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It is defined a I', 4-function, as a generalization of the I'-function. Also, we define a
¥p,q-analogue of the psi-function as the log derivative of I'p 4. For the I'p ,-function, we give
some properties related to convexity, log-convexity and completely monotonic functions. Also,
some properties of 1, , analog of the t-function are established. As an application, when
p — 00,q — 1, we obtain all results from [12] and [21].
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1. Introduction

The Euler gamma function I'(z) is defined for > 0 by

F(x):/ t*te~tat.
0

The digamma (or psi) function is defined for positive real numbers x as the
d

logarithmic derivative of Euler’s gamma function, that is ¢ (z) = . InT'(z) =
x

I"(x)

I'(x)

. The following integral and series representations are valid (see [3]):

w(x):_7+/0°°e_te_”dt:_7_l+znx (1)

1—et

8

where v = 0.57721 - - - denotes Euler’s constant.
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Euler gave another equivalent definition for the I'(x) (see [2],[19])

XL X

plp P

r = = , > 0, 2
»(@) z+1)-...-(@+p) 2Q+7) ... (1+]) v @)

where p is positive integer, and
['(z) = lim I'y(x). (3)

p—0o0

The p-analogue of the psi function, as the logarithmic derivative of the
I'), function (see [12]), is

Uyla) = Ty (a) = 27

(4)

The following representations are valid:

T,(z) = /Op <1 - ;)ptm_ldt, (5)

00 Tt (] _ e—(p+1)t
Pp(x) =Inp — / (1 - )dt, (6)
0 — €
and
P (2) = (=1)" . /oo M(l — e PHdt. (7)
p 0 1 —et
Jackson (see [8, 9, 10, 20]) defined the g-analogue of the gamma function
as @)
q;49)c0 1-x
I (z) = LW 1 _ =z (< q<1, 8
¢() (qx;q)oo( ) (8)
and (liaD)
@74 e 1—z (I)
I'j(z) ="——(q—1 q\2’, q > 1, 9
@) = =) )

where (a;¢)oo = [[;50(1 — aq’).
The g-gamma function has the following integral representation

[ee]
T,(t) = / o' E % dg,
0
i(G—=1) _.j
where EF = > 2%, ¢z ' [“;—]J, = (1 + (1 — g)z)3°, which is the g-analogue of the
classical exponential function. The g-analogue of the psi function is defined

for 0 < ¢ < 1 as the logarithmic derivative of the g-gamma function, that is,
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Ye(z) = % log'y(x). Many properties of the g-gamma function were derived
by Askey [4]. It is well known that I'j(z) — I'(z) and ¢4(x) — ¢(z) as ¢ — 17.
From (8), for 0 < ¢ < 1 and = > 0 we get

nT

q
1
i)

qn+x
Yg(x) = —10g(1—Q)+10gQZm = —log(l—q)—i—long
n>0 n>1

and from (9) for ¢ > 1 and = > 0 we obtain

—n—x

Yg(z) = —log(qg—1)+logq 33_%_ zqu—n—x>
n>0

(11)
= —log(g—1)+logq [z —5— > 1‘1__,;71> :
n>1

A Stieltjes integral representation for ¢,(z) with 0 < ¢ < 1 is given in [16]. It
is well-known that ¢’ is strictly completely monotonic on (0, c0), that is,

(=)@ (2))™ >0 for 2 >0 and n >0,

see [3, p. 260]. From (10) and (11) we conclude that ¢ has the same property
for any ¢ > 0,

(— )Wq( )) >0 forx>0andn>0.

If ¢ € (0,1), using the second representation of ¢, (z) given in (10) can be shown

that
z/;(k =loghtlyq Z ! q (12)

n>1

and hence (—l)kflz/z(gk)(x) > 0 with x > 1, for all £k > 1. If ¢ > 1, from the
second representation of 1,(z) given in (11) we obtain

Yy(x) 10gq<1+z " ) (13)

n>1

and for k > 2,

k ,—nx

PP (x) = (~1) 1 loght qZ”q (14)

n>1

and hence (—1)k_11/)((]k) (x) > 0 with z > 0, for all ¢ > 1.
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Definition 1. For > 0,p € N and for g € (0,1)

bl
D = ety e ol )

1—qP

where [p|g = L.

