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SYSTEM WITH QUANTUM WELLS AND MACROSCOPIC

NONLINEARITIES IN DIMENSION 1
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Abstract. We consider the stationary one dimensional Schrödinger-Poisson
system on a bounded interval with a background potential describing a quan-
tum well. Using a partition function which forces the particles to remain
in the quantum well, the limit h → 0 in the nonlinear system leads to a
uniquely solved nonlinear problem with concentrated particle density. It
allows to conclude about the convergence of the solution.

1. Introduction. The quantum state of a gas of charged particles is de-
scribed, in the mean field approximation, by a nonlinear one-particle Schrödinger
equation where the electrostatic repulsion is modeled by a nonlinear potential
term depending on the charge density through a Poisson equation. This class of
models is usually referred to as Schrödinger-Poisson systems. In this work we
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consider a stationary Schrödinger-Poisson system in a bounded region of R, for
which a background potential models a quantum well, while the nonlinear poten-
tial extends on a wider scale. After introducing a rescaling for which the small
parameter h > 0 represents an inverse length scale, the support of the potential
well squeezes asymptotically to a single point in the limit h → 0. An equilibrium
state of a gas of charged particles confined in the quantum well will be considered,
while the nonlinear electrostatic potential created by such a concentrated charge
tends to a potential which is picewise linear and almost constant in the well.

Such a Schrödinger-Poisson problem has recently been considered in [3],
[4] and [14] in a more complex setting involving far from equilibrium steady
states. This one-dimensional analysis leads to a reduced model which happens to
be very efficient in the numerical simulation of the electronic transport through
semiconductor heterostructures, like resonant tunneling diodes, see [1] and [2].
Nevertheless, in the present work the Schrödinger-Poisson system has a unique
solution and the analysis shows that the unicity is asymptotically preserved. It
is not the case in [3], [4] and [14] where hysteresis phenomena are predicted (e.g.
in [11] and [16]).

For the sake of simplicity we shall use a low energy-filter in the definition
of the partition function f (see equation (1.5) below), that is the quantum states
with an energy larger than the threshold εS are not occupied. With such an
assumption only the quantum states confined in the well have an effect on the
nonlinearity. This is an important point to get asymptotically the macroscopic
quantities.

The semi-classical analysis of such a model was performed in [6] in dimen-
sion d = 2 and 3 and it appears that in the limit, the potential vanishes almost
everywhere and produces a non null spectral perturbation. This apparent contra-
diction is solved through a rescaling with parameter h and the potential behaviour
depends on the Green function of the Laplace operator. For the 1D problem, the
nonlinear effect remains visible at the macroscopic scale in the limit h → 0, this
provides a non trivial approximation of the solution of the Schrödinger-Poisson
system.

Like in [3], [4], [6] and [14] the analysis will be a mixture of nonlinear
apriori estimates combined with accurate semiclassical and spectral techniques
(we refer to: [5], [8], [9] and [17]) adapted for potentials with limited regularity.
The outline of this analysis is the following. We end this section by introducing
the model and by stating our results. In Section 2, we give some asymptotics
for the spectrum of the linear Hamiltonian. In Section 3, we present preliminary
results for the Schrödinger-Poisson system. The limit of the Schrödinger-Poisson
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system is done in Section 4. The semi-classical analysis tools, necessary for the
asymptotics, are given in Appendix A and B.

1.1. The model. Let Ω = (0, L) be an open bounded interval and U a
non positive function in C∞

0 (R) supported in the ball of radius one centered in
the origin.

For x0 ∈ Ω, we define the potential with center x0 and radius of order
h > 0

Uh(x) = U

(

x − x0

h

)

, x ∈ Ω .

Our analysis being concerned with the limit h → 0, we can choose, without loss
of generality, h small enough so that the support of Uh is included in Ω. In
particular, defining with ωh the support of Uh, we assume that ωh ⊂ Ω for all
values of h below a suitable positive constant: h ≤ h0.

Next we assign the function f ∈ C∞(R), with a threshold at εS < 0 and
fulfilling the conditions

(1.1) f(x) > 0, ∀x < εS ,

(1.2) f(x) = 0, ∀x ≥ εS ,

(1.3) f ′(x) ≤ 0, ∀x ∈ R,

and address, for h ∈ (0, h0], the following problem: find V h solving the nonlinear
Poisson equation

(1.4)



















− d2

dx2
V h = n[V h] in Ω

V h
∣

∣

∣

∂Ω
= 0

where the source term is

(1.5) n[V h] =
∑

i≥1

f(εh
i )|Ψh

i |2 ,

and
{

εh
i

}

i≥1
are the eigenvalues of the nonlinear Hamiltonian

(1.6) Hh = −h2 d2

dx2
+ Uh + V h
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numerated from inf σ(Hh) counting multiplicities, while
{

Ψh
i

}

i≥1
are the corre-

sponding eigenvectors

(1.7)







HhΨh
i = εh

i Ψh
i , in Ω ,

Ψh
i

∣

∣

∣

∂Ω
= 0 .

The equations (1.4), (1.5) and (1.7) define the stationary Schrödinger-Poisson
system associated with the potential well Uh and the function f . In practical
applications, where these equations are used for the description of the charge
distribution in electronic devices, n[V h] describes the density of the charge careers
of the system, while f is a response function which depends on the characteristics
of the device and has to be considered as a data item of the problem.

The stationary states form a set of real normalized functions

(1.8) Im Ψh
i = 0;

∥

∥

∥Ψh
i

∥

∥

∥

L2(Ω)
= 1 ,

The analysis of our Schrödinger-Poisson system, will involve the operator

(1.9) H0 = − d2

dx2
+ U ; D(H0) = H2(R) ,

whose point spectrum, σp(H0), contains a finite number of points embedded in
[−‖U‖L∞ , 0). In particular, we make the following assumption

(1.10) e1 := inf σ (H0) < εS .

The hypothesis (1.10) – which prevents the solution to (1.4)–(1.7) to be trivial –
will be extensively used in this work.

1.2. Results. In our one dimensional case (see [12]) and in the general
case of the dimension d ≤ 3 (see [13]), it has been proved that, for h > 0, the
problem (1.4)–(1.7) admits an unique solution, V h in our notation, in H1

0 (Ω).
However, the uniqueness of V h is by far not obvious if the limit h → 0 is con-
sidered. The aim of our analysis is to understand the asymptotic behaviour of
the system (1.4)–(1.7) as h → 0. This in order to provide a simplified modelling
for the nonlinearities produced by charged particles confined in quantum layers.
Such a program has been carried out in [6] in dimension d = 2 and 3.

