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This paper is dealing with the Hankel determinants of the special number sequences
given in an integral form. We show that these sequences satisfy a generalized convolution
property and the Hankel determinants have the generalized Somos-4 property. Here, we rec-
ognize well known number sequences such as: the Fibonacci, Catalan, Motzkin and Schröder
sequences, like special cases.
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1. Introduction

The closed-form computation of the Hankel determinants is of great com-
binatorial interest related to partitions and permutations. A long list of known
determinant evaluations and methods can be seen, for example, in [6]. The
most useful methods are based on: LU-decompositions, continued fractions,
lattice paths and orthogonal polynomials.

Definition 1. A sequence {gn} is of the B–integral form if its members
can be written as

g(p)
n =

1
2π

∫ b

a
xn−δ1,p(x− a)µ−1(b− x)ν−1 dx, (1)

(a < b; p ∈ {0, 1}; µ, ν > 0; n ∈ N).

The letter B is here to remind on the beta function B(µ, ν) because of the
fact that those integrals often can be reduced to it by a simple change u = (x−
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a)/(b−a). Here, the Euler integral representation for the Gauss hypergeometric
function will be very useful (see [3], p.33 or [4], p.201):

∫ 1

0
xa−1(1− x)b−1(1− sx)−d dx =

Γ(a)Γ(b)
Γ(a + b) 2F1

( d, a

a + b

∣∣∣s
)
, (2)

(Re(a) > 0; Re(b) > 0),

where

2F1

(a, b

c

∣∣∣z
)

=
∞∑

n=0

(a)n(b)n

(c)n

zn

n!
,

with (a)0 = 1, (a)n = a(a + 1) . . . (a + n− 1), n ∈ N.

Example 1. The Catalan numbers {Cn}n≥0 = {1, 1, 2, 5, 14, 42, . . .}
can be represented in the integral form

Cn =
1

n + 1

(
2n

n

)
=

1
2π

∫ 4

0
xn−1

√
(4− x)x dx (n ∈ N0). (3)

The large Schröder numbers {Sn}n≥0 = {1, 2, 6, 22, 90, 394, . . .} are the numbers
of Schröder paths of semi-length n from (0, 0) to (2n, 0) and can be written in
the following form

Sn =
n∑

k=0

1
n− k + 1

(
2n− 2k

n− k

)(
2n− k

k

)
=

∫ 3+2
√

2

3−2
√

2
xn−1

√
1− 6x + x2 dx.

The Motzkin numbers {Mn}n≥0 = {1, 1, 2, 4, 9, 21, 51, . . .} are given by

Mn =
∫ 3

−1
xn

√
(3− x)(x + 1) dx (n ∈ N0) .

Definition 2. A sequence {gn} satisfies the convolution property of
order r, if it is valid

gn =
r∑

k=1

αkgn−k + β
n−r∑

k=0

gkgn−r−k. (4)

For r = 1 and α1 = 0, we say that the regular convolution property is satisfied.

Definition 3. A sequence {gn} has the generalized Somos-4 property,
if there exists a pair (r, s) such that

gngn−4 = r gn−1gn−3 + s g2
n−2 (n = 4, 5, . . .). (5)

The Somos-4 sequences are associated with the abscissae of rational
points on an elliptic curve (see [8]). If the initial values and the parameters
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are integers, usually the complete sequences are integers. Also, taking concrete
initial values and holding parameters as variables, the sequence members are
Laurent polynomials in variables r and s.

Definition 4. The Hankel transform of a number sequence G = {gn}
is the sequence of Hankel determinants H = {hn} given by

G = {gn}n∈N0
→ H = {hn}n∈N : hn = |gi+j−2|ni,j=1. (6)

Some authors start with a generating function G(x) =
∑

n≥0 gnxn and its se-
quence of coefficients.

Definition 5. For a given function v = f(u) with the property f(0) = 0,
the series reversion is the sequence {sk} such that

u = f−1(v) = s0 + s1v + · · ·+ snvn + · · · , (7)

where u = f−1(v) is the inverse function of v = f(u).

