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It is defined a Γp,q-function, as a generalization of the Γ-function. Also, we define a
ψp,q-analogue of the psi-function as the log derivative of Γp,q. For the Γp,q-function, we give
some properties related to convexity, log-convexity and completely monotonic functions. Also,
some properties of ψp,q analog of the ψ-function are established. As an application, when
p →∞, q → 1, we obtain all results from [12] and [21].
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1. Introduction

The Euler gamma function Γ(x) is defined for x > 0 by

Γ(x) =
∫ ∞

0
tx−1e−tdt.

The digamma (or psi) function is defined for positive real numbers x as the

logarithmic derivative of Euler’s gamma function, that is ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)
Γ(x)

. The following integral and series representations are valid (see [3]):

ψ(x) = −γ +
∫ ∞

0

e−t − e−xt

1− e−t
dt = −γ − 1

x
+

∑

n≥1

x

n(n + x)
, (1)

where γ = 0.57721 · · · denotes Euler’s constant.
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Euler gave another equivalent definition for the Γ(x) (see [2],[19])

Γp(x) =
p!px

x(x + 1) · . . . · (x + p)
=

px

x(1 + x
1 ) · . . . · (1 + x

p )
, x > 0, (2)

where p is positive integer, and

Γ(x) = lim
p→∞Γp(x). (3)

The p-analogue of the psi function, as the logarithmic derivative of the
Γp function (see [12]), is

ψp(x) =
d

dx
ln Γp(x) =

Γ′p(x)
Γp(x)

. (4)

The following representations are valid:

Γp(x) =
∫ p

0

(
1− t

p

)p
tx−1dt, (5)

ψp(x) = ln p−
∫ ∞

0

e−xt(1− e−(p+1)t)
1− e−t

dt, (6)

and

ψ(m)
p (x) = (−1)m+1 ·

∫ ∞

0

tm · e−xt

1− e−t
(1− e−pt)dt. (7)

Jackson (see [8, 9, 10, 20]) defined the q-analogue of the gamma function
as

Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x, 0 < q < 1, (8)

and

Γq(x) =
(q−1; q−1)∞
(q−x; q−1)∞

(q − 1)1−xq(
x
2), q > 1, (9)

where (a; q)∞ =
∏

j≥0(1− aqj).
The q-gamma function has the following integral representation

Γq(t) =
∫ ∞

0
xt−1E−qx

q dqx,

where Ex
q =

∑∞
j=0 q

j(j−1)
2

xj

[j]! = (1 + (1 − q)x)∞q , which is the q-analogue of the
classical exponential function. The q-analogue of the psi function is defined
for 0 < q < 1 as the logarithmic derivative of the q-gamma function, that is,
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ψq(x) = d
dx log Γq(x). Many properties of the q-gamma function were derived

by Askey [4]. It is well known that Γq(x) → Γ(x) and ψq(x) → ψ(x) as q → 1−.
From (8), for 0 < q < 1 and x > 0 we get

ψq(x) = − log(1− q)+ log q
∑

n≥0

qn+x

1− qn+x
= − log(1− q)+ log q

∑

n≥1

qnx

1− qn
(10)

and from (9) for q > 1 and x > 0 we obtain

ψq(x) = − log(q − 1) + log q

(
x− 1

2 −
∑
n≥0

q−n−x

1−q−n−x

)

= − log(q − 1) + log q

(
x− 1

2 −
∑
n≥1

q−nx

1−q−n

)
.

(11)

A Stieltjes integral representation for ψq(x) with 0 < q < 1 is given in [16]. It
is well-known that ψ

′
is strictly completely monotonic on (0,∞), that is,

(−1)n(ψ′(x))(n) > 0 for x > 0 and n ≥ 0,

see [3, p. 260]. From (10) and (11) we conclude that ψ′q has the same property
for any q > 0,

(−1)n(ψ′q(x))(n) > 0 for x > 0 and n ≥ 0.