In our one dimensional framework, the functional spaces for the solution
verify better Sobolev injections than in the 2D and 3D case, which gives, up to
extraction, strong convergence results for the potential (see [3] and [4]). We have
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then enough regularity to obtain the convergence of the negative spectrum. This
allows to determine the limit of the Shrödinger-Poisson system (1.4)–(1.7), up to
extraction, and the convergence of all the sequence follows from the uniqueness,
and the explicit computation, of the solution of the limit problem.

Our main results below, whose proofs are given in Section 4, gather the
asymptotic informations for the 1D case.

Theorem 1.1. The nonlinearity (V h)h∈(0,h0] is bounded in W 1,∞(0, L)
and tends, strongly in C0,α(0, L), ∀α ∈ (0, 1), to the potential V0 given by

(1.11) V0(x) =







































∑

i≥1

f(ei + θ)





(

1 − x0

L

)

x, 0 < x ≤ x0





∑

i≥1

f(ei + θ)





x0

L
(L − x), x0 < x < L

where {ei}1≤i≤N is the discrete spectrum of H0, ei≥N+1 = 0 and θ ∈ (0, εS − e1)
is the unique non negative solution of the nonlinear equation

θ = x0

(

1 − x0

L

)

∑

i≥1

f(ei + θ).

The density (n[V h])h∈(0,h0] tends to the mesure

(1.12) µ =
∑

i≥1

f(ei + θ)δx0
.

for the weak* topology on the space Mb(0, L) of bounded mesures on (0, L).

Hence for the 1D problem, the nonlinear effect produced at the quantum
scale remains visible at the macroscopic scale in the limit h → 0.

2. Some asymptotics for the linear operator. Consider the op-
erator H0 defined in (1.9). The multiplication operator U is a relatively compact

perturbation of − d2

dx2
. Then, the Kato-Reillich and Weyl Theorems imply that

H0 is self-adjoint and σess(H0) = [0,+∞).
The reader may refer to Proposition 7.4 in [18] to see that σp(H0) 6= ∅ is always
true in the one dimensional case when U ≤ 0 and not identically zero, and the
discret spectrum of H0 is a countable set of negative eigenvalues with multiplicity
one and zero as possible accumulation point. In addition, the Proposition 7.5 in
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[18] gives the following estimation on the number N of negative eigenvalues of
H0:

N ≤ 1 +

∫

R

|x||U(x)|dx,

bound which is finite in our case. It follows that

(2.1) σ(H0) = {e1, . . . , eN} ∪ [0,+∞)

where the ei are the points of σd(H0). We will work with the convention

(2.2) ei = 0, for i ≥ N + 1

The present section is devoted to the description, when h → 0, of the spectrum
of the operator

(2.3) Hh
0 = −h2 d2

dx2
+ Uh , D(Hh

0 ) = H2 ∩ H1
0 (Ω)

using a comparison with the spectrum of H0. The operator Hh
0 is the linear

part of the Hamiltonian Hh involved in the Schrödinger-Poisson system (1.4)–
(1.7) and, therefore, it will play an important role in the analysis: the spectral
asymptotics of the linear operator will give information about the nonlinear one.

We will denote by

(

−h2 d2

dx2

)

Ω

the realisation of −h2 d2

dx2
on Ω with domain

H1
0 ∩ H2(Ω). The spectrum of the operator

(

−h2 d2

dx2

)

Ω

is the sequence of the

λh
i =

h2i2π2

L2
and the corresponding normalized eigenvectors are the ϕi(x) =

√

2

L
sin

iπx

L
for i ≥ 1.

By setting

Λ := ‖U‖L∞ > 0.

we have:

σ

((

−h2 d2

dx2
− Λ

)

Ω

)

= {λh
i − Λ, i ≥ 1}

Let ε be a constant such that ε > −Λ, we have:

#

(

σ

((

−h2 d2

dx2
− Λ

)

Ω

)

∩ (−∞, ε]

)

= #{i ≥ 1;
h2i2π2

L2
−Λ ≤ ε} ≤

√
ε + Λ

L

πh
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Coming back to the operator Hh
0 , we note that:

Hh
0 ≥

(

−h2 d2

dx2
− Λ

)

Ω

and therefore ∀ε > −Λ, the integer

(2.4) Nh := #
(

σ(Hh
0 ) ∩ (−∞, ε]

)

verifies

(2.5) Nh ≤ #

(

σ

((

−h2 d2

dx2
− Λ

)

Ω

)

∩ (−∞, ε]

)

= O(h−1).

The previous asymptotic order is an important point in the proof of the following
Lemma, which is the main result of this section.

Lemma 2.1. Consider ε ∈ (eN , 0) and Nh given by (2.4). If we define

eh
i to be the eigenvalues of Hh

0 , then, for h0 small enough, we have:

• Nh = N , ∀h ∈ (0, h0]

• For i = 1, . . . , N :

lim
h→0

eh
i = ei

Remark 2.2. A consequence of this Lemma is:

lim inf
h→0

eh
i ≥ 0

for i ≥ N + 1. In other words, the eigenvalues of Hh
0 , with number i ≥ N + 1,

are asymptotically embedded in the continuous spectrum of H0.

The proof of this lemma is based on the exponential decay of eigenfunc-
tions given in Appendix B. The estimates are written with weight functions in-
volving Agmon distances which proprieties are recalled in Appendix A.

P r o o f. The states corresponding to energies below ε are exponentialy
decaying outside the support ωh of Uh, therefore the behaviour of the eigenvalues
of Hh

0 is well discribed by the comparison with the operator considered on the
whole space, H̃h

0 , defined as follows:

(2.6) H̃h
0 = −h2 d2

dx2
+ Uh; D(H̃h

0 ) = H2(R)
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The operator H̃h
0 is unitary equivalent to the operator H0 through the unitary

map on L2(R):

φ̃(x) = h
1

2 φ(hx + x0)

and (2.1) implies that:

σ(H̃h
0 ) = {e1, . . . , eN} ∪ [0,+∞)

We will denote by φh
i and φ̃h

i the normalized eigenvectors of Hh
0 and H̃h

0 respec-
tively.

