c(σ)tγ)
1

σ+1

∣∣∣∣∣
(1, 1

σ+1), (1, γ
σ+1), (1, 1

2)
(1, 1), (1, 1

σ+1), (1, 1
2)

]
,

G2(x, t) =
1

(σ + 1)x
H2,1

3,3

[
|x|

(−µ2c(σ)tγ)
1

σ+1

∣∣∣∣∣
(1, 1

σ+1), (2, γ
σ+1), (1, 1

2)
(1, 1), (1, 1

σ+1), (1, 1
2)

]
,

G3(x, t) =
1

(σ + 1)x
H2,1

3,3

[
|x|

(−µ2c(σ)tγ)
1

σ+1

∣∣∣∣∣
(1, 1

σ+1), (γ, γ
σ+1), (1, 1

2)
(1, 1), (1, 1

σ+1), (1, 1
2)

]
.
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P r o o f. As in Theorem 4.1, let us consider first the case 1 < γ ≤ 2
and 0 < σ < 1. Then the application of the Laplace transform (10) followed
by the FRFT (4) to the equation (22) and the initial conditions (27) leads,
because of (11) and Theorem 3.1, to the representation of the joint Laplace-
FRFT transform of the solution

ˆ̄uα(ω, s) =
sγ−1

sγ − µ2c(σ)|ω|σ+1
α

f̂α(ω) +
sγ−2

sγ − µ2c(σ)|ω|σ+1
α

ĝα(ω)

+
ˆ̄qα(ω, s)

sγ − µ2c(σ)|ω|σ+1
α

.

(28)

By the formulas (6), (8), (14) and the convolution theorem for the Fourier
transform (2), the equation (28) becomes

u(x, t) =
∫ ∞

−∞
G1(x− ξ, t)f(ξ) dξ +

∫ ∞

−∞
G2(x− ξ, t)g(ξ) dξ

+
∫ t

0
(t− τ)γ−1

{∫ ∞

−∞
G3(x− ξ, t− τ)q(ξ, τ) dξ

}
dτ,

where
G1(x, t) =

1
2π

∫ ∞

−∞
e−ikxEγ,1[µ2c(σ)|k|σ+1tγ ] dk,

G2(x, t) =
1
2π

∫ ∞

−∞
e−ikxtEγ,2[µ2c(σ)|k|σ+1tγ ] dk,

G3(x, t) =
1
2π

∫ ∞

−∞
e−ikxEγ,γ [µ2c(σ)|k|σ+1tγ ] dk.

In proving Theorem 4.1, we have already deduced that

G1(x, t) = G1(x, t) =
1

(σ + 1)x
H2,1

3,3

[
|x|

(−µ2c(σ)tγ)
1

σ+1

∣∣∣∣∣
(1, 1

σ+1), (1, γ
σ+1), (1, 1

2)
(1, 1), (1, 1

σ+1), (1, 1
2)

]
,

and

G3(x, t) = G1(x, t) =
1

(σ + 1)x
H2,1

3,3

[
|x|

(−µ2c(σ)tγ)
1

σ+1

∣∣∣∣∣
(1, 1

σ+1), (γ, γ
σ+1), (1, 1

2)
(1, 1), (1, 1

σ+1), (1, 1
2)

]
,

It remains simply to apply (15) and (18) with δ = 2
σ+1 in order to obtain

G2(x, t) =
2t

(σ + 1)π

∫
cos kx H1,1

1,2

[
(−µ2c(σ)tγ)

2
σ+1 k2

∣∣∣∣∣
(0, 2

σ+1)
(0, 2

σ+1), (−1, 2γ
σ+1)

]
dk.
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Then from (17) and (18) with δ = 1
2 it follows immediately that

G2(x, t) =
1

(σ + 1)x
H2,1

3,3

[
|x|

(−µ2c(σ)tγ)
1

σ+1

∣∣∣∣∣
(1, 1

σ+1), (2, γ
σ+1), (1, 1

2)
(1, 1), (1, 1

σ+1), (1, 1
2)

]
.

The validity of the theorem for the case as 1 < γ ≤ 2 and σ = 1 is confirmed by
the results obtained in [5, 6.7, (b)].

Corollary 5.1. ([4]) If γ = 2, σ = 1, f(x) ∈ Φ(R) and g(x) ∈ Φ(R),
the Cauchy-type problem (22)–(27) has a solution of the form

u(x, t) =
1
2
[f(x− µt) + f(x + µt)] +

1
2µ

∫ x+µt

x−µt
g(η) dη

+
1
2µ

∫ t

0

[∫ x+µ(t−τ)

x−µ(t−τ)
q(η, τ) dη

]
dτ.
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