If q ∈ (0, 1), using the second representation of ψq(x) given in (10) can be shown
that

ψ(k)
q (x) = logk+1 q

∑

n≥1

nk · qnx

1− qn
(12)

and hence (−1)k−1ψ
(k)
q (x) > 0 with x > 1, for all k ≥ 1. If q > 1, from the

second representation of ψq(x) given in (11) we obtain

ψ′q(x) = log q
(
1 +

∑

n≥1

nq−nx

1− q−nx

)
(13)

and for k ≥ 2,

ψ(k)
q (x) = (−1)k−1 logk+1 q

∑

n≥1

nkq−nx

1− q−nx
(14)

and hence (−1)k−1ψ
(k)
q (x) > 0 with x > 0, for all q > 1.
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Definition 1. For x > 0, p ∈ N and for q ∈ (0, 1)

Γp,q(x) =
[p]xq [p]q!

[x]q[x + 1]q · · · [x + p]q
, (15)

where [p]q = 1−qp

1−q .

It is easy to see that Γp,q(x) fits into the following commutative diagrams:

Γp,q(x)
p→∞−−−−→ Γq(x)yq→1

yq→1

Γp(x)
p→∞−−−−→ Γ(x)

We define a (p, q)-analogue of the psi function as the logarithmic deriva-
tive of the p, q-gamma function, that is,

ψp,q(x) =
d

dx
log Γp,q(x). (16)

Definition 2. The function f is called log-convex if for all α, β > 0
such that α + β = 1 and for all x, y > 0 the following inequality holds

log f(αx + βy) ≤ α log f(x) + β log f(y),

or equivalently
f(αx + βy) ≤ (f(x))α · (f(y))β.

Now, we will give some definitions about completely monotonic function:
A function f is said to be completely monotonic on an open interval I, if

f has derivatives of all orders on I and satisfies

(−1)nf (n)(x) ≥ 0, (x ∈ I, n = 0, 1, 2, . . .). (17)

If the inequality (17) is strict, then f is said to be strictly completely monotonic
on I.

A positive function f is said to be logarithmically completely monotonic
(see [18]) on an open interval I, if f satisfies

(−1)n[ln f(x)](n) ≥ 0, (x ∈ I, n = 1, 2, . . .). (18)

If the inequality (18) is strict, then f is said to be strictly logarithmically com-
pletely monotonic.
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Let C and L denote the set of completely monotonic functions and the set
of logarithmically completely monotonic functions, respectively. The relation-
ship between completely monotonic functions and logarithmically completely
monotonic functions can be presented (see [2]) by L ⊂ C.

The following theorem gives an integral characterization of the completely
monotone functions.

Theorem 3. (Hausdorff-Bernstein-Widder Theorem) A function ϕ :
[0,∞) → R is completely monotone on [0,∞) if and only if it is the Laplace
transform of a finite non-negative Borel meassure µ on [0,∞), i.e., ϕ is of the
form

ϕ(r) =

∞∫

0

e−rtdµ(t) (19)

• A non-negative finite linear combination of completely monotone functions
is completely monotone.

• The product of two completely monotone functions is completely mono-
tone.

2. Main results

Lemma 4. For α, β ≥ 0 such that α + β = 1 we have:

[1 + x]αq [1 + y]βq ≤ [1 + αx + βy]q (20)

P r o o f. From Young’s inequality

[x]αq [y]βq ≤ α[x]q + β[y]q, (21)
we have:

[1 + x]αq [1 + y]βq ≤ α[1 + x]q + β[1 + y]q

= α
(1− q1+x

1− q

)
+ β

(1− q1+y

1− q

)

=
1

1− q

[
1− (αq1+x + βq1+y)

]
.

We have to prove:

αq1+x + βq1+y ≥ q1+αx+βy. (22)
From Young’s inequality we have:

q1+αx+βy = q((qx)α(qx)β) ≤ q(αqx + βqy) = αq1+x + βq1+y.



138 V. Krasniqi, F. Merovci

Theorem 5. The function

Γp,q(x) =
[p]xq [p]q!