• Introduce the family: uh
i ∈ D(Hh

0 ) defined by

(2.7) uh
i = χφ̃h

i , for i = 1, . . . , N

where χ ∈ C∞
0 (R) is such that: χ = 1 on B

(

x0,
R

2

)

and χ = 0 on R\B(x0, R)

for a raduis R > 0 verifying B(x0, R) ⊂ Ω.
We have the following classical inequality for self-adjoint operators, which can be
found in [8]:

‖uh
i ‖L2(Ω)d(ei, σ(Hh

0 )) ≤ ‖(Hh
0 − ei)u

h
i ‖L2(Ω).

We refer to [5] to see that estimation (B.1) can be extended to the whole space
where the weight function is given by the Agmon distance on R related to the
potential (Uh − ε). This, combined with inequality (A.2) for Ω = R, gives

(2.8) h2

∫

R

∣

∣

∣
ec0

|x−x0|
h ∇φ̃h

i

∣

∣

∣

2

dx +

∫

R

∣

∣

∣
ec0

|x−x0|
h φ̃h

i

∣

∣

∣

2

dx ≤ C

and it follows that ‖uh
i ‖L2(Ω) is bounded from below. Indeed, we have:

||uh
i ||2L2(Ω) =

∫

B(x0,R/2)
|φ̃h

i |2dx +

∫

R\B(x0,R/2)
|χ|2|φ̃h

i |2dx

=

∫

R

|φ̃h
i |2dx +

∫

R\B(x0,R/2)
(|χ|2 − 1)|φ̃h

i |2dx

= 1 +

∫

R\B(x0,R/2)
(|χ|2 − 1)|φ̃h

i |2dx
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And, the decay estimate (2.8) implies that
∣

∣

∣

∣

∣

∫

R\B(x0,R/2)
(|χ|2 − 1)|φ̃h

i |2dx

∣

∣

∣

∣

∣

≤ (||χ||2L∞ + 1)

∫

R\B(x0,R/2)
e−2c0|x−x0|/h|ec0|x−x0|/hφ̃h

i |2dx

≤ C

∫

R

|ec0|x−x0|/hφ̃h
i |2dx e−c0R/h ≤ C ′e−c0R/h

which leads to

||uh
i ||L2(Ω) ≥

1

2
, ∀h ∈ (0, h0]

for h0 small enough. Then, a direct computation gives:

(Hh
0 − ei)u

h
i = −h2χ′′φ̃h

i − 2h2χ′(φ̃h
i )′.

The r.h.s. in the previous equality being supported in a region where φ̃h
i is

exponentially decaying, the estimate (2.8) gives:

(2.9) ||(Hh
0 − ei)u

h
i ||L2(Ω) ≤ Ce−

γ
h

where C, γ > 0 doesn’t depend on i and h.
We deduce that for i = 1, . . . , N

d(ei, σ(Hh
0 )) −→

h→0
0

It implies Nh ≥ N for all h ∈ (0, h0] and h0 small. Then, it’s enough to show
that Nh ≤ N to conclude.
• For i = 1, . . . , Nh, if we set vh

i = χφh
i ∈ D(H̃h

0 ) using (B.4), we can reproduce
the calculation of the first point to obtain

(2.10) ‖(H̃h
0 − eh

i )vh
i ‖L2(R) ≤ Ce−

γ
h

Now, let I = [−‖U‖L∞ , ε] and a > 0 be small enough to have

σ(H̃h
0 ) ∩ ((I + B(0, 2a))\I) = ∅ .

We consider the vector space E spaned by vh
1 , . . . , vh

Nh and the spectral subspace

F corresponding to σ(H̃h
0 ) ∩ I. Estimation (B.4) implies that the matrix M =

(

(vh
i , vh

j )L2(R)

)

1≤i,j≤Nh
verifies

(2.11) M = I + O
(

e−
γ
h

)
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when h → 0. As it will be clarified in Remark 2.3, equation (2.11) implies
that the vh

i are linearly independant. If we consider in addition equation (2.10),
the conditions for the application of Proposition 2.5 in [9] are gathered and the
distance d(E,F ) (definition given in [9]) is estimated by

d(E,F ) ≤
(

Nh

λmin

)

1

2 Ce−
γ
h

a

where λmin is the smallest eigenvalue of M . We deduce from (2.11) that λmin =
1 + o(1), and using (2.5), we get:

d(E,F ) ≤ C(Nh)
1

2 e−
γ
h ≤ Ch− 1

2 e−
γ
h ≤ 1

2

for all h ∈ (0, h0] and h0 small enough. This last condition allows us to state that
the projection ΠF |E : E → F is injective (e.g. in Lemma 1.3 in [9]), from which
the condition Nh ≤ N follows. �

Remark 2.3. The matrix M := ((vh
i , vh

j )) verifies M = I + O(e−
γ
h ) for

a constant γ > 0 where the asymptotics O is considered with respect to the norm

||A||∆ = max
i,j

|aij |

This implies M ∈ GLNh(C) and the linear independence of the vh
i . Indeed,

remarking that (see in [7])

∀A ∈ C
Nh×Nh

, ||A||2 ≤ Nh||A||∆

where

||A||2 = sup
x 6=0

||Ax||2
||x||2

, ||x||2 =

(

∑

i

x2
i

) 1

2

we obtain ‖M − I‖2 ≤ Ch−1e−
γ
h < 1, ∀h ∈ (0, h0] for h0 small. The inequality

‖AB‖2 ≤ ‖A‖2‖B‖2 implies that the sequence S :=
∑

n≥0
(−1)n(M − I)n converges

and verifies:

SM = MS = I

and the matrix M is invertible. Now, suppose there exists λ = (λi)i such that
∑

i
λiv

h
i = 0, then λT M = 0 and λ = 0.
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The asymptotics λmin = 1 + o(1), where λmin is the smallest eigenvalue of M , is
given by the perturbation estimate for eigenvalues

|λn(M) − 1| ≤ ‖M − I‖2, σ(M) = {λn(M), 1 ≤ n ≤ Nh}

which can be found in [7]. As ||M − I||2 ≤ Nh||M − I||∆ ≤ Ce−
γ
2h , ∀h ∈ (0, h0],

we get:

λmin = 1 + O
(

e−
γ
2h

)

3. Preliminary results for the Schrödinger-Poisson system.

We give some apriori estimates for our Schrödinger-Poisson system (1.4)–(1.7).
The results presented below are also true in dimension d ≤ 3 as it appears in [6].
From the lower bound

− d2

dx2
V h ≥ 0 in Ω

with homogeneous Dirichlet boundary conditions, the maximum principle implies

(3.1) V h ≥ 0 in Ω

Thus, V h defines a positive perturbation of the Hamiltonian Hh
0 given by (2.3).