It is easy to see that I', ;(z) fits into the following commutative diagrams:

Fp,q(w) Lo Fq(w)

lq—)l J/q—d

Tp(z) = I(x)

We define a (p, ¢)-analogue of the psi function as the logarithmic deriva-
tive of the p, g-gamma function, that is,

d
Vp,q(x) = ar log I'y ¢(2). (16)

Definition 2. The function f is called log-convex if for all o, 8 > 0
such that a + [ =1 and for all z,y > 0 the following inequality holds

log f(azx + By) < alog f(z) + Blog f(y),

or equivalently
flax + By) < (f(@)* - (f(y)".

Now, we will give some definitions about completely monotonic function:
A function f is said to be completely monotonic on an open interval I, if
f has derivatives of all orders on I and satisfies

(=) f™(z) >0, (xeI,n=0,1,2,...). (17)

If the inequality (17) is strict, then f is said to be strictly completely monotonic
on I.

A positive function f is said to be logarithmically completely monotonic
(see [18]) on an open interval I, if f satisfies

(=1)"[In f(z)]™ >0,(x € ,n=1,2,...). (18)

If the inequality (18) is strict, then f is said to be strictly logarithmically com-
pletely monotonic.
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Let C' and L denote the set of completely monotonic functions and the set
of logarithmically completely monotonic functions, respectively. The relation-
ship between completely monotonic functions and logarithmically completely
monotonic functions can be presented (see [2]) by L C C.

The following theorem gives an integral characterization of the completely
monotone functions.

Theorem 3.  (Hausdorff-Bernstein- Widder Theorem) A function ¢ :
[0,00) — R is completely monotone on [0,00) if and only if it is the Laplace
transform of a finite non-negative Borel meassure pu on [0,00), i.e., @ is of the

form
o

o(r) = / e Tdu(t) (19)

0

e A non-negative finite linear combination of completely monotone functions
is completely monotone.

e The product of two completely monotone functions is completely mono-
tone.

2. Main results

Lemma 4. For «,( > 0 such that o+ 8 =1 we have:
[+ 231+ 9l <[1+az+ Byl (20)

Proof. From Young’s inequality

215 Tyly < alely + By, (21)
we have:

[+ 2]+ )2 < all + 2], + B[+ vl
1_q1+x 1_q1+y
:a< 1—¢q )+B< 1—gq )
1

=1 [1 — (ag'* + ﬁqlﬂ’)]

We have to prove:
aql—l—:v + ﬂql—i—y > q1+am+5y‘ (22)

From Young’s inequality we have:

g ot = ¢((¢")*(¢%)") < q(aq” + Bg¥) = ag" ™™ + Bg' V. .
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Theorem 5. The function

[plg [plq!
zlglz + 1] -+ [z + plg

Lpglz) = [

is log-conver.
Proof. We have to prove that for all o, 6 > 0,0+ 6 =1,z,y > 0

logTy 4(ax + By) < alogly, 4(z) + Blog Ty 4(y) (23)

which is equivalent to

Lpglaz + By) < (Lpg(x))* - (Fp,q(y))ﬁ- (24)

By Lemma 4 we obtain:

R A R L R R e )

forall k > 1,k € N.
Multiplying (25) for k = 1,2,...,p one obtains

(25)

«

[Hﬂq [14%}:- {Hi’]qﬁ... [1+§ﬂj < [1+WL... {1+w;ﬁy]q.

Now, taking the reciprocal values and multiplying by [p ]O‘Hﬁy one obtains (24)
and thus the proof is completed. ]

Lemma 6. a) The function v, , defined by (16) has the following series
representation and integral representation:

P gtk
Up,q(x) = —In[plg — IOgQZ my (26)
Up,q(z) = —1In[plq /16 6_(p+1)t)d7q(t)a (27)
0

where v4(t) is a discrete measure with positive masses —logq at the positive
points —klogq, k=1,2,..., i.e.

'yq(t):—logq25(t+klogq), 0<g<l1. (28)
k=1

b) The function 1, 4 is increasing on (0,00).
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c) The function w;,’q is strictly completely monotonic on (0, 00).