[x]q[x + 1]q · · · [x + p]q

is log-convex.
P r o o f. We have to prove that for all α, β > 0, α + β = 1, x, y > 0

log Γp,q(αx + βy) ≤ α log Γp,q(x) + β log Γp,q(y) (23)

which is equivalent to

Γp,q(αx + βy) ≤ (Γp,q(x))α · (Γp,q(y))β. (24)

By Lemma 4 we obtain:

[
1 +

x

k

]α

q
·
[
1 +

y

k

]β

q
≤ α

[
1 +

x

k

]
q
+ β

[
1 +

y

k

]
q

=
[
1 +

αx + βy

k

]
q

(25)

for all k ≥ 1, k ∈ N.
Multiplying (25) for k = 1, 2, . . . , p one obtains

[
1+

x

1

]α

q
. . .

[
1+

x

p

]α

q
·
[
1+

y

1

]β

q
. . .

[
1+

y

p

]β

q
≤

[
1+

αx + βy

1

]
q
. . .

[
1+

αx + βy

p

]
q
.

Now, taking the reciprocal values and multiplying by [p]αx+βy
q one obtains (24)

and thus the proof is completed.

Lemma 6. a) The function ψp,q defined by (16) has the following series
representation and integral representation:

ψp,q(x) = − ln[p]q − log q

p∑

k=0

qx+k

1− qx+k
, (26)

ψp,q(x) = − ln[p]q −
∞∫

0

e−xt

1− e−t
(1− e−(p+1)t)dγq(t), (27)

where γq(t) is a discrete measure with positive masses − log q at the positive
points −k log q, k = 1, 2, . . . , i.e.

γq(t) = − log q
∞∑

k=1

δ(t + k log q), 0 < q < 1. (28)

b) The function ψp,q is increasing on (0,∞).
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c) The function ψ
′
p,q is strictly completely monotonic on (0,∞).

P r o o f. a) After logarithmical differentiation of (15) we take (26). Using
∞∫

0

e−xtdγq(t) =
−qx log q

1− qx
, 0 < q < 1

(see [7]), we take (27).
b) Let 0 < x < y. Using (26) we obtain

ψp,q(x)− ψp,q(y) = log q

p∑

k=0

(1− qy+k

qy+k
− 1− qy+k

qy+k

)

= log q

p∑

k=0

(qx − qx+y+k − qy + qx+y+k

qx+y+k

)

= log q

p∑

k=0

(qx − qy

qx+y+k

)
< 0.

c) Deriving n times the relation (26) one finds that:

ψ(n)
p,q (x) = (−1)n+1

∞∫

0

tne−xt

1− e−t
(1− e−(p+1)t)dγq(t). (29)

hence (−1)n(ψ′p,q(x))(n) > 0, for x > 0, n ≥ 0,

Remark 7. The function ψp,q(x) fits into the following commutative
diagrams

ψp,q(x)
p→∞−−−−→ ψq(x)yq→1

yq→1

ψp(x)
p→∞−−−−→ ψ(x)

3. Logarithmically completely monotonic function

Theorem 8. The function Gp,q(x; a1, b1, . . . , an, bn) given by

Gp,q(x) = Gp,q(x; a1, b1, . . . , an, bn) =
n∏

i=1

Γp,q(x + ai)
Γp,q(x + bi)

, q ∈ (0, 1) (30)

is a completely monotonic function on (0,∞), for any ai and bi, i = 1, 2, . . . , n,
real numbers such that 0 < a1 ≤ · · · ≤ an, 0 < b1 ≤ b2 ≤ · · · ≤ bn and∑k

i=1 ai ≤
∑k

i=1 bi for k = 1, 2, . . . , n.
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P r o o f. Let h(x) =
∑n

i=1(log Γp,q(x + bi) − log Γp,q(x + ai)). Then for
k ≥ 0 we have

(−1)k(h′(x))(k) = (−1)k
n∑

i=1

(ψ(k)
p,q (x + bi)− ψ(k)

p,q (x + ai))

= (−1)k
n∑

i=1

(−1)k+1

∞∫

0

tke−xt

1− e−t
(1− e−(p+1)t)(e−bi − e−ai)dγq(t)

= (−1)2k+1

∞∫

0

tke−xt

1− e−t
(1− e−(p+1)t)

n∑

i=1

(e−bi − e−ai)dγq(t).