2. The special numbers in an integral form

Let a < b and c 6= 0. Consider a sequence {g(0)
n } defined by

g(0)
n = g(0)

n (a, b, c, d) =
1
2π

∫ b

a
(cx + d)n

√
(b− x)(x− a) dx (n ∈ N0). (8)

Their generating function G0(t) = G0(t; a, b; c, d) is

G0(t) =
∞∑

n=0

g(0)
n tn =

1
2π

∫ b

a

√
(b− x)(x− a)
1− (cx + d)t

dx,

wherefrom

G0(t) =
2− ((a + b)c + 2d)t− 2

√
(1− (ac + d)t)(1− (bc + d)t)

(2ct)2
.

Since

G2
0(t) =

∞∑

n=0

( n∑

k=0

g
(0)
k g

(0)
n−k

)
tn,

the generating function satisfies the following functional equation

(4ct)2G2
0(t) + 8(((a + b)c + 2d)t− 2)G0(t) + (b− a)2 = 0.
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Hence

g(0)
n =

(a + b)c + 2d

2
g
(0)
n−1 + c2

n−2∑

k=0

g
(0)
k g

(0)
n−2−k (n = 2, 3, . . .),

with initial values

g
(0)
0 =

(b− a

4

)2
, g

(0)
1 =

(a + b)c + 2d

2
g
(0)
0 .

Remark 1. In the special case, when a > 0 or B ≤ 0, this sequence
can be written in the hypergeometric form

g(0)
n =

(a− b)2bn

16 2F1

(3/2,−n

3

∣∣∣1− a/b
)

(a > 0 ∨ b ≤ 0).

3. The shifted case

Let

g
(1)
0 =

1
2π

∫ b

a

√
(b− x)(x− a)

cx + d
dx, g(1)

n = g
(0)
n−1 (n ∈ N0).

The generating function of this sequence is G1(t) = g
(1)
0 + tG0(t), i.e.

G1(t) =
1−√

(ac + d)(bc + d) t−√
(1− (ac + d)t)(1− (bc + d)t)

2c2t
.

It satisfies the following equation

c2tG2
1(t)− (1−

√
(ac + d)(bc + d) t)G1(t) +

(√bc + d−√ac + d

2c

)2
= 0.

Hence {g(1)
k } has the following convolution property

g(1)
n =

√
(ac + d)(bc + d) g

(1)
n−1 + c2

n−1∑

k=0

g
(1)
k g

(1)
n−1−k (n = 2, 3, . . .),

with initial values

g
(1)
0 =

(√bc + d−√ac + d

2c

)2
, g

(1)
1 = (g(1)

0 )2 +
√

(ac + d)(bc + d) g
(1)
0 .
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In another form, it can be written like

g(1)
n =

a + b

2
g
(1)
n−1 +

n−2∑

k=1

g
(1)
k g

(1)
n−1−k.

Example 2. If a = 0, b = 4, then g
(1)
n = Cn is the Catalan number.

The generating function is often denoted by

c(t) =
∞∑

n=0

Cntn =
1−√1− 4t

2t
.

It satisfies the following functional equation and the convolution property

tc2(t)− c(t) + 1 = 0, C0 = 1, Cn =
n−1∑

k=0

CkCn−1−k (n ∈ N0).

Example 3. Also, we mentioned that for a = 3− 2
√

2, b = 3 + 2
√

2, we get

g
(1)
n = Sn, the large Schröder numbers. They satisfy the convolution property

S0 = 1, S1 = 2, Sn = 3Sn−1 +
n−2∑

k=0

CkCn−1−k (n ∈ N0), (9)

4. Computing Hankel determinants via orthogonal polynomials

A few methods are known for evaluating the Hankel determinants. Es-
pecially, we have published our considerations about the method based on the
theory of distributions and orthogonal polynomials in the papers [2], [7] and [1],
in chronological order.

Namely, the Hankel determinant hn of the sequence {an} equals

hn = an
0βn−1

1 βn−2
2 · · ·β2

n−2βn−1 (n = 1, 2, . . .) , (10)

where {βn} is the sequence of the coefficients in the recurrence relation

Pn+1(x) = (x− αn)Pn(x)− βnPn−1(x) , P−1 ≡ 0, P0 ≡ 1. (11)

Here, {Pn(x)} is the monic polynomial sequence orthogonal with respect to the
inner product

(f, g) = U [f(x)g(x)], (12)
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where U is a functional determined by

an = U [xn] (n = 0, 1, 2, . . .) . (13)

In some cases, there exists a weight function w(x) such that the functional U
can be expressed by

U [f ] =
∫

R
f(x) w(x) dx (f(x) ∈ C(R); w(x) ≥ 0) . (14)

So, we can join to every weight w(x) two sequences of coefficients, i.e.

w(x) 7→ {αn, βn}n∈N0
.

