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Abstract. Let M
f
→֒ CPn be an algebraic manifold of complex dimension

d and let σf be its second fundamental form. In this paper we address the
following conjecture, which is the analogue of the one stated by M. Gromov
for smooth immersions: if ‖σf‖

2

L2 < 2 d vol(CPd) then M is totally geodesic
and equality holds iff f is congruent to the standard embedding of the complex
quadric Qd into CPn. We prove the conjecture in the following three cases:
(i) d = 1; (ii) M is a complete intersection; (iii) the scalar curvature of M
is constant.

1. Introduction and statement of main result. In [5] M. Gro-
mov conjectures that every smooth immersion f : M → CHn/G of a compact
manifold M of dimension d into a compact quotient of the complex hyperbolic
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space CHn/G, whose second fundamental form σf is “small”, is homotopic to a
totally geodesic submanifold.

In [2] G. Besson, G. Courtois and S. Gallot give an answer to this problem
in terms of the L2 and L2d norms of the second fundamental form σf , when the
immersion is a holomorphic map:

Theorem 1. Let f : M → CHn/G be a holomorphic immersion of a
compact Kähler manifold M of complex dimension d. If ||σf ||

2
L2 and ||σf ||

2
L2d are

smaller than a constant depending only on n, then M is totally geodesic.

It is natural to ask what happens if the ambient space is replaced by
its compact dual, namely the complex projective space CPn endowed with the

Fubini–Study metric gFS of holomorphic sectional curvature 1. So, let M
f
→֒

CPn be a complex d-dimensional algebraic manifold (f is a holomorphic injective
immersion) and denote by σf the second fundamental form of f , by ‖σf‖

2 its
length and by

‖σf‖
2
L2 =

∫

M

‖σf‖
2 ωd

d!

its L2-norm, where ω is the Kähler form associated to the induced metric g =
f∗gFS. Observe that

‖σf‖
2 =

2d
∑

j,k=1

gFS (σf (ej , ek), σf (ej , ek)) ,

where {e1, . . . , ed, Je1, . . . , Jed} is an orthonormal basis for TxM (here J denotes
the complex structure on M). If {e1, . . . , ed, Je1, . . . , Jed} is a basis which diag-
onalizes the quadratic form

σ̃f (X,Y ) =

2d
∑

j=1

gFS (σf (ej ,X), σf (ej , Y )) , X, Y ∈ TxM,

and η2
1 , . . . , η

2
2d are its eigenvalues, then we can write

‖σf‖
2 =

2d
∑

j=1

η2
j .

Observe that by σf (X,JY ) = σf (JX, Y ) = Jσf (X,Y ) for all X,Y ∈ TxM it
follows that η2

j = η2
j+d for j = 1, . . . , d.
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In this paper we address the problem of finding the optimal constant c(d)
(depending only on d) such that if ‖σf‖

2
L2 < c(d) then M is totally geodesic.

Similar questions for ‖σf‖
2 have been addressed and studied by several mathe-

maticians (cfr. [3], [4], [7], [8], [9]). In particular, in the next section we recall
the result by J. Cheng [3] which proves a long standing conjecture posed by K.
Ogiue [7].

We believe in the validity of the following:

Conjecture. Let M
f
→֒ CPn be as above. If ‖σf‖

2
L2 < 2 d vol(CPd)

then M is totally geodesic and equality holds iff f is congruent to the standard
embedding of the complex quadric

Qd = {[Z0, . . . , Zd+1], Z
2
0 + · · · + Z2

d+1 = 0} ⊂ CPd+1 i
→֒ CPn,

where i is the natural inclusion.

Remark 2. Recall that M
f
→֒ CPn is totally geodesic, i.e. σf ≡ 0, if

and only if M is biholomorphic to CPd and f = A ◦ i, where A ∈ Aut(CPn) and
i : CPd →֒ CPn is the natural inclusion, i.e. i([Z0, . . . , Zd]) = [Z0, . . . , Zd, 0, . . . , 0].
Furthermore, observe that for d = 1, Q1 = (CP1, 2gFS) and f is (congruent to)
the Veronese embedding

[Z0, Z1] 7→ [Z2
0 , Z0Z1, Z

2
1 , 0, . . . , 0].

Here is the main result of the present paper, showing the validity of our
conjecture for complex algebraic manifolds.

Theorem 3. Let M
f
→֒ CPn be an algebraic manifold of complex dimen-

sion d which satisfies one of the following conditions:

(i) d = 1;

(ii) M is a complete intersection;

(iii) the scalar curvature ρ of M is constant.

If
‖σf‖

2
L2 < 2 d vol(CPd)

then M is totally geodesic and, if equality holds, i.e. ‖σf‖
2
L2 = 2 d vol(CPd), then

f is congruent to the standard embedding of the complex quadric Qd.
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The paper contains two other sections. In the next one we summarize the
background material, while the last one is dedicated to the proof of Theorem 3.

2. Preliminaries. Let {e1, . . . , ed, Je1, . . . , Jed} be an orthonormal ba-
sis of TxM as in the previous section and let us denote Jej = ed+j , j = 1, . . . , d.
From the Gauss–Codazzi formula (see e.g. [6, Prop. 9.5, Ch. IX])

(1) Ricg(X,X) =
1

2
(d + 1)g(X,X) −

2d
∑

j=1

gFS (σf (ej ,X), σf (ej ,X)) ,

we obtain (cfr. [2])

(2) Ricg =
1

2

d
∑

j=1

(

d + 1 − 2η2
j

) (

e∗j ⊗ e∗j + (Jej)
∗ ⊗ (Jej)

∗
)

.