Alzer [1] showed that if f is a decreasing and convex function on R, then it holds
n∑

i=1

f(bi) ≤
n∑

i=1

f(ai). (31)

Thus, since the function z 7→ e−z, z > 0 is decreasing and convex on R, we have
that

∑n
i=1(e

−ai − e−bi) ≥ 0, so (−1)k(G′
p,q(x))(k) ≥ 0 for k ≥ 0. Hence h′ is

completely monotonic on (0,∞). Using the fact that if h′ is completely mono-
tonic function on (0,∞), then exp(−h) is also completely monotonic function
on (0,∞) (see [5]), we get the desired result.

Theorem 9. The function

f(x) =
1

[Γp,q(x + 1)]
1
x

(32)

is logarithmically completely monotonic in (0,∞).

P r o o f. Using the Leibnitz rule

[u(x)v(x)](n) =
n∑

k=0

(
n

k

)
u(k)(x)v(n−k)(x),

we obtain

[ln f(x)](n) =
n∑

k=0

(
n

k

)(1
x

)(k)(
− ln Γp,q(x + 1)

)(n−k)

= − 1
xn+1

n∑

k=0

(
n

k

)
(−1)kk!xn−kψ(n−k−1)

p,q (x + 1)

= − 1
xn+1

g(x),
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g
′
(x) =

n∑

k=0

(
n

k

)
(−1)kk!(n− k)xn−k−1ψ(n−k−1)

p,q (x + 1)+

+
n∑

k=0

(
n

k

)
(−1)kk!xn−kψ(n−k)

p,q (x + 1)

=
n−1∑

k=0

(
n

k

)
(−1)kk!(n− k)xn−k−1ψ(n−k−1)

p,q (x + 1)+

+ xnψ(n)
p,q (x + 1) +

n∑

k=0

(
n

k

)
(−1)kk!xn−kψ(n−k)

p,q (x + 1)

=
n−1∑

k=0

(
n

k

)
(−1)kk!(n− k)xn−k−1ψ(n−k−1)

p,q (x + 1)+

+ xnψ(n)
p,q (x + 1) +

n−1∑

k=0

(
n

k + 1

)
(−1)k+1(k + 1)!xn−k−1ψ(n−k−1)

p,q (x + 1)

=
n−1∑

k=0

[(n

k

)
(n− k)−

(
n

k + 1

)
(k + 1)

]
(−1)kk!xn−k−1ψ(n−k−1)

p,q (x + 1)

+ xnψ(n)
p (x + 1) = xnψ(n)

p,q (x + 1).

If n is odd, then for x > 0,

g
′
(x) > 0 ⇒ g(x) > g(0) = 0 ⇒ (ln f(x))(n) < 0 ⇒

⇒ (−1)n(ln f(x))(n) > 0.

If n is even, then for x > 0,

g
′
(x) < 0 ⇒ g(x) < g(0) = 0 ⇒ (ln f(x))(n) > 0 ⇒

⇒ (−1)n(ln f(x))(n) > 0.

Hence,
(−1)n(ln f(x))(n) > 0

for all real x ∈ (0,∞) and all integers n ≥ 1. The proof is completed.

Remark 10. Let p tend to ∞, then we obtain Theorem 1 from [6]. Let
q tend to 1, then we obtain Theorem 2.1 from [14].

Let s and t be two real numbers with s 6= t, α = min{s, t} and β ≥ −α,
for x ∈ (−α, α), define
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hβ,p,q(x) =





[
Γp,q(β+t)
Γp,q(β+s) ·

Γp,q(x+s)
Γp,q(x+t)

] 1
x−β

x 6= β,

exp[ψp,q(β + s)− ψp,q(β + t)] x = β.

The following theorem is a generalization of a result of [15].

Theorem 11. The function hβ,p,q(x) is logarithmically completely
monotonic on (−α,+∞) if s > t.