The spectra of Hh
0 is bounded from below by the norm ‖U‖L∞(R) and we can

state

(3.2) inf
{

εh
i

}

i≥1
≥ −‖U‖L∞ .

Due to the definition of the source term (1.5), V h is generated by those energy
levels εh

i placed below the cut off εS of the characteristic function f . In order
to study the semiclassical behaviour of our system, we are interested into the
spectral properties of the Hamiltonian

(3.3) Hh = −h2 d2

dx2
+ Uh + V h, D(Hh) = H2 ∩ H1

0 (Ω)

in the spectral interval [−‖U‖L∞ , εS), as h → 0. In particular, a uniform bound
for the number of eigenvalues εh

i ∈ [−‖U‖L∞ , εS) as h → 0 is required. As
noticed above, the operator Hh is obtained as a positive perturbation of Hh

0

through the Poisson potential V h. Then, the minimax principle implies that

(3.4) eh
i ≤ εh

i , ∀i ≥ 1
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and the Lemma 2.1 leads to the following result.

Lemma 3.1. Let N be the integer given by (2.1), then ∀h ∈ (0, h0]

(3.5) #
(

σ(Hh
0 ) ∩ [−‖U‖L∞ , εS)

)

≤ N

(3.6) #
(

σ(Hh) ∩ [−‖U‖L∞ , εS)
)

≤ N

where σ(H) denotes the spectrum of H.

We recall the variational formulation, given in [13] in dimension d ≤ 3,
of the Schrödinger-Poisson problem (1.4)–(1.7). Rephrasing the results of this
work for our system, we can state that the solution to the equation (1.4)–(1.7) is
equivalent to the minimization problem

(3.7) inf
V ∈H1

0
(Ω)

J(V ); J(V ) =
1

2

∫

Ω
|V ′(x)|2dx + Tr

[

F
(

Hh(V )
)]

,

where F is the positive function

F (x) =

∫ +∞

x
f(s)ds,

while the Hamiltonian Hh(V ) is given by

Hh(V ) = −h2 d2

dx2
+ Uh + V, D(Hh(V )) = H2 ∩ H1

0 (Ω).

Moreover, the function J(V ) is Fréchet-C∞ w.r.t. V , strictly convex and coer-
cive on H1

0 (Ω) and (3.7) admits a unique solution in this space. The following
Proposition is a direct consequence of this result.

Proposition 3.2. The solution to the Schrödinger-Poisson problem

(1.4)–(1.7) is bounded in H1
0 (Ω) uniformly with respect to h.

P r o o f. From the variational formulation recalled above, the solution V h

is the minimum of the convex map J(V ), therefore we have

1

2

∫

Ω
|(V h)′(x)|2dx + Tr

[

F
(

Hh(V h)
)]

≤ J(0) = Tr
[

F
(

Hh(0)
)]

,

where Hh(V h) simply coincides with the Hamiltonian Hh, while Hh(0) can be
identified with Hh

0 defined in (2.3). The relation

Tr
[

F
(

Hh(V h)
)]

=
N
∑

i=1

F (εh
i ) ≥ 0,
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with N given in Lemma 3.1, implies

(3.8)
∥

∥

∥
V h
∥

∥

∥

2

H1
0
(Ω)

≤ 2Tr
[

F
(

Hh
0

)]

.

From Lemma 2.1, the explicit expression of the r.h.s. here is

Tr
[

F
(

Hh
0

)]

=
N
∑

i=1

F (eh
i ).

The result easily follows by combining (3.8) with the inequality

N
∑

i=1

F (eh
i ) ≤ N sup

x∈[−‖U‖L∞ ,εS)
F < ∞. 2

Next we use the assumption (1.10) and Lemma 2.1 to get uniform upper
bound for the first spectral point of Hh as h → 0.

Lemma 3.3. For h0 small enough, the condition

(3.9) εh
1 < εS

holds for all h ∈ (0, h0].

P r o o f. We use a reductio ad absurdum argument. Let h̄ ∈ (0, h0] be
such that εh̄

1 ≥ εS . It follows from (1.2) and from the definition (1.5) that the

corresponding charge density, n
[

V h̄
]

, and, then, the Poisson potential V h̄ are

null in Ω. In these conditions the Hamiltonians H h̄ and H h̄
0 coincide and we have

(3.10) εh̄
1 = eh̄

1 ≥ εS .

On the other hand, as it follows from Lemma 2.1, we have eh
1 −→ inf σ (H0) when

h → 0. Then from the assumption (1.10), the condition

(3.11) eh̄
1 < εS

definitely holds for h̄ → 0, which is in contradiction with (3.10). �

4. The semi-classical limit. In this section, the asymptotic behav-
iour of the Schrödinger-Poisson system (1.4)–(1.7) is described. Contrary to the
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other sections, the results presented here can not be extended to higher dimen-
sions. Therefore, we will use the notation (0, L) introduced in Section 1 to design
the open domain Ω.
Due to (1.2), only a finite number of eigenvectors contributes to the density and

therefore n[V h] =
∑

i≥1

f(εh
i )|Ψh

i |2 belongs to L1(0, L) as a finite sum of L1 func-

tions. Then, taking into account the embedding H1(0, L) ⊂ C(0, L) in dimension
1, the accurate function space for the potential is:

BV 2
0 (0, L) := {V ∈ C(0, L); V ′′ ∈ Mb(0, L), V (0) = V (L) = 0}

The space BV 2
0 (0, L) with the norm:

‖V ‖BV := ‖V ‖C(0,L) + ‖V ′′‖m

is a Banach space. Here ‖µ‖m = |µ|(0, L) is the strong norm of the bounded
mesure µ which is equal to the L1 norm when µ ∈ L1(0, L).
We have the following continuous injections which will be useful in this work (e.g.
in [3], [4]): ∀α ∈ (0, 1)

(4.1) BV 2
0 (0, L) →֒ W 1,∞(0, L), BV 2

0 (0, L) ⊂⊂ C0,α(0, L)

where the second injection is compact. The continuous injection BV 2
0 (0, L) →֒

W 1,∞(0, L) doesn’t present real difficulties, the distribution function of a bounded
mesure being regular. The second injection is a consequence of the compact
embedding W 1,∞(0, L) ⊂⊂ C0,α(0, L).
We can already give some apriori estimates for the potential and the density.