If ρ is the scalar curvature for M , namely the smooth function on M defined by

ρ =

2d
∑

j=1

Ricg(ej , ej),

then by (2) we get

(3) ρ = d(d + 1) − ‖σf‖
2.

This formula together with the inequality

∫

M

(

ρ − d2
)

(ρ − d(d + 1))
ωd

d!
≥ 0,

which is obtained by using algebro-geometric machinery, are the key ingredients
for the proof of the following result needed in the proof of Theorem 3:

Lemma 4 (J. Cheng [3]). Let M
f
→֒ CPn be as above. If ‖σf‖

2 < d
then M is totally geodesic and equality holds iff f is congruent to the standard
embedding of the complex quadric Qd.

The proof of Theorem 3 relies on the concept of degree deg(f) of M
f
→֒

CPn. Given a holomorphic immersion f : M → CPn, if dim(M) = d < n by
Sard’s Theorem there exists a point q /∈ f(M). Up to unitary transformation of
CPn we can suppose q to be the point of coordinates [1, 0, . . . , 0]. Consider the
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projection pn : CPn \ {q} → CPn−1, pn([Z0, . . . , Zn]) = [Z1, . . . , Zn] and define
the map F : M → CPd by F = p̃◦f , where p̃ = pd+1 ◦ · · · ◦pn. The degree deg(f)
of f is by definition the degree deg(F ) of the map F , which is the integer number
such that

(4) 〈F ∗α, [M ]〉 = degF 〈α, [CPd]〉,

where [α] ∈ H2d(CPd, R) and

〈α, [CPd]〉 =

∫

CPd

α, 〈F ∗α, [M ]〉 =

∫

M

F ∗α.

What we need about deg(f) is summarized in the following:

Lemma 5 (W. Wirtinger [10], M. Barros, A. Ros, [1]). The degree deg(f)
is a positive integer such that

(5) vol(M) = deg(f)vol(CPd),

where vol(M) =

∫

M

ωd

d!
and vol(CPd) = (4π)d/d!. Moreover, deg(f) = 1 iff M

is totally geodesic and deg(f) = 2 iff f is congruent to the standard embedding of
Qd.

Observe that (5) follows easily by the definition of deg(f) above. In fact,
if we denote by ωFS(n) (resp. ωFS(d)) the Fubini–Study metric on CPn (resp.
CPd), we have

〈f∗ωd
FS(n), [M ]〉 =

∫

M

ωd = d! vol(M).

Since the map Ψ: CPn × [0, 1] → CPn,

Ψ([Z0, . . . , Zn], t) = [tZ0, . . . , tZn−d−1, Zn−d, . . . , Zn]

is a homotopy between the identity map of CPd, and i ◦ p̃, where i : CPd → CPn

is the canonical inclusion (cfr. Remark 2), we get

d! vol(M) = 〈f∗ωd
FS(n), [M ]〉 = 〈(i ◦ F )∗ωd

FS(n), [M ]〉 = 〈F ∗(i∗ωd
FS(n)), [M ]〉

= 〈F ∗(ωd
FS(d)), [M ]〉 = deg(F )〈ωd

FS(d), [CPd]〉

= deg(f) d! vol(CPd).

3. Proof of Theorem 3. Assume (i) holds. Then ρ = 2K, where K
is the Gaussian curvature of M . Hence Gauss-Bonnet theorem yields

∫

M

ρ
ωd

d!
= 4π χ(M),
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where χ(M) = 2 − 2γ denotes the Euler characteristic of M .
By (3) we have

∫

M

ρ
ωd

d!
=

∫

M

(2 − ‖σf‖
2)

ωd

d!
= 2vol(M) − ‖σf‖

2
L2 ,

thus
‖σf‖

2
L2 = 2vol(M) − 4π χ(M).

If ‖σf‖
2
L2 < 8π, then 2vol(M) − 4π χ(M) < 8π. By (5) one gets

deg(f) < 1 +
χ(M)

2
= 2 − γ.

It follows by Lemma 5 that deg(f) = 1 and so γ = 0 and M is totally geodesic.
If ‖σf‖

2
L2 = 8π then deg(f) = 2, γ = 0 and again by Lemma 5 f is

congruent to the Veronese embedding (cfr. Remark 2).

Assume (ii) holds. Let a1, . . . , ap, p = n − d, be the degrees of the
hypersurfaces defining M . Then, by [7, Th. 7.1], we have

∫

M

ρ
ωd

d!
= d



d + p + 1 −

p
∑

j=1

aj









p
∏

j=1

aj



 vol(CPd),

and, since deg(f) =
∏p

j=1 aj , by (3) and (5) we get

‖σf‖
2
L2 = d





p
∑

j=1

aj − p









p
∏

j=1

aj



 vol(CPd).

If ‖σf‖
2
L2 < 2 d vol(CPd), we have





p
∑

j=1

aj − p









p
∏

j=1

aj



 < 2,

and since each aj ’s is an integer greater than or equals to 1, we get aj = 1 for all
j = 1, . . . , p. So deg(f) = 1 and by Lemma 5 M is totally geodesic.

If ‖σf‖
2
L2 = 2 d vol(CPd) we get





p
∑

j=1

aj − p









p
∏

j=1

aj



 = 2.
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Thus deg(f) =
∏p

j=1 aj = 2 and the conclusion follows once again by the last
part of Lemma 5.

Finally, assume (iii) holds which, by (3), implies ‖σf‖
2 is constant. If

‖σf‖
2 < d (resp. ‖σf‖

2 = d) then f is totally geodesic (resp. congruent to the
quadric) by Lemma 4. If ‖σf‖

2 > d then

d vol(M) < ‖σf‖
2
L2 < 2 d vol(CPd)

which, by (5), implies deg(f) = 1, i.e. M is totally geodesic. �
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