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1. Introduction and motivation

A family

y(x) = pn(x) ≡ pnxn + pn−1x
n−1 + · · ·+ p1x + p0, pn 6= 0,

of polynomials of degree exactly n ∈ N0 := {0, 1, 2, . . . } is a family of classical
continuous orthogonal polynomials if it is the solution of a differential equation
of the type

p2(x)y′′(x) + p1(x)y′(x) + πny(x) = 0 , (1)

where p2(x) = ax2 + bx+ c is a polynomial of at most second order and p1(x) =
dx+e is a linear polynomial [8, 13]. Since the polynomial pn(x) has exact degree
n, by equating the highest coefficients of xn in (1) one gets

πn = − (an(n− 1) + dn) .

The most widely used orthogonal polynomials are the classical orthogonal poly-
nomials, consisting of the Hermite polynomials, the Laguerre polynomials and
the Jacobi polynomials, together with their special cases which are ultraspherical
polynomials, the Čebyšev polynomials and the Legendre polynomials.
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In this article, our main aim is to derive integral representations for
the functional series with members containing Jacobi polynomials. This will
be realized in a similar manner as the authors have done it in the articles on
Neumann series [3, 4] and on the Kapteyn series, [2].

The Jacobi polynomials, which are also called hypergeometric polynomi-
als, can be represented with the following formula [18]

P (α,β)
n (z) =

(1 + α)n

n! 2F1

[ −n, 1 + α + β + n
1 + α

∣∣∣1− z

2

]
. (2)

When α = β = 0, the polynomial (2) becomes the Legendre polynomial. The
Gegenbauer polynomials, and also the Čebyšev polynomials, are special cases
of the Jacobi polynomials. From (2) it follows that P

(α,β)
n (z) is a polynomial of

degree precisely n and that

P (α,β)
n (1) =

(1 + α)n

n!
.

The Jacobi polynomials are orthogonal with respect to the weight function
w(x) = (1 − x)α(1 + x)β on the interval [−1, 1]. Assurance of the integrability
of w(x) is achieved by requiring α > −1 and β > −1, see [22].

The orthogonal polynomials with the weight function (b − x)α(x − a)β,
on the finite interval [a, b] can be expressed in the form [22]

constant · P (α,β)
n

(
2
x− a

b− a
− 1

)
.

It is worth mentioning that Luke and Wimp [15] proved that if we have contin-
uous function f(x), which has a piecewise continuous derivative for 0 ≤ x ≤ λ,
then f(x) may be expanded into a uniformly convergent series of shifted Jacobi
polynomials in the form

f(x) =
∞∑

n=0

an(λ)P (α,β)
n (2x/λ− 1) ,

where ε ≤ x/λ ≤ 1− ε, ε > 0, α > −1, β > −1. Various techniques are available
for the determination of the coefficients an(λ).

Let us define a functional series in the following form

Pα,β(z) :=
∞∑

n=1

anP (α,β)
n (z), z ∈ C, (3)

where an are constants and P
(α,β)
n stands for the Jacobi polynomial. We point

out that the Bulgarian mathematician P. Rusev studied in [20] the convergence
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of the series Pα,β(z) (precisely, he considered a0 + Pα,β(z)). For that purpose,
he used the asymptotic formula by Darboux (see [6], [22, Eq. (8.21.9)]):

P (α,β)
n (z) = P (α,β)(z) n−1/2 ωn(z) (1 + p(α,β)

n (z)) ,

where ω(z) is the inverse of Žukovsky transformation z = 1
2(ω + ω−1) for which

ω(∞) = ∞, P (α,β)(z) 6= 0 and
(
p
(α,β)
n (z)

)
n∈N are analytic functions holomorphic

in the region C \ [−1, 1] and such that lim
n→∞ p(α,β)

n (z) = 0 uniformly on every

compact subset of this region. Further, for 1 < r < +∞, he denoted by E(r) :=
Intγ(r), where γ(r) := {z ∈ C : |ω(z)| = r}; thus ad definitionem, E(∞) = C.
He obtained the following result (written in our present notation).

Theorem [20, Proposition 1.1.] Let η = lim supn→∞ n
√
|an|. Then:

(i) if η ≥ 1, the series Pα,β(z) is divergent in the whole region C \ [−1, 1];

(ii) if 0 ≤ η < 1, the Pα,β(z) is absolutely uniformly convergent on every
compact subset of the region E(η−1) and diverges at every point of the
region C \E(η−1).