Proposition 4.1. The density (n[V h])h∈(0,h0] is bounded in Mb(0, L).

The potential (V h)h∈(0,h0] is bounded in W 1,∞(0, L) and relatively compact in

C0,α(0, L) for any α ∈ (0, 1).

P r o o f. We start looking for an estimate on the density. Using the
normalization condition (1.8), we have:

‖n[V h]‖m =

∫ L

0
n[V h]dx =

∑

i≥1

f(εh
i )‖Ψh

i ‖2
L2(0,L)

≤ Nh sup
x∈[−‖U‖∞,εS)

f(x)

where Nh denotes the number of eigenvalues of Hh below εS . According to
Lemma 3.1, we have Nh = O(1) when h tends to 0 and the density is bounded
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in Mb(0, L).
For what concerns the potential V h, the H1

0 bound provided by Proposition 3.2
and the continuous embedding H1

0 (0, L) →֒ C(0, L) implies

‖V h‖C(0,L) ≤ C, ∀h ∈ (0, h0]

Then, it follows from the Poisson equation −(V h)′′ = n[V h] and the bound on
the density that

‖(V h)′′‖m = ‖n[V h]‖m ≤ C, ∀h ∈ (0, h0]

We obtain that (V h)h∈(0,h0] is bounded in BV 2
0 (0, L) and (4.1) allows to con-

clude. �

The density (n[V h])h∈(0,h0] being bounded in Mb(0, L), it is relatively
compact in the weak* topology. Therefore, we deduce from Proposition 4.1 that
for any 0 < α < 1, it is possible to extract from any infinite set S ⊂ (0, h0], which
has 0 as an accumulation point, a countable subset D such that 0 ∈ D and:

(4.2) lim
h→0
h∈D

(n[V h] − µ,ϕ) = 0, ∀ϕ ∈ C([0, L])

(4.3) lim
h→0
h∈D

‖V h − V0‖0,α = 0,

for some µ ∈ Mb(0, L) and V0 ∈ C0,α(0, L). Here, ‖·‖0,α is the usual norm on the
Hölder space C0,α(0, L). Then we have the following result on the convergence
of the spectrum of Hh:

Lemma 4.2. Consider 0 < α < 1, D ⊂ (0, h0] s.t. 0 ∈ D, and V0 ∈
C0,α(0, L) verifying (4.3). If θ = V0(x0) and N1 is the greatest integer such that

eN1
+ θ < 0, then:

• θ ≥ 0 and N1 ≥ 1

• For i = 1, . . . , N1

lim
h→0
h∈D

εh
i = ei + θ

• For i ≥ N1 + 1
lim inf

h→0
h∈D

εh
i ≥ 0
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The proof of this lemma is similar to the proof of Lemma 2.1 where
the nonlinearity have to be considered as it is done in [15] and [6] in the two
dimensional case.

P r o o f. The asymptotics of the εh
i is given by the comparison with the

Hamiltonian:

H̃h
θ = −h2 d2

dx2
+ Uh + θ, D(H̃h

θ ) = H2(R)

The operator H̃h
θ is unitary equivalent to Hθ defined by:

Hθ = − d2

dx2
+ U + θ, D(Hθ) = H2(R)

and therefore:
σ(H̃h

θ ) = {eθ
1, . . . , e

θ
N} ∪ [θ,+∞[

where eθ
i := ei + θ. We note that the normalized eigenvectors of H̃h

θ are the φ̃h
i

introduced in the proof of Lemma 2.1.
The W 1,∞ bound obtained in Proposition 4.1 implies that there exists a constant
C > 0 such that ∀h ∈ (0, h0]:

(4.4) |V h(x) − V h(y)| ≤ C|x − y|, ∀x, y ∈ Ω

and the condition (4.3) gives:

(4.5) lim
h→0
h∈D

|V h(x0) − θ| = 0

The previous equations are important in our nonlinear framework. Indeed, they
asymptotically enable to consider V h as a constant on a domain outside which
the modes of interest are exponentially decaying.
Note that θ ≥ 0 is a direct consequence of (3.1) and (4.5).
• Set ε ∈ (−‖U‖L∞ , 0) and define:

(4.6) Nh = #(σ(Hh) ∩ (−∞, ε])

We introduce the family: vh
i = χΨh

i ∈ D(H̃h
θ ), for i = 1, . . . , Nh, where χ ∈

C∞
0 (R) is s.t. χ = 1 on B

(

x0,
R

2

)

and χ = 0 on R\B(x0, R) for a radius R > 0

verifying B(x0, R) ⊂ Ω.
As seen in the proof of Lemma 2.1, the exponential decay (B.4) for Ψh

i implies
that it is enough to estimate (H̃h

θ − εh
i )vh

i to get

(4.7) d(εh
i , σ(H̃h

θ ))1i≤Nh −→
h→0, h∈D

0
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Now we have

(H̃h
θ − εh

i )vh
i = −h2χ′′Ψh

i − 2h2χ′(Ψh
i )′ − χ(V h − θ)Ψh

i

The function χ being regular with derivatives supported where the eigenfunction
is exponentially decaying, we have:

‖h2χ′′Ψh
i + 2h2χ′(Ψh

i )′‖L2(R) ≤ Ce−
γ
h

for C, γ > 0. Next, we define Rh = h ln 1
h and we suppose that h0 is small enough

so that B(x0, R
h) ⊂ Ω. Proposition 4.1 implies that the potential V h is bounded

in L∞(Ω), therefore, the application of the estimate (B.4) leads to:

∥

∥

∥χ(V h − θ)Ψh
i

∥

∥

∥

2

L2(R)

≤ ‖χ‖2
L∞(R)

(

∫

B(x0,Rh)
|(V h − θ)Ψh

i |2dx +

∫

Ω\B(x0,Rh)
|(V h − θ)Ψh

i |2dx

)

≤ C

(

‖V h − θ‖2
L∞(B(x0,Rh)) +

∫

Ω
|e

c0|x−x0|
h Ψh

i |2dx e−2c0
Rh

h

)

≤ C||V h − θ||2L∞(B(x0,Rh)) + O(e−2c0 ln 1

h )

On the other hand, we deduce from equations (4.4) and (4.5) that ∀x ∈ B(x0, R
h)

|V h(x) − θ| ≤ |V h(x) − V h(x0)| + |V h(x0) − θ| ≤ Ch ln
1

h
+ o(1)

when h → 0, h ∈ D. Here, the asymptotics o(1) doesn’t depend on x and
therefore

lim
h→0
h∈D

∥

∥

∥χ(V h − θ)Ψh
i

∥

∥

∥

L2(R)
1i≤Nh = 0.

