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ABSTRACT. Let M i> CP™ be an algebraic manifold of complex dimension
d and let of be its second fundamental form. In this paper we address the
following conjecture, which is the analogue of the one stated by M. Gromov
for smooth immersions: if ||o¢||Z. < 2dvol(CP?) then M is totally geodesic
and equality holds iff f is congruent to the standard embedding of the complex
quadric Qg into CP™. We prove the conjecture in the following three cases:
(i) d = 1; (ii) M is a complete intersection; (iii) the scalar curvature of M
is constant.

1. Introduction and statement of main result. In [5] M. Gro-
mov conjectures that every smooth immersion f: M — CH"/G of a compact
manifold M of dimension d into a compact quotient of the complex hyperbolic
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space CH" /G, whose second fundamental form o is “small”, is homotopic to a
totally geodesic submanifold.

In [2] G. Besson, G. Courtois and S. Gallot give an answer to this problem
in terms of the L? and L?? norms of the second fundamental form oy, when the
immersion is a holomorphic map:

Theorem 1. Let f: M — CH"/G be a holomorphic immersion of a
compact Kdihler manifold M of complex dimension d. If ||o||?, and ||of|[? ., are
smaller than a constant depending only on n, then M is totally geodesic.

It is natural to ask what happens if the ambient space is replaced by
its compact dual, namely the complex projective space CP™ endowed with the

Fubini—Study metric grg of holomorphic sectional curvature 1. So, let M i>
CP™ be a complex d-dimensional algebraic manifold (f is a holomorphic injective
immersion) and denote by o the second fundamental form of f, by ||oy|? its

length and by
2 pw*
loslts = [ o P

its L2-norm, where w is the Kihler form associated to the induced metric g =
f*grs. Observe that

2d
HUfH2 = Z grs (Jf(ejv ek), Jf(ejv ex))
jk=1
where {e1,...,eq,Je1,...,Jeg} is an orthonormal basis for T, M (here J denotes
the complex structure on M). If {eq,...,eq,Je1,...,Jeq} is a basis which diag-

onalizes the quadratic form
2d
GHX,Y) = grs(os(ej, X),0¢(¢;,Y)), X,Y € T, M,
j=1
and 7%, ... ,n%d are its eigenvalues, then we can write

2d
logll? =" .
j=1

Observe that by o¢(X,JY) = 0¢(JX,Y) = Jos(X,Y) for all X,Y € T, M it
follows that 77j2‘ = 77]2‘+d forj=1,...,d.
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In this paper we address the problem of finding the optimal constant ¢(d)
(depending only on d) such that if |[oy[|?, < c(d) then M is totally geodesic.
Similar questions for ||o¢||* have been addressed and studied by several mathe-
maticians (cfr. [3], [4], [7], [8], [9]). In particular, in the next section we recall
the result by J. Cheng [3] which proves a long standing conjecture posed by K.
Ogiue [7].

We believe in the validity of the following:

Conjecture. Let M L CP" be as above. If |lofl|?, < 2dvol(CP%)
then M 1is totally geodesic and equality holds iff f is congruent to the standard
embedding of the complex quadric

Qi={[Z0,.- s Zas1), ZE + -+ Z3,, = 0} C CP1 5 CP,

where 1 1s the natural inclusion.

Remark 2. Recall that M i» CP" is totally geodesic, i.e. oy = 0, if
and only if M is biholomorphic to CP? and f = A o, where A € Aut(CP") and
i: CP% < CP™ is the natural inclusion, i.e. i([Zy, ..., Z4]) = [Zo, ..., Z4,0,...,0].
Furthermore, observe that for d = 1, Q1 = (CP!,2gpg) and f is (congruent to)
the Veronese embedding

(Z0, Z1) v |22, Z0 21, Z%,0, ... ,0].

Here is the main result of the present paper, showing the validity of our
conjecture for complex algebraic manifolds.

Theorem 3. Let M i» CP™ be an algebraic manifold of complex dimen-
sion d which satisfies one of the following conditions:

(i) d=1;
(ii) M is a complete intersection;

(ili) the scalar curvature p of M is constant.

If
lof||?2 < 2dvol(CPY)

then M is totally geodesic and, if equality holds, i.e. ||o¢||?, = 2dvol(CPY), then
f is congruent to the standard embedding of the complex quadric Qg.
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The paper contains two other sections. In the next one we summarize the
background material, while the last one is dedicated to the proof of Theorem 3.

2. Preliminaries. Let {ej,...,eq, Jei,...,Jeg} be an orthonormal ba-
sis of T, M as in the previous section and let us denote Je; = €444, j = 1,...,d.
From the Gauss—Codazzi formula (see e.g. [6, Prop. 9.5, Ch. IX])

2d
(1) Riey(X, X) = 2(d+1)g(X, X) = 3" grs (o(es. X),07(e;, X)) .
j=1

we obtain (cfr. [2])

d
. 1 * * * *
(2) Ricy = 5 E (d+1—2nj2) (e @€+ (Jej) @ (Jey)*).
i=1

If p is the scalar curvature for M, namely the smooth function on M defined by

2d
p=> Ricy(ej,e)),
j=1
then by (2) we get
(3) p=dd+1)—of]*.