The statements of the next lemma will be very useful (see proofs in [5]).

Lemma 1. Let w(x) be a weight function with the support supp(w) =
(a, b) and {αn, βn}n∈N0

the corresponding sequences of coefficients in monic
three-term recurrence relation. Also, let w̃(x) be a modified weight of w(x) and
{α̃n, β̃n}n∈N0

its sequences of coefficients. Then
(i) If w̃(x) = Cw(x) ⇒ {α̃n = αn, β̃0 = Cβ0, β̃n = βn (n ∈ N)} .
(ii) If w̃(x) = w(cx + d) ⇒ {α̃n = αn−d

c , β̃0 = β0

|c| , β̃n = βn

c2
(n ∈ N)},

supp(w̃) =
(a− d

c
,

b− d

c

)
.

(iii) If w̃c(x) = (x− c) w(x) (c < a < b), then, for every n ∈ N, it is valid

α̃c,0 = α0 + r1 − r0 , α̃c,n = αn+1 + rn+1 − rn, β̃c,0 = −r0β0, β̃c,n = βn
rn

rn−1
,

where r0 = c− α0, r1 = c− α1 − β1

r0
, rn+1 = c− αn+1 − βn+1

rn
(n ∈ N0) .

(iv) If w̃d(x) = (d− x) w(x) (a < b < d) , then

α̃d,n = d + qn+1 + en+1 (n ∈ N0), β̃d,0 =
∫

R
w̃d(x) dx, β̃d,n = qn+1en (n ∈ N),

where e0 = 0, qn = αn−1 − en−1 − d, en = βn

qn
(n ∈ N) .

(v) If w̃c(x) = w(x)
x−c (c < a < b) , then

α̃c,0 = α0 +r0 , α̃c,n = αn +rn−rn−1, β̃c,0 = −r−1, β̃c,n = βn−1
rn−1

rn−2
(n ∈ N),

where r−1 = − ∫
R w̃c(x) dx, rn = c− αn − βn

rn−1
(n ∈ N0) .



Number Sequences in an Integral Form . . . 225

(vi) If w̃d(x) = w(x)
d−x (a < b < d) , then

α̃d,0 = α0 + r0 , α̃d,n = αn + rn− rn−1, β̃d,0 = r−1, β̃d,n = βn−1
rn−1

rn−2
(n ∈ N),

where r−1 =
∫
R w̃d(x) dx, rn = d− αn − βn

rn−1
(n ∈ N0).

5. Orthogonal polynomials

The monic Chebyshev polynomials of the second kind

Q(1)
n (x) = Sn(x) =

sin((n + 1) arccosx)
2n · √1− x2

are orthogonal with respect to the weight w(1)(x) =
√

1− x2 on (−1, 1). The
corresponding coefficients in the three-term recurrence relation are

β
(1)
0 =

π

2
, β(1)

n =
1
4

(n ≥ 1), α(1)
n = 0 (n ≥ 0) .

Let us introduce a new weight function

w(2)(x) = w(1)
( 2
b− a

x− b + a

b− a

)
, x ∈ (a, b).

By usage of the previous lemma, we get

β
(2)
0 = π

b− a

4
, β(2)

n =
(b− a

4

)2
(n ∈ N), α(2)

n =
a + b

2
(n ∈ N0) .

Also, considering w(3)(x) = b−a
4π w(2)(x), x ∈ (a, b), we get

β(3)
n =

(b− a

4

)2
, α(3)

n =
a + b

2
(n ∈ N0) .