We remark then that a function α(h) independant of i can be found such that
α(h) → 0 when h → 0 and

(4.8)
∥

∥

∥(H̃h
θ − εh

i )vh
i

∥

∥

∥

L2(R)
1i≤Nh ≤ α(h), ∀h ∈ D.

and (4.7) follows.
According to Lemma 3.3, we have εh

1 < εS , therefore the application of (4.7) with
ε = εS implies eθ

1 < 0 and N1 ≥ 1. This provides the first point of the Lemma.
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• Consider the family uh
i ∈ D(Hh) given by (2.7). Then, for i = 1, . . . , N1, we

have:
(Hh − eθ

i )u
h
i = −h2χ′′φ̃h

i − 2h2χ′(φ̃h
i )′ + χ(V h − θ)φ̃h

i

Using the exponential decay estimate (2.8) for φ̃h
i , the same computations as in

the previous point can be performed to obtain

(4.9) d(eθ
i , σ(Hh)) −→

h→0, h∈D
0

In what follows, we set ε ∈ (eθ
N1

, 0) and Nh the corresponding integer
given by relation (4.6).
From Lemma 2.1, we have Nh = O(1). Then, taking into account the results
(4.7) and (4.9) above, we can already deduce that the following statement holds:
for all δ > 0 small, ∃h0 s.t. ∀h ∈ D ∩ (0, h0] we have, even if the numerotation of
the eigenvalues has to be changed,

(4.10) εh
k,1, . . . , ε

h
k,Mk

∈ [eθ
k − δ, eθ

k + δ] for k = 1, . . . , N1

where Mk ≥ 1 is an integer depending on h such that
N1
∑

k=1

Mk = Nh. This implies

Nh ≥ N1 and if we obtain Nh ≤ N1, ∀h ∈ D∩(0, h0], the proof will be completed.
• Consider I = [−‖U‖L∞ , ε] and a > 0 small enough so that

σ(H̃h
θ ) ∩ ((I + B(0, 2a))\I) = ∅.

Let E be the vector space spanned by vh
1 , . . . , vh

Nh and F the spectral subspace

associated to σ(H̃h
θ ) ∩ I. From the estimate (B.4), the matrix

M =
(

(vh
i , vh

j )L2(R)

)

1≤i,j≤Nh
verifies

M = I + O(e−
γ
h )

when h → 0 and the vh
i are linearly independant. Then, equation (4.8) and

Proposition 2.5 in [9] give

d(E,F ) ≤
(

Nh

λmin

)

1

2 α(h)

a
, ∀h ∈ D

where λmin is the smallest eigenvalue of M . As we already noticed, Nh = O(1)
and therefore:

d(E,F ) ≤ Cα(h) ≤ 1

2
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for all h ∈ D ∩ (0, h0] with h0 small enough. Then, Lemma 1.3 in [9] gives
Nh ≤ N1. �

In what follows, we give, for a set D verifying (4.2) and (4.3), the limit
problem when h → 0. Then the unicity of the limit allows to determine the
asymptotics of the solution of (1.4)–(1.7) when h → 0.

Proposition 4.3. Consider 0 < α < 1, D ⊂ (0, h0] s.t. 0 ∈ D, µ ∈
Mb(0, L) and V0 ∈ C0,α(0, L) verifying (4.2) and (4.3). Then, we have

(4.11) µ =
∑

i≥1

f(ei + V0(x0))δx0

and the potential V0 is solution of the problem

(4.12)















− d2

dx2
V0 = µ, (0, L)

V0(0) = V0(L) = 0

P r o o f. Set θ = V0(x0) and take ε ∈ (eN1
+ θ, 0) where N1 is the integer

defined in Lemma 4.2. Then, from Lemma 4.2, we have for h0 small enough:

#(σ(Hh) ∩ (−∞, ε]) = N1, ∀h ∈ D ∩ (0, h0]

and the density can be written as follows:

N1
∑

i=1

f(εh
i )|Ψh

i |2

where εh
i ≤ ε. Using the normalization (1.8) and the exponential decay estimates,

we get that |Ψh
i |2dx is of mass 1 and concentrates around x0. It implies that for

i = 1, . . . , N1

(4.13) |Ψh
i |2dx ⇀

h→0, h∈D
δx0

for the weak* topology on the space of bounded mesures on (0, L). Indeed, for
i = 1, . . . , N1 we can apply the estimate (B.4) to write
∣

∣

∣

∣

∫ L

0

∣

∣

∣
Ψh

i

∣

∣

∣

2
ϕ dx

∣

∣

∣

∣

≤
∫

supp ϕ
|ϕ| e−2c0|x−x0|/h

∣

∣

∣
ec0|x−x0|/hΨh

i

∣

∣

∣

2
dx

≤ ‖ϕ‖L∞

∥

∥

∥
ec0|x−x0|/hΨh

i

∥

∥

∥

2

L2(0,L)
sup

x∈supp ϕ
e−2c0|x−x0|/h ≤ C ‖ϕ‖L∞

sup
x∈supp ϕ

e−2c0|x−x0|/h
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for any ϕ ∈ L∞(0, L) and ∀h ∈ D ∩ (0, h0]. It implies that, when suppϕ is a
compact set in (0, L)\ {x0}, there exists cϕ > 0 such that

∣

∣

∣

∣

∫ L

0

∣

∣

∣Ψh
i

∣

∣

∣

2
ϕ dx

∣

∣

∣

∣

≤ C ‖ϕ‖L∞ e−cϕ/h, ∀h ∈ D ∩ (0, h0]

By taking the limit as h → 0, we get

lim
h→0
h∈D

∣

∣

∣

∣

∫ L

0

∣

∣

∣
Ψh

i

∣

∣

∣

2
ϕ dx

∣

∣

∣

∣

= 0

for all continuous function ϕ ∈ C([0, L]) with suppϕ ⊂ (0, L) \ {x0}.
We recall that Lemma 4.2 also gives for i = 1, . . . , N1:

lim
h→0
h∈D

εh
i = ei + θ

Therefore, from the unicity of the limit (4.2), we get the result (4.11) using the
convergence (4.13), the continuity of f and the convention (2.2).
On the other hand, the convergence (4.2), (4.3) is valid in D′(0, L):

lim
h→0
h∈D

(

n[V h] − µ,ϕ
)