2. Integral representation

In this section we will derive the double integral representation for the
Rusev series (3). For that purpose, we will replace z ∈ C with x ∈ R and assume
that the behavior of (an)n∈N ensures the convergence of our main series.

We would also need some symbols and formulae which we present as
follows. By convention, [a] and {a} = a − [a] denote the integer and fractional
part of some real number a, respectively.

The Laplace integral representation for the Dirichlet series, which is given
below, following mainly [10], [12, C. §V]:

Dλ(x) =
∞∑

n=1

ane−λnx = x

∫ ∞

0
e−xt

(
[λ−1(t)]∑

n=1

an

)
dt ,

where the convention is followed that the real sequence
(
λn

)
n∈N monotonically

increases and tends to infinity; equivalently

0 < λ1 < λ2 < · · · < λn ↑ ∞ .

Also taking a function x 7→ ax = a(x), where a ∈ C1[k, m], k,m ∈ Z, k < m,
then by using the operator

dx := 1 + {x} d
dx

,
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we get the following condensed form of the Euler–Maclaurin summation formula
[17, p. 2365]:

m∑

j=k+1

aj =
∫ m

k

(
a(x) + {x}a′(x)

)
dx =

∫ m

k
dxa(x)dx .

Now, we are ready to formulate the following theorem.

Theorem 1. Let a ∈ C1(R+) and a|N = (an)n∈N. Then for all α >
−1/2, α + β > −1 and for all x of the domain

Ia :=
(
max{0, 2η − 1}, 1]

(4)
we have the integral representation

Pα,β(x) = −
∫ ∞

1

∫ [s]

0

∂

∂s

(
Γ(2s + 1)P

(α,β)
s (x)

Γ(α + s + 1
2)Γ(β + s + 1

2)

)

× dw

(
a(w) Γ(α + w + 1

2)Γ(β + w + 1
2)

Γ(2w + 1)

)
dsdw .

P r o o f. First, we begin by establishing the convergence conditions for
the series Pα,β(x). For that purpose, let us consider the integral representation
given by Feldheim [9]:

P (α,β)
n (x) =

1
Γ(α + β + n + 1)

∫ ∞

0
tα+β+ne−t L(α)

n

(
1
2
(1− x)t

)
dt , (5)

valid for all n ∈ N0, α + β > −1, where L
(α)
n is the Laguerre polynomial. We

estimate (5) via the bounding inequality for Laguerre functions L
(µ)
ν (x), given

by Love [14, p. 396, Theorem 2]:

|L(µ)
ν (x)| ≤ Γ(<(ν + µ + 1))

|Γ(ν + 1)|Γ(<(µ) + 1)
Γ(<(µ) + 1

2)
|Γ(µ + 1

2)| ex , (6)

where ν ∈ C, x > 0, <(µ) > −1
2 and <(µ+ν) > −1, which has been generalized

by Pogány and Srivastava [16]. Specifying µ = α ∈ R, ν = n ∈ N0 the bound
(6) reduces to

|L(α)
n (x)| ≤ Γ(n + α + 1)

n! Γ(α + 1)
ex, x > 0 . (7)

Now, applying bound (7) to the integrand of (5), we have that

|Pα,β(x)| ≤ 1
Γ(α + 1)

(
2

1 + x

)α+β+1 ∞∑

n=1

|an|Γ(α + n + 1)
n!

( 2
1 + x

)n
.

The resulting power series converges uniformly for all x satisfying constraint (4).
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A more convenient integral representation for the Jacobi polynomials has
been given by Braaksma and Meulenbeld [5], [7, p. 191]

P (α,β)
n (1− 2z2) =

(−1)n4n(α + 1
2)n(β + 1

2)n

π(2n)!

∫ 1

−1

∫ 1

−1

(
zu± i

√
1− z2 v

)2n

× (1− u2)α−1
2 (1− v2)β−1

2 dudv, 0 ≤ z ≤ 1,

where 2 min(α, β) > −1. This expression in an obvious way one reduces to

P (α,β)
n (x) =

2n(α + 1
2)n(β + 1

2)n

π(2n)!

∫ 1

−1

∫ 1

−1

(
i
√

1− xu−√1 + x v
)2n

× (1− u2)α−1
2 (1− v2)β−1

2 dudv, |x| ≤ 1. (8)

Thus, combining (3) and (8) we get

Pα,β(x) =
1
π

∫ 1

−1

∫ 1

−1
(1− u2)α−1

2 (1− v2)β−1
2 Da(u, v) dudv, (9)

where Da(u, v) is the Dirichlet series

Da(u, v) =
∞∑

n=1

an (α + 1
2)n(β + 1

2)n

(2n)!
e−n ln

(√
2(i
√

1−x u−√1+x v)
)−2

.