Finally, by introducing a new weight function

w(4)(x) =
w(3)(x)

x
=

1
2π

√
(b− x)(x− a)

x
, x ∈ (a, b),

we obtain rn = −1
4 (a + b− 2

√
ab) (n = −1, 0, 1 . . .), and

β
(4)
0 =

1
4
(a + b− 2

√
ab), β(4)

n =
(b− a

4

)2
,

α
(4)
0 =

a + b +
√

ab

4
, α(4)

n =
a + b

2
(n ∈ N).
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5. The Hankel determinants

Notice that g
(0)
n can be written in the form

g(0)
n =

1
2c2π

∫ bc+d

ac+d
zn

√
(bc + d− z)(z − ac− d) dz (n ∈ N0).

For computing the Hankel determinants h
(0)
n = |g(0)

i+j−2|, it is enough to consider

w(3)(x) =
b− a

4cπ
w(1)

( 2
(b− a)c

x− (a + b)c + 2d

(b− a)c

)
.

Since
β

(3)
0 =

(b− a

4

)2
, β(3)

n =
((b− a)c

4

)2
, (n ∈ N) ,

we have
h(0)

n =
(b− a

4

)n(n+1)
cn(n−1) .

Hence we conclude that {h(0)
n } is a (r, s) Somos-4 sequence for every pair (r, s)

such that (b− a

4
c
)2

r + s =
(b− a

4
c
)8

. (15)

Similarly,

h(1)
n =

(√b−√a

2

)2n (b− a

4

)(n−1)n
(n ∈ N) .

Hence we conclude that {h(1)
n } has the same (r, s) Somos-4 property (15). Es-

pecially, we can say that both sequences of determinants are (((b − a)/4)6, 0)
Somos-4 or (0, ((b− a)/4)8) Somos-4 sequences.

Example 4. Here a few known special number sequences are presented:
(1) In the Motzkin case (a = −1; b = 3) and the Catalan case (a =

0; b = 4), we have that h
(0)
n = 1 is (1, 0) Somos-4 sequence;

(2) In the Schröder case (a = 3 − 2
√

2; b = 3 + 2
√

2), we have that
h

(1)
n = 2n(n−1)/2 and it is (8, 0) Somos-4 sequence.

6. An analogue case with complex numbers

Let

g(2)
n =

1
2π

∫ v

−v
(iz + u)n

√
(v − z)(z + v) dz (i =

√−1) (n ∈ N0). (16)

Hence we get the first sequence g
(2)
n = g

(0)
n (a, b, c, d) with a = −v, b = v and

c = i, d = u.
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Remark 2. This case can be written in the form (8) with a = u − iv
and b = u + iv. But, it can cause a lot of troubles with two valued square root
complex functions. That is why we choose the form (16).

Example 5. Taking u = −1 and v = 2, in (16) we get the sequence
{gn} = {1,−1, 0, 2,−3,−1, 11,−15,−13, 77,−86, . . .}, whose Hankel determi-
nants are h

(2)
n = (−1)n(n−1)/2, which is an (r, s) Somos-4 sequence for any r and

s satisfying s− r = 1.
The sequence {gn} has the generating function

G(x) =
−1− x−√1 + 2x + 5x2

2x2
=

y(x)
x

, where
y

1− y − y2
= x.

Here, y(x) is the series reversion of the generating function of the Fibonacci
numbers, i.e.

y

1− y − y2
=

∞∑

n=0

Fnyn,

where F0 = 0, F1 = 1, Fn+1 = Fn + Fn−1 (n ∈ N).

7. A conjecture

Let

a1 = −1 +
√

5
2

, b1 = −
√

13− 3
2

, a2 =
√

5− 1
2

, b2 =
3 +

√
13

2
,

and

w(x) =
1
|x| ·

√
−(b1 − x)(x− a1)(b2 − x)(x− a2), x ∈ D = (a1, b1) ∪ (a2, b2).

Consider the sequence {gn} defined by

gn =
1
2π

∫

D
xnw(x) dx (n ∈ N0).

Here is g = {1, 1, 3, 6, 16, 40, 109, 297, . . .}, i.e. it is the sequence A128720. The
following convolution property is valid:

gn = gn−1 + gn−2 +
n−2∑

k=0

gkgn−2−k (n = 2, 3, . . .).

We conjecture that their Hankel transform h = {1, 2, 5, 17, 109, . . .}, is the se-
quence known as A174168. This is a (1, 3) Somos-4 sequence because of the
property

hnhn−4 = hn−1hn−3 + 3h2
n−2.
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