= 0, lim
h→0
h∈D

(

V h − V0, ϕ
)

= 0, ∀ϕ ∈ C∞
0 (0, L)

From the Poisson equation − d2

dx2
V h = n[V h], ∀h ∈ (0, h0] and the continuity of

the derivative on D′(0, L), we get

− d2

dx2
V0 = µ, D′(0, L)

As a consequence of (4.3), the potential V h tends to V0 strongly in C0,α(0, L)
and the boundary conditions appearing in the problem (4.12) follow from

V0(x) = lim
h→0
h∈D

V h(x)

for x = 0 and x = L. �

We conclude this section giving the proof of Theorem 1.1.
P r o o f o f T h e o r em 1.1. First, we recall that the W 1,∞(0, L) bound

for the potential was obtained in Proposition 4.1.
Next, let α be a constant in (0, 1) and consider D ⊂ (0, h0] s.t. 0 ∈ D, µ ∈
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Mb(0, L) and V0 ∈ C0,α(0, L) verifying (4.2) and (4.3). As a consequence of
Proposition 4.3, the potential V0 verifies the problem (4.11) (4.12), and it can
be computed explicitly as a function of θ := V0(x0) by solving the following
transmission problem:

{

−(V0)
′′ = 0, (0, x0) ∪ (x0, L)

V0(0) = V0(L) = 0

with the jump conditions:















V0(x
−
0 ) = V0(x

+
0 )

V ′
0(x

+
0 ) − V ′

0(x−
0 ) = −





∑

i≥1

f(ei + θ)





The formula (1.11) for V0 follows. Then, equation (1.11) considered at x = x0

implies that the value θ of the potential V0 at x0, is solution of:

(4.14) θ − x0

(

1 − x0

L

)

∑

i≥1

f(ei + θ) = 0

According to the first point in Lemma 4.2, we have V0(x0) ≥ 0 and we are
interested in non negative solutions of (4.14). If we call G(θ) the l.h.s. of
this equation, we remark that G is a continuous, strictly increasing function
on [0,+∞) and such that lim

θ→+∞
G(θ) = +∞. Therefore, it defines a bijection

from [0,+∞) to [G(0),+∞). We have G(0) = −x0

(

1 − x0

L

)

∑

i≥1

f(ei) < 0 and

G(εS − e1) = εS − e1 > 0 by the assumption (1.10). We deduce that there exists
a unique value θ ≥ 0 solving (4.14), moreover, it verifies θ ∈ (0, εS − e1).
It follows that the function V0 (resp. µ) verifying (4.3) (resp. (4.2)) is given in
an unique way by (1.11) (resp. (1.12)) where θ is the positive solution of (4.14).
This gives the convergence results anounced in our theorem.
Indeed, suppose that the convergence doesn’t occure. Then, there exists a func-
tion ϕ0 ∈ C([0, L]), a constant ε > 0 and a set S ⊂ (0, h0] s.t. 0 ∈ S verifying:

(4.15) ||V h − V0||0,α + |(n[V h] − µ,ϕ0)| ≥ ε, ∀h ∈ S

By applying Proposition 4.1, we can extract a set D ⊂ S s.t. 0 ∈ D and (4.2),
(4.3) are verified for some functions µ̃ ∈ Mb(0, L) and Ṽ0 ∈ C0,α(0, L). Then,
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according to the previous uniqueness result µ̃ = µ and Ṽ0 = V0 and we get a
contradiction comparing (4.2), (4.3) with (4.15). �

Remark 4.4. In the proof of Theorem 1.1 above, we have shown that
the solution θ of (4.14) is in the interval (0, εS − e1). The condition θ ≥ 0 implies
that the sum

∑

i≥1
f(ei+θ) is finite. Although the bound θ < εS −e1 has no impact

on the proof, it gives that
∑

i≥1
f(ei +θ) > 0, and therefore, that the limit potential

V0 and density µ are not trivial. We deduce that Theorem 1.1 provides a non
trivial approximation of the solution V h of the problem (1.4)–(1.7) in the semi-
classical limit h → 0. As noted in the introduction, it is not the case anymore in
dimension d = 2 and 3 as it appears in [6].
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A. Agmon distance.We will mainly follow [10] and present an addi-
tional result in the framework of our problem. Let f be a real-valued function,
continuous on a bounded connected set Ω ⊂ R.
For given x, y ∈ Ω, the Agmon distance related to f is:

d(x, y) =

∫ 1

0
(f(γ(s)))

1

2

+ |γ′(s)|ds

where γ is the segment linking x and y.
We remark that this distance is degenerated: it may happen that d(x, y) = 0 with
x 6= y. However the Agmon distance verifies the following properties: ∀x, y, z ∈ Ω

d(x, y) = d(y, x), d(x, z) ≤ d(x, y) + d(y, z)

For y ∈ Ω fixed, the fonction x 7→ d(x, y) is Lipschitzian continuous. Then, it
is differentiable almost everywhere by Rademacher’s Theorem and everywhere
x 7→ d(x, y) is differentiable, we have:

|∇xd(x, y)| ≤ (f(x))
1

2

+
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For a set ω ⊂ Ω, we define:

d(x, ω) = inf
y∈ω

d(x, y)

Then, d(x, ω) has the same regularity as x 7→ d(x, y) and

(A.1) |∇d(x, ω)| ≤ (f(x))
1

2

+ a.e. Ω

In our case, we will use the Agmon distance associated to the potential Uh − ε

for a constant ε < 0 which corresponds to taking f = Uh − ε.
In the exponential decay estimates, it will be useful to replace the Agmon distance
with the Euclidian distance. To do this, the main point is to remark that for f = 1
the Agmon distance, d(x, y), corresponds to the Euclidian one, |x − y|.