Proof. a) After logarithmical differentiation of (15) we take (26). Using

o

—g®1
/ "y (t) = g, 0<g<l1
0

(see [7]), we take (27).
b) Let 0 < z < y. Using (26) we obtain

qutk - qy+k )

NE

¢p7q($) - T/’p7q< =loggq

i
o

Fa@

gotutk

e
Il
o

q° —qY
x+y+k>

¢) Deriving n times the relation (26) one finds that:

<q;r _ qw—i-y—l-k _ qy 4 qz+y+k)

Fﬁ@

e
Il
o

00
tne—xt

vi@) = (-0 [ e Ty ), (20)
0
hence (—1)" (¢, ,(z z))™ >0, for z > 0,n >0, ]

Remark 7.  The function 1, 4(x) fits into the following commutative
diagrams

Vp,q() == Yq(x)

lq—ﬂ lq—d

Ypla) === ()

3. Logarithmically completely monotonic function

Theorem 8. The function G 4(x;a1,b1,...,an,by) given by

n

T, (x+a;
GPv‘I(x) = GPa‘I(‘r;a'labla e 7anabn) = HM7 qc (07 1) (30)

i=1 FPvQ(m + bl)
is a completely monotonic function on (0,00), for any a; and b;, i =1,2,...,n,
real numbers such that 0 < a1 < -+ < ap, 0 < by < by < --- < b, and

S @ <K b fork=1,2,....n
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Proof. Let h(z) = Y. (logTp4(x + b;) — log T, 4(z + a;)). Then for
k > 0 we have

n

(DR (R @)™ = (D)"Y (@ (@ + bi) — ¢l (@ + a;)

i=1
— (_1)F - 1yk+1 the ! 1 — o= (pH1)ty(p—bi @i\ oy (4
(DF - [T 0 e e g )
=1 0
2%+1 [ thet —(p+1)t b i
Rl e R S Ca R PR UY
5 i—1

Alzer [1] showed that if f is a decreasing and convex function on R, then it holds

ST F0) <Y flan): (31)
=1 =1

Thus, since the function z — e™%,z > 0 is decreasing and convex on R, we have
that > 7 (e — e7%) > 0, so (—1)k(G;7q(x))(k) > 0 for k > 0. Hence h' is
completely monotonic on (0,00). Using the fact that if A’ is completely mono-
tonic function on (0,00), then exp(—h) is also completely monotonic function
on (0,00) (see [5]), we get the desired result. ]

Theorem 9. The function

1
fle) = —— 32
) [szq(m F1)]= 32

is logarithmically completely monotonic in (0,00).

Proof. Using the Leibnitz rule

n

[u(@)e@)™ =3 <Z>“““) ()0 (@),

k=0
we obtain
" /n\ /1N ) (n—k)
[In f(2)]™ = <k> (-) (~mDpy@+1)
k=0
= 2 () VR )
S
1
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g (z)= zn: (Z) (—1)FE!(n — k)a" gk =D (g 4 1)+

+) <Z> (—1)F k1Rl =h) (2 4 1)

k=0
n—1

= <Z> (=1)Fkl(n — k)z"Fy{n = (4 1)+
k=0

e+ 1)+ <Z> (=) k™ (R (2 4 1)

n—1
= <n> (=1)*k!(n — k)" k1 g‘q*kfl)(ac + 1)+

n—1
_{_xnw +Z<k+l> k+1(k‘—|—1) nk1¢nk1(x+1)

=0

= nzl KZ) (n—k) - (k+ )(k+ D] (1) ke D 4 1)
+ ;”fp},”) (z+1) ="y (z +1).
If n is odd, then for z > 0,
g(x) > 0= gx) >g(0) =0= (Inf(x))" <0=

= (=1)"(In f(z))™ > 0.
If n is even, then for x > 0,

/

g (@) <0=g(z) <g(0) = 0= (nf(z))"™ >0=

= (=1)"(In f(z))™ > 0.
Hence,
(—=1)"(In f(x))"™ >0
for all real x € (0,00) and all integers n > 1. The proof is completed. ]

Remark 10. Let p tend to oo, then we obtain Theorem 1 from [6]. Let
q tend to 1, then we obtain Theorem 2.1 from [1].