This formula together with the inequality

w?

[ o= (- d+ 1) % =0
. |

which is obtained by using algebro-geometric machinery, are the key ingredients
for the proof of the following result needed in the proof of Theorem 3:

Lemma 4 (J. Cheng [3]). Let M L P be as above. If |log]|? < d
then M 1is totally geodesic and equality holds iff f is congruent to the standard
embedding of the complex quadric Qq.

The proof of Theorem 3 relies on the concept of degree deg(f) of M I,
CP™. Given a holomorphic immersion f: M — CP", if dim(M) = d < n by
Sard’s Theorem there exists a point ¢ ¢ f(M). Up to unitary transformation of
CP™ we can suppose ¢ to be the point of coordinates [1,0,...,0]. Consider the



A note on the L2-norm of the second fundamental form of. . . 71

projection p, : CP"\ {q} — CP" L, p,([Zo,...,2Zs]) = [Z1,...,Zy,] and define
the map F': M — CP? by F = po f, where p = pg10---0p,. The degree deg(f)
of f is by definition the degree deg(F') of the map F', which is the integer number
such that
(4) (F*a, [M]) = degF{a, [CP1]),
where [a] € H??(CP%,R) and
(a, [CPY]) = / a, (F*a, [M]) = / F*a.
CPd M

What we need about deg(f) is summarized in the following:

Lemma 5 (W. Wirtinger [10], M. Barros, A. Ros, [1]). The degree deg(f)
s a positive integer such that
(5) vol(M) = deg( f)vol(CP?),

d

where vol(M) = / u:i_‘ and vol(CP?) = (4m)¢/d!. Moreover, deg(f) = 1 iff M
M .

is totally geodesic and deg(f) = 2 iff f is congruent to the standard embedding of

Qa-

Observe that (5) follows easily by the definition of deg(f) above. In fact,
if we denote by wrg(n) (resp. wps(d)) the Fubini-Study metric on CP™ (resp.
CP?), we have

(Fwhso), M) = [ wt = divol(aa).
M
Since the map ¥: CP" x [0, 1] — CP™,
\Il([Z()? s 7Zn]7 t) = [tZ07 s 7th—d—17 Zn—d7 R Zn]

is a homotopy between the identity map of CP?, and i o p, where i: CP¢ — CP"
is the canonical inclusion (cfr. Remark 2), we get

divol(M) = (f*wig(n), [M]) = ((i o F)*whg(n), [M]) = (F*(i*whs(n)), [M])
= (F*(ws(d)), [M]) = deg(F)(whs(d), [CPY)
= deg(f) d! vol(CP?).

3. Proof of Theorem 3. Assume (i) holds. Then p = 2K, where K
is the Gaussian curvature of M. Hence Gauss-Bonnet theorem yields

d
w

/ py = Amx(M),
M .
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where x(M) = 2 — 27 denotes the Euler characteristic of M.
By (3) we have

wd d )
/ = / (2~ llogl1%) 25 = 2v0l(M) g3,
thus
los |72 = 2vol(M) — 4m x(M).
If [|of||2, < 8, then 2vol(M) — 4r x(M) < 8. By (5) one gets
X(M)
2

It follows by Lemma 5 that deg(f) =1 and so v = 0 and M is totally geodesic.
If [|of]|7, = 87 then deg(f) = 2, ¥ = 0 and again by Lemma 5 f is
congruent to the Veronese embedding (cfr. Remark 2).

deg(f) <1+ =2-

Assume (ii) holds. Let ai,...,a,, p = n — d, be the degrees of the
hypersurfaces defining M. Then, by [7, Th. 7.1], we have

d P
w
/ Par =d d+p+1—2a] Haj vol(CPY),

j=1 j=1

and, since deg(f) = [[}_; a;, by (3) and (5) we get

p p
ol =d Zaj —p H vol(CPY).

If ||los||2, < 2dvol(CP?), we have

p P
Z aj —p H aj | <2,
Jj=1 J=1

and since each a;’s is an integer greater than or equals to 1, we get a; = 1 for all
j=1,...,p. Sodeg(f) =1 and by Lemma 5 M is totally geodesic.
If ||los||2, = 2dvol(CP?) we get

p p
doai—p| (Ile] =2
= i
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Thus deg(f) = H§:1 a; = 2 and the conclusion follows once again by the last
part of Lemma, 5.

Finally, assume (iii) holds which, by (3), implies |lof|* is constant. If
|ofl|? < d (resp. |log||* = d) then f is totally geodesic (resp. congruent to the
quadric) by Lemma 4. If ||o¢||* > d then

dvol(M) < ||of|?: < 2dvol(CP?)
which, by (5), implies deg(f) = 1, i.e. M is totally geodesic. O
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