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DENOISING MANIFOLDS FOR DIMENSION REDUCTION
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Abstract. Locally Linear Embedding (LLE) has gained prominence as a
tool in unsupervised non-linear dimensional reduction. While the algorithm
aims to preserve certain proximity relations between the observed points,
this may not always be desirable if the shape in higher dimensions that we
are trying to capture is observed with noise. This note suggests that a de-
sirable first step is to remove or at least reduce the noise in the observations
before applying the LLE algorithm. While careful denoising involves knowl-
edge of (i) the level of noise (ii) the local sampling density and (iii) the local
curvature at the point in question, in most practical situations such informa-
tion is not easily available. Under the model we discuss, a simple averaging
of the neighboring points does reduce the noise and is easy to implement. We
consider the Swiss roll example to illustrate how well this procedure works.
Finally we apply these ideas on biological data and perform clustering after
such a 2-step procedure of denoising and dimension reduction.
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1. Introduction. There is considerable literature on trying to find
low dimensional structure in high-dimensional data. This includes such classi-
cal linear approaches as principal components analysis, independent components
analysis, singular value decomposition, etc. (see for instance [3]), and nonlin-
ear methods which include locally linear embedding [6], Laplacian eigenmaps [1]
and Isomap [9]. A recent paper by Sha and Saul [7] addresses the question of
preserving local features such as the angles in the embedding created by LLE.
Such an exercise may not be meaningful if the observed data comes with errors,
because the angles then may be more an artifact of the errors in the observa-
tions, rather than the intrinsic shape of the high-dimensional data. One obvious
remedy might be to first smooth such data in order to reduce the noise, which
is what we propose here. Whenever the data is noisy as in the model discussed
here, the use of LLE or indeed any other dimension-reduction technique should
be preceded by an initial smoothing step as a way to reduce the noise. What
we propose for smoothing, is to replace any observed point by the average of its
k nearest neighbors. In Section 3 we study the effectiveness of this procedure,
using the Swiss roll example and consider the choice of k. In the final section,
we consider yeast cell-cycle data due to Spellman et al [8] as containing a certain
lower-dimensional manifold with errors around it, and we see how the smoothing
affects the Kullback-Liebler divergence between 5 biologically classified groups in
this data in the reduced LLE space.

2. A model with errors. Consider the problem of nonlinear dimension
reduction where we have a high-dimensional data set, X = [x1, . . . , xN ], xi ∈ Rm

which is to be reduced to lower dimensional data Y = [y1, . . . , yN ], yi ∈ Rd

where d < m. This is the typical problem except that here we assume that the
observations yi come with errors around some “true” submanifold in the high-
dimensional space. We consider the following noise model (see also [10]):

xi = f(ti) + εi, i = 1, . . . , N,

where xi ∈ Rm is observed around the manifold f(·) with noise εi.
For instance, in the Swiss roll example, m = 3, and the manifold can be

parameterized by t in three dimensions as follows:

f(t) = [(3π/2 + 3πt) cos(3π/2 + 3πt), αt, (3π/2 + 3πt) sin(3π/2 + 3πt)],

0 < t < 1,(1)

where α is an arbitrary height coefficient.
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Instead of observing this manifold deterministically at randomly sampled
points {ti}, we assume each coordinate comes with error, that is

xi = f(ti) + σrandn(m, 1),

where m = 3 is the dimension of the input space and randn is the standard
normal distribution. This corresponds to independent and identically distributed
errors on each of the coordinates, though this can be generalized. Figure 1 shows
the actual Swiss roll manifold, the sampled version when the observations are
made without error, and the same Swiss roll when each coordinate has a Gaussian
error with σ = 1.

Fig. 1. Swiss roll, sampled without and with noise

Clearly the noise makes for “fuzz” around the actual manifold. Our pro-
posal to reduce it is to replace each point by the average value of its k nearest
neighbors i.e.,

Find the k nearest neighbors {xij} of xi, j = 1, . . . , k and replace each xi

by

x̄i =
xi +

∑

xij

(k + 1)
.