Let s and t be two real numbers with s # ¢, = min{s, ¢} and g > —a,
for z € (—a, @), define
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1
Tpq(B+t) Tpglz+s)|z—5
[rﬁ,Z 19 rflfi(z+t>] z# B,

eXPW@q@ + ) — @Z)p,q(ﬁ +t)] =4

The following theorem is a generalization of a result of [15].

hﬂvp,q(l”) =

Theorem 11. The function hg, q(x) is logarithmically completely
monotonic on (—a, +00) if s > t.

Proof. For x # (3, taking logarithm of the function hgp(z) gives

Ipq(B+s) ! Ipq(z+1)
_InTpe(@+s) —Inlpe(B+s) Inlpe(z+1t) —Inlpe(B+1)
a z—f z—p

1 ’ 1 ’
= x_ﬂﬁ/%,q(u—ks)du— x_ﬂﬂ/wm(u—l—t)du

It g () = i | [111 Tpg(B+1) | Tpglz+ 3)}

= 5 [Wnalut 9) = tpalu-+ )du
B

- ! ; Zt/sw;w(quv)dvdu

x 1
1
T 3 /‘Pp,q,s,t(u)du = /@p,q,s,t((x — B)u + B)du,
B8

0

and by differentiating In hg, ,(x) with respect to z,
1

k
g (@) = [l (= Byu+ B (33)
0
If x = 3, formula (33) is valid. Since functions w;w and ¢p g are completely
monotonic in (0, 00) and (—t, 00) respectively, then (—1)*[pp 4.5.¢(2)]® > 0 holds
for n € (—t, 00) for any nonnegative integer i. Thus

1
(—1)k[ln hﬁ,p,q(x)](k) = /Uk(_l)kSOJ(g]fg,s,t((x - B)u+ B)du >0
0

in (—t,00) for k € N. The proof is completed. [
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4. Application of the I', ;(z) function

In the following, we give some results for the I, ; analogous to these from
[21]. Since the proofs are almost similar, we omit them.

Lemma 13. Leta,b,c,d, e be real numbers such that a+bx > 0, d+ex >
0 and a +bxr < d+ ex. Then

Yp.gla+bx) — 1y 4(d+ex) <O0. (34)

Lemma 14. Let a,b,c,d,e, f be real numbers such that a + bx > 0,d +
ex>0,a+bx<d+ex andef > bc>0. If
(1) Ypq(a+bx) >0, or
(1i) Ppq(d + ex) >0,
then
bep q(a + bx) — efipy o(d+ ex) < 0. (35)

Lemma 15. Let a,b,c,d,e, f be real numbers such that a + bx > 0,d +
ex>0,a+bx <d-+ex andbc>ef > 0. If
(1) Ypq(d+ex) <0, or

(i1) tpg(a+ ba) <0,
then

bey g(a+bx) — efipy o(d+ ex) < 0. (36)

Theorem 16. Let fi be a function defined by

_ Dpgla+bx)
fl(l‘) — Fp,q(d“‘ ex)f’ > O) (37)

where a,b,c,d, e, f are real numbers such that: a +bx > 0,d+ex > 0,a + bx <
d+ex,ef >bc> 0. If Yy 4(a+bx) >0 or iy 4(d+ex) > 0, then the function fi
is decreasing for x > 0 and for x € [0, 1] the following double inequality holds:

F1D,q(a +b)°
Lpe(d+e)f

Fp,q(a + bx)® < Fp,q(a)c
Lpg(d+ex)) = Tpg(d)f

i

< (38)

In a similar way, using Lemma 15, it is easy to prove the following theo-
rem.

Theorem 17. Let f1 be a function defined by

fi(z) = Lpale o)

>0 39
Tyg(d+ex)l” “=0 (39)
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where a,b,c,d, e, f are real numbers such that: a +bx > 0,d+ex > 0,a + bx <
d+ex,bc > ef > 0. If Yy q(d+ex) <0 orp,q(a+bx) <0, then the function
f1 is decreasing for x > 0 and for x € [0,1] the inequality (38) holds.
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