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ABSTRACT. Many research articles have recently appeared exploring exis-
tence or non existence of warped product submanifolds in known spaces (cf.
[2, 5, 8]). The objective of the present paper is to study the existence or
non-existence of contact CR-warped products in the setting of LP-Sasakian
manifolds.

1. Introduction. In 1989, Matsumoto [6] introduced the idea of LP-
Sasakian manifolds. Then Mihai and Rosca [7] introduced the same notion and
obtained several results in this manifold. U.C. De and K. Arslan obtained some
curvature conditions on LP-Sasakian manifolds [4].
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In [1] the notion of warped product manifolds was introduced by Bishop
and O’Neill in 1969. These manifolds appear in differential geometric studies in a
natural way and these are generalizations of Riemannian product manifolds. Re-
cently, B.Y. Chen has introduced the notion of warped product CR-submanifolds
in Kaehler manifolds and showed that there exist no proper warped product CR-
submanifolds in the form M = N, x yNr in a Kaehler manifold. He considered
only the warped product of the type M = Ny x ;N and called it a CR-warped
product submanifold [2, 3]. Later on, Hasegawa and Mihai proved that warped
product CR-submanifolds N x ;N7 in Sasakian manifolds are trivial, i.e., sim-
ply contact CR-product submanifolds, where Ny and N, are ¢—invariant and
anti-invariant submanifolds of Sasakian manifold, respectively [5].

In the present paper, we prove that the warped product in the form
M = Ni x yN;3 does not exist if the vector field § is tangent to N, where Ny
and No are any real submanifolds of an LP-Sasakian manifold M. Also, we
have shown that there exist no proper warped product CR-submanifold of the
type M = Np x N, when § is tangent to N7 and thus, we consider the warped
product submanifolds in the form M = N X y Ny, where Ny and N are invariant
and anti-invariant submanifolds of an LP-Sasakian manifold M, respectively.

2. Preliminaries. Let M be a (2n + 1)-dimensional Lorentzian almost
paracontact manifold [6] with the almost paracontact metric structure (¢,&, 1, g),
that is, ¢ is a (1,1) tensor field, £ is a contravariant vector field, 7 is a 1—form

and g is a Lorentzian metric with signature (—,+,+,--- ,+) on M, satisfying:
(2.1) ¢* = X +n(X)E, n(&) =-1, ¢¢=0, nop=0,

(2.2) 9(¢X,9Y) = g(X,Y) +n(X)n(Y), n(X)=g(X,¢)

(2.3) P(X,Y) =g(¢X,Y) = g(X,9Y) = (Y, X),

for all X,Y € TM, where ® is the fundamental two form, defined above.
A Lorentzian almost contact metric structure on M is called a Lorentzian
para-Sasakian structure if

(Vx9)Y = g(6X, ¢Y)E +n(Y)$* X,
(2.4)
vXé- = ¢X7
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for any vector fields X,Y on M, where V denotes the Levi-Civita connection with
respect to g. The manifold M in this case is called Lorentzian para-Sasakian (in
brief, LP-Sasakian) manifold.

Let M be a submanifold of a Lorentzian almost paracontact manifold M
with Lorentzian almost paracontact structure (¢,&,7,g). Let the induced metric
on M also be denoted by g. Then Gauss and Weingarten formulae are given by

(2.5) VxY =VxY +h(X,Y)

(2.6) VxN = —AnxX + V%N,

for any X, Y € TM and N € T+M, where TM is the Lie algebra of vector field
in M and T+M is the set of all vector fields normal to M. V= is the connection
in the normal bundle, h the second fundamental form and Ay is the Weingarten
endomorphism associated with N. It is easy to see that

For any X € T M, we write
(2.8) pX =PX + FX,

where PX is the tangential component and F'X is the normal component of ¢.X.
Similarly for N € T+M, we write

(2.9) ¢N =tN + fN,

where tN is the tangential component and fN is the normal component of ¢pIV.
The covariant derivatives of the tensor fields ¢, P and F' are defined as

(2.10) (Vx¢)Y =VxoY —¢VxY, VX, YeTM
(2.11) (VxP)Y =VxPY —PVyxY, VX)YeTM
(2.12) (VxF)Y =VxFY — FVxY, VY X,YeTM.

Moreover, for a submanifold M of an LP-Sasakian manifold M, we have

(2.13) (VxP)Y = Apy X +th(X,Y) + g(¢X, oY )€ + n(Y)¢2X,
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(2.14) (VxF)Y = fh(X,Y) — h(X, PY).

for all X,Y € TM.
For submanifolds tangent to the structure vector field £, there are different
classes of submanifolds. We mention the following.

(i) A submanifold M tangent to £ is called an invariant submanifold if F' is
identically zero, that is, X € TM for any X € T M. On the other hand
M is said to be an anti-invariant submanifold if P is identically zero, that
is, X € T+ M, for any X € TM.

(ii) A submanifold M tangent to & is called a contact CR-submanifold if it
admits an invariant distribution D whose orthogonal complementary dis-
tribution D+ is anti-invariant i.e., TM = D @ D+ @ (¢) with ¢(D,) C D,
and ¢(D}) C T;-M, for every x € M.

3. Warped and doubly warped product submanifolds. Let
(N1,91) and (N3, g2) be two semi-Riemannian manifolds and f, a positive dif-
ferentiable function on N;. The warped product of N7 and Ny is the manifold
N1 X fN2 = (Nl X Ng, g), where

(3.1) 9=+ f*g-
We recall the following general formula on a warped product [1].
(3.2) VxV =VyX = (XInf)V,

where X is tangent to N1 and V is tangent to Ns.
Let M = Ny x N3 be a warped product manifold, this means that Ny is
totally geodesic and Ny is totally umbilical submanifold of M, respectively.
Doubly warped product manifolds were introduced as a generalization of
warped product manifolds by B. Unal [10]. A doubly warped product manifold of
Ny and N3, denoted as y, N1 x y Ng is endowed with a metric g defined as

(3.3) 9= figi + figo

where f; and fy are positive differentiable functions on Ny and Ns respectively.
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In this case formula (3.2) is generalized as
(3.4) VXZ = (X In fl)Z + (Z hlfg)X

for each X in T'N; and Z in TNy [8].

If neither f; nor fs is constant we have a non trivial doubly warped
product M = 7, N1 x s Na. Obviously in this case both N; and Ny are totally
umbilical submanifolds of M.

We now consider a doubly warped product of two semi