The Dirichlet series possesses Laplace integral representation when its parameter
has positive real part, therefore we are looking for the two-dimensional region
Suv(x) in the uv–plane where

<
{

ln 2
(
i
√

1− xu−√1 + x v
)2

}
= ln 2

(
(1 + x)v2 + (1− x)u2

)
< 0 .

So, we get the ellipse

Suv(x) =
{
(u, v) ∈ R2 : (1 + x)v2 + (1− x)u2 < 1/2

}
,

such that is nonempty for all x ∈ Ia, so Da(u, v) converges in Ia.
Now, the related Laplace–integral and the Euler–Maclaurin summation

formula (see for instance [3], [2]) give us:

Da(u, v) = − ln
(√

2(i
√

1− x u−√1 + x v)
)2

Γ(α + 1
2)Γ(β + 1

2)

×
∫ ∞

0

∫ [s]

0

(√
2(i
√

1− xu−√1 + x v)
)2s

× dw

(
a(w) Γ(α + w + 1

2)Γ(β + w + 1
2)

Γ(2w + 1)

)
dsdw. (10)



108 D. Jankov, T.K. Pogány

Substituting (10) into (9) we get

Pα,β(x) = − 1
πΓ(α + 1

2)Γ(β + 1
2)

∫ 1

−1

∫ 1

−1

∫ ∞

0

∫ [s]

0
(1− u2)α−1

2 (1− v2)β−1
2

× ln
(√

2(i
√

1− xu−√1 + x v)
)2 · (

√
2(i
√

1− xu−√1 + x v)
)2s

× dw

(
a(w) Γ(α + w + 1

2)Γ(β + w + 1
2)

Γ(2w + 1)

)
dudv dsdw . (11)

Denoting

Ix(s) :=
∫ 1

−1

∫ 1

−1
ln

(√
2(i
√

1− xu−√1 + x v)
)2

× (√
2(i
√

1− xu−√1 + x v)
)2s (1− u2)α−1

2 (1− v2)β−1
2 dudv,

we get
∫
Ix(s)ds =

∫ 1

−1

∫ 1

−1

(√
2(i
√

1− xu−√1 + x v)
)2s(1− u2)α−1

2 (1− v2)β−1
2 dudv

= π
Γ(α + 1

2)Γ(β + 1
2)Γ(2s + 1)P

(α,β)
s (x)

Γ(α + s + 1
2)Γ(β + s + 1

2)
.

Therefore, we can easily conclude that

Ix(s) = πΓ(α + 1
2)Γ(β + 1

2)
∂

∂s

(
Γ(2s + 1)P

(α,β)
s (x)

Γ(α + s + 1
2)Γ(β + s + 1

2)

)
. (12)

Finally, by using (11) and (12), we immediately get the proof of the theorem,
with the assertion that the integration domain R+ becomes [1,∞) because [s]
is equal to zero for all s ∈ [0, 1).

Remark 2. In the previous theorem, we used Love’s bound [14] for the
Laguerre function L

(µ)
ν (x). Similar results one can get using some other bounds

for Laguerre polynomials, i.e. for the Laguerre functions. Let us mention some
of them.

Pogány and Srivastava [16, p. 354, Theorem 2] derived an extension of
Love’s bounding inequality. The magnitude of their bounds is O(x−µ/2−cex)),
c ≥ 0 (see [16]) which results in a convergence region similar to Ia.

There are two, well–known (see, e.g. [1]), classical global uniform esti-
mates for the Jacobi polynomials, given by Szegő [22], subsequently improved
by Rooney [19]. However both these bounds, having magnitudes O(ex/2), are
inferior to Love’s and to the one by Pogány and Srivastava in [16, p. 354].
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Other inequalities for the Laguerre functions, that is for the Jacobi func-
tion and the Jacobi polynomials can also be found in [14, 16, 21]. Asymptotic
estimates for the Jacobi functions can be found e.g. in [1, 11].