Lemma A.1. Let ωh be the support of the well Uh, then ∃c0, c1 > 0 such

that:

(A.2) d(x, ωh) ≥ c0|x − x0| − c1h, ∀x ∈ Ω

P r o o f. Let x ∈ Ω \ ωh, y ∈ ωh and consider the segment γ : [0, 1] → Ω
linking x and y. Then, there exists a unique value s0 ∈ (0, 1] s.t. γ(s0) ∈ ∂ωh.
Defining y0 = γ(s0), we have:

∫ 1

0
(Uh(γ(s)) − ε)

1

2

+|γ′(s)|ds ≥
∫ s0

0
(Uh(γ(s)) − ε)

1

2

+|γ′(s)|ds

= |ε| 12
∫ s0

0
|γ′(s)|ds = |ε| 12 |y0 − x|

Recalling that ωh ⊂ B(x0, h), it follows:

d(x, y) ≥ |ε| 12 (|x − x0| − h) 2

B. Exponential decay of eigenfunctions. The exponential decay
estimates, also called Agmon estimates, form a standard technical tool in evaluat-
ing the rate of decay of eigenfunctions far from the interaction support. In what
follows, we apply this technique to the case of the Schrödinger Poisson system
with a squeezing quantum well; in particular we give some useful decay estimates
for those stationary states related to the energies below some negative energy.



34 A. Faraj

Lemma B.1 (Agmon estimates). Let εh be a spectral point of the Hamil-

tonian

Hh = −h2∆ + Uh + V h

placed below some negative energy: εh ≤ ε where ε ∈ (−‖U‖L∞ , 0). The related

normalized eigenvector Ψh admits the estimate

(B.1)
∥

∥

∥
h∇

(

eφ/hΨh
)∥

∥

∥

L2(Ω)
+
∥

∥

∥
eφ/hΨh

∥

∥

∥

L2(Ω)
≤ C,

where C is a suitable positive constant, φ is the weight function

φ(x) = (1 − δ) d(x, ωh), x ∈ Ω

δ is a positive parameter smaller than 1, d(x, y) is the Agmon distance introduced

in Appendix A, while ωh is the support of Uh.

P r o o f. We use the relation (see for instance Theorem 1.1 in [9])

h2

∫

Ω
|∇(e

φ
h u)|2dx +

∫

Ω
(V − |∇φ|2)e2φ

h u2dx =

∫

Ω
e2φ

h

(

−h2∆ + V
)

u · udx

Setting u = Ψh, φ = (1 − δ) d(x, ωh) and V = Uh + V h − εh, we get

h2

∫

Ω
|∇(e

φ
h Ψh)|2dx +

∫

Ω
(Uh + V h − εh − |∇φ|2)e2φ

h (Ψh)2dx = 0

Next we follow the same line as in Proposition 3.3.1 of [8] and introduce the set

Ω+
δ =

{

x ∈ Ω
∣

∣

∣Uh − ε ≥ δ
}

,

Ω−
δ =

{

x ∈ Ω
∣

∣

∣
Uh − ε < δ

}

,

where δ is a positive parameter such that δ < min(1, |ε|). As it appears in (3.1),
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we have V h ≥ 0 and therefore

h2

∫

Ω
|∇(e

φ
h Ψh)|2dx +

∫

Ω+

δ

(Uh + V h − εh − |∇φ|2)e2φ
h (Ψh)2dx

=

∫

Ω−
δ

(|∇φ|2 − (Uh + V h − εh))e2φ
h (Ψh)2dx

≤
∫

Ω−
δ

(|∇φ|2 − (Uh − ε))e2φ
h (Ψh)2dx

≤
∫

Ω−
δ

((Uh − ε)+ − (Uh − ε))e2φ
h (Ψh)2dx

=

∫

Ω−
δ

(Uh − ε)−e2φ
h (Ψh)2dx ≤ ||U ||L∞

∫

Ω−
δ

e2φ
h (Ψh)2dx(B.2)

where we used εh ≤ ε and the inequality

(B.3) |∇φ|2 ≤ (1 − δ)2(Uh − ε)+, p.p.Ω

which follows from (A.1).
On Ω+

δ , we have (Uh − ε)+ = Uh − ε. Using (B.3) again, we obtain that ∀x ∈ Ω+
δ

Uh + V h − εh − |∇φ|2 ≥ Uh − ε − |∇φ|2 ≥ Uh − ε − (1 − δ)2(Uh − ε)

= δ(2 − δ)(Uh − ε) ≥ δ2

Injecting the result above in (B.2), we get:

||h∇(e
φ
h Ψh)||2L2(Ω) + δ2

∫

Ω+

δ

e2φ
h (Ψh)2dx ≤ ||U ||L∞

∫

Ω−
δ

e2φ
h (Ψh)2dx

The domain Ω−
δ is inside the support of Uh; therefore, in this region, we have

φ = 0 and taking into account the normalization condition ||Ψh||L2(Ω) = 1, it
follows:

‖h∇(e
φ
h Ψh)‖2

L2(Ω)+δ2

∫

Ω
e2φ

h (Ψh)2dx ≤ (‖U‖L∞+δ2)

∫

Ω−
δ

e2φ
h (Ψh)2dx ≤ ‖U‖L∞+δ2

This gives the estimate (B.1). �

Corollary B.2. Under the assumptions of Lemma B.1, the following

estimate holds

(B.4)
∥

∥

∥hec0
|x−x0|

h ∇Ψh
∥

∥

∥

L2(Ω)
+
∥

∥

∥ec0
|x−x0|

h Ψh
∥

∥

∥

L2(Ω)
≤ C,
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for suitable positive constants c0 and C.

P r o o f. As a direct consequence of the estimate (B.1) and the inequality

(A.2), it follows that the L2-norm of the function ec0
|x−x0|

h Ψh is uniformly bounded
w.r.t. h.

For what concerns the first term in (B.4), we notice that

ec0
|x−x0|

h
−c1

∣

∣

∣
∇Ψh

∣

∣

∣
≤
∣

∣

∣
e

φ
h ∇Ψh

∣

∣

∣
=
∣

∣

∣
∇
(

e
φ
h Ψh

)

−
(

∇e
φ
h

)

Ψh
∣

∣

∣
.

The term ∇e
φ
h at the r.h.s. is pointwise bounded by

∣

∣

∣
∇e

φ
h

∣

∣

∣
≤ 1

h

(

Uh − ε
) 1

2

+
e

φ
h ,

as it comes from (A.1). Then, using once more the relation (B.1), we obtain

e−c1
∥

∥

∥hec0
|x−x0|

h ∇Ψh
∥

∥

∥

L2(Ω)

≤
∥

∥

∥
h∇
(

e
φ
h Ψh

)∥

∥

∥

L2(Ω)
+ sup

x∈Ω

(

Uh − ε
) 1

2

+

∥

∥

∥
e

φ
h Ψh

∥

∥

∥

L2(Ω)
≤ C. 2
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