P r o o f. For x 6= β, taking logarithm of the function hβ,p(x) gives

ln hβ,p,q(x) =
1

x− β

[
ln

Γp,q(β + t)
Γp,q(β + s)

− ln
Γp,q(x + s)
Γp,q(x + t)

]

=
lnΓp,q(x + s)− ln Γp,q(β + s)

x− β
− ln Γp,q(x + t)− ln Γp,q(β + t)

x− β

=
1

x− β

x∫

β

ψp,q(u + s)du− 1
x− β

x∫

β

ψp,q(u + t)du

=
1

x− β

x∫

β

[ψp,q(u + s)− ψp,q(u + t)]du

=
1

x− β

x∫

β

s∫

t

ψ
′
p,q(u + v)dvdu

=
1

x− β

x∫

β

ϕp,q,s,t(u)du =

1∫

0

ϕp,q,s,t((x− β)u + β)du,

and by differentiating lnhβ,p,q(x) with respect to x,

[lnhβ,p,q(x)](k) =

1∫

0

ukϕ
(k)
p,q,s,t((x− β)u + β)du. (33)

If x = β, formula (33) is valid. Since functions ψ
′
p,q and ϕp,q,s,t are completely

monotonic in (0,∞) and (−t,∞) respectively, then (−1)i[ϕp,q,s,t(x)](i) ≥ 0 holds
for n ∈ (−t,∞) for any nonnegative integer i. Thus

(−1)k[lnhβ,p,q(x)](k) =

1∫

0

uk(−1)kϕ
(k)
p,q,s,t((x− β)u + β)du ≥ 0

in (−t,∞) for k ∈ N. The proof is completed.
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4. Application of the Γp,q(x) function

In the following, we give some results for the Γp,q analogous to these from
[21]. Since the proofs are almost similar, we omit them.

Lemma 13. Let a, b, c, d, e be real numbers such that a+bx > 0, d+ex >
0 and a + bx ≤ d + ex. Then

ψp,q(a + bx)− ψp,q(d + ex) ≤ 0. (34)

Lemma 14. Let a, b, c, d, e, f be real numbers such that a + bx > 0, d +
ex > 0, a + bx ≤ d + ex and ef ≥ bc > 0. If

(i) ψp,q(a + bx) > 0, or
(ii) ψp,q(d + ex) > 0,

then
bcψp,q(a + bx)− efψp,q(d + ex) ≤ 0. (35)

Lemma 15. Let a, b, c, d, e, f be real numbers such that a + bx > 0, d +
ex > 0, a + bx ≤ d + ex and bc ≥ ef > 0. If

(i) ψp,q(d + ex) < 0, or
(ii) ψp,q(a + bx) < 0,

then
bcψp,q(a + bx)− efψp,q(d + ex) ≤ 0. (36)

Theorem 16. Let f1 be a function defined by

f1(x) =
Γp,q(a + bx)c

Γp,q(d + ex)f
, x ≥ 0, (37)

where a, b, c, d, e, f are real numbers such that: a + bx > 0, d + ex > 0, a + bx ≤
d+ ex, ef ≥ bc > 0. If ψp,q(a+ bx) > 0 or ψp,q(d+ ex) > 0, then the function f1

is decreasing for x ≥ 0 and for x ∈ [0, 1] the following double inequality holds:

Γp,q(a + b)c

Γp,q(d + e)f
≤ Γp,q(a + bx)c

Γp,q(d + ex)f
≤ Γp,q(a)c

Γp,q(d)f
. (38)

In a similar way, using Lemma 15, it is easy to prove the following theo-
rem.

Theorem 17. Let f1 be a function defined by

f1(x) =
Γp,q(a + bx)c

Γp,q(d + ex)f
, x ≥ 0, (39)
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where a, b, c, d, e, f are real numbers such that: a + bx > 0, d + ex > 0, a + bx ≤
d + ex, bc ≥ ef > 0. If ψp,q(d + ex) < 0 or ψp,q(a + bx) < 0, then the function
f1 is decreasing for x ≥ 0 and for x ∈ [0, 1] the inequality (38) holds.
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