This has the effect of removing the outliers and in general bringing the points
closer the manifold, on the average. In fact, writing tij as the point that corre-
sponds to the jth neighbor xij on the manifold, that is, Exij = f(tij), the error
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after smoothing, can be expressed as

(2)

E [x̄i − f(ti)] [x̄i − f(ti)]
′

= E

[

xi +
∑

xij

(k + 1)
− f(ti)

] [

xi +
∑

xij

(k + 1)
− f(ti)

]

′

=
E [(xi − f(ti)) +

∑

(xij − f(ti))] [(xi − f(ti)) +
∑

(xij − f(ti))]
′

(k + 1)2

=
E[εε′]

(k + 1)
+

∑

j

∑

j′ [f(tij) − f(ti)][f(tij′) − f(ti)]
′

(k + 1)2
.

In the equation above, the first term represents the fact we are averaging over
(k+1) points and will decrease with k, whereas the second term representing the
geometry of the manifold around ti tends to increase as one moves away from ti.
A further analysis of the second term using a Taylor expansion of f(·) around ti

which explores the tangent plane and curvature, is planned. Intuitively, larger the
k, meaning farther one ventures away from ti, the larger the second term. This
is similar in spirit to the variance, bias trade-off in choosing the window-width in
density estimation. We explore this empirically in the case of the Swiss roll, in
the next section.

An alternative approach to reconstructing a curve out of noisy data is
to use so-called “principal curves” as in Hastie and Stuetzle [2] and “principal
manifolds” (see [10]). We plan to explore these in subsequent discussions.

3. Swiss roll illustration. In this section, we use the Swiss roll exam-
ple to illustrate how smoothing reduces noise and discuss the choice of k. Figure
1 gives the actual Swiss roll described by Equation (1). It has been sampled
at 2000 points, giving the middle picture and finally the picture on the right is
the result of adding independent Gaussian noise with σ = 1 to each of the 3
coordinates. The goal is to recover as closely as possible. As remarked earlier,
the “optimal” choice of k depends on the level of the noise σ, the sampling rate
as well as the behavior of the curve in a neighborhood of the point. Given all
these as they are in our case, we explore how the choice of k affects the “error”,
namely:

Error(k) =
∑

i

[x̄i − f(ti)] [x̄i − f(ti)]
′
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Fig. 2. Error versus k

which is plotted in the following graph.
As can be seen from the graph in Figure 2, the error is a minimum when

k = 17. The effect of the smoothing can be seen in Figure 3.

4. Cluster distances in smoothed biological data based on

LLEs. Spellman et al. [8] analyze time-series data for the yeast cell-cycle.
We focus in particular on the time-series gene expression data at 18 time-points,
corresponding to the α-factor experiments. The N = 798 genes in this experiment
have been biologically classified into 5 groups. We use the LLEs as a means of
dimension reduction taking 20 points for the local embedding. It is entirely
unclear what this 18-dimensional manifold looks like, but since this is indeed
noisy data, it suggests that it might benefit by the smoothing of the kind that
we discuss here, which we do using an empirically chosen value of k = 12. We use
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Fig. 3. Noisy swiss roll, before and after smoothing

MG1 G1 S S/G2 G2/M

before smoothing 0.0000 8.4503 50.5820 30.4196 18.5799

MG1 after smoothing 0.0000 10.6744 68.7780 86.4581 17.6147

improvement 0.0000 2.2241 18.1960 56.0385 -0.9652

before smoothing 14.2859 6.7652 7.7739

G1 after smoothing 22.2337 18.6195 9.9770

improvement 7.9477 11.8543 2.2030

before smoothing 6.8534 22.5413

S after smoothing 12.2103 25.6964

improvement 5.3569 3.1550

before smoothing 5.3671

S/G2 after smoothing 6.9041

improvement 1.5370

Fig. 4. Distances between biologically defined clusters, before and after smoothing

the resulting lower dimensional space to do model based clustering which leads
to results more in conformity with the biological classes, but more dramatically
when we find the Kullback-Liebler Divergence as a measure of distance between
the 5 biological classes there is a much stronger separation when LLE is used
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after smoothing than before smoothing. The K-L divergence we compute is:

D(f, g) =

∫

f · log

(

f

g

)

+

∫

g · log

(

g

f

)

= (1/2)trace{(µf − µg)
′(Σ−1

f + Σ−1

g )(µf − µg) + ΣfΣ−1

g + ΣgΣ
−1

f − 2I}

The table in Figure 4 gives these distances in the lower dimensional space for
the 5 biologically meaningful classes (1) for the original data and (2) when the
data is smoothed to remove some noise. The conclusion is therefore that smooth-
ing seems to help improve the discrimination between these various classes, and
substantially so in some cases.

The author would like to thank Prof. Tommi Jaakkola of MIT for intro-
duction to this topic.
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