3. Indefinite integral representations for Pα,β(x)

In this section, we will deduce another, indefinite type integral represen-
tations for the functional series (3), by using the fact that the Jacobi polynomials
P

(α,β)
n (x) satisfy the linear homogeneous ODE of the second order [18, 22]:

(1− x2)y′′ + (β − α− (2 + α + β)x) y′ + n(1 + α + β + n)y = 0 . (13)

Now, multiplying (13) with an and then summing up that expression in n ∈ N
we immediately get the following equality

(1− x2)P′′
α,β(x) + (β − α− (2 + α + β)x) P′

α,β(x)

= −
∞∑

n=1

an n(1 + α + β + n)P (α,β)
n (x) =: Rα,β(x) ,

where the right–hand side expression Rα,β(x) is the functional series associated
with the series Pα,β(x). In the following theorem, the first main result of this
section is given.

Theorem 2. For all α > −1
2 , α + β > −1 the particular solution of the

linear ODE:
(1− x2)y′ + (β − α− (2 + α + β)x) y = Rα,β(x) , (14)

represents the first derivative ∂
∂xPα,β(x) of the functional series (3). Here for

a ∈ C1(R+), a|N = (an)n∈N and letting
∑∞

n=1 n2an absolutely converges, for all
x ∈ Ia we have the integral representation

Rα,β(x) =
∫ ∞

1

∫ [s]

0

∂

∂s

(
Γ(2s + 1)P

(α,β)
s (x)

Γ(α + s + 1
2)Γ(β + s + 1

2)

)

× dw

(
a(w) w (1 + α + β + w) Γ(α + w + 1

2)Γ(β + w + 1
2)

Γ(2w + 1)

)
dsdw .

P r o o f. Equation (14) was established in the beginning of this section.
Further, the uniform convergence of the series Rα,β(x) can be easily recog-
nized, using the convergence conditions of the series Pα,β(x), to be such that∑∞

n=1 n2|an| < ∞. Then, using an integral representation derived in Theorem
1, with an 7→ −n (1 + α + β + n) an, we readily get the statement.
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Below, we shall introduce another indefinite integral representation for
the series Pα,β(x).

Theorem 3. Let the situation be the same as in Theorem 2. Then we
have

Pα,β(x) =
∫

1
(1− x)α+1(1 + x)β+1

(∫
Rα,β(x)(1− x)α(1 + x)β dx

)
dx ,

where Rα,β(x) is the series associated with the series Pα,β(x).

P r o o f. It is easy to see that the Jacobi polynomial P
(α,β)
0 (x) = 1 is a

solution of the homogeneous differential equation
(1− x2)y′′ + (β − α− (2 + α + β)x) y′ = 0 . (15)

So, a guess of the particular solution is Pα,β(x) = P
(α,β)
0 (x)w(x) = w(x). Sub-

stituting this form into nonhomogeneous differential equation (14), we get

(1− x2)w′′(x) + (β − α− (2 + α + β)x)w′(x) = Rα,β(x) .

It is easy to check that the previous equation can be rewritten into
[
(1− x)α+1(1 + x)β+1w′(x)

]′
= Rα,β(x)(1− x)α(1 + x)β ;

so we have that

w′(x) =
1

(1− x)α+1(1 + x)β+1

( ∫
Rα,β(x)(1− x)α(1 + x)β dx + C1

)
.

Finally, the desired particular solution is

w(x) =
∫ ∫

Rα,β(x)(1− x)α(1 + x)β dx

(1− x)α+1(1 + x)β+1
dx

+ C1 2−α−β−1B
(1 + x

2
;−β,−α

)
+ C2 ,

where B(t; p, q) =
∫

tp−1(1 − t)q−1dt denotes the so–called Čebyšev integral
(incomplete Beta function).

As P
(α,β)
0 is a solution of homogeneous differential equation (15), it does

not contribute to the particular solution, so the constants C1, C2 can be taken
to be zero and we immediately get the assertion of the theorem.
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[17] T.K. Pogány, E. Süli, Integral representation for Neumann series of Bessel
functions, Proc. Amer. Math. Soc. 137, No 7 (2009), 2363–2368.

[18] E.D. Rainville, Special Functions, The Macmillan Company, New York,
(1960).

[19] P.G. Rooney, Further inequalities for generalized Laguerre polynomials, C.
R. Math. Rep. Acad. Sci. Canada 7 (1985), 273–275.

[20] P. Rusev, Expansion of analytic functions in series of classical orthogonal
polynomials, Banach Center Publ. 11 (1983), 287–298.

[21] H.M. Srivastava, Some bounding inequalities for the Jacobi and related
functions, Banach J. Math. Anal. 1, No 1 (2007), 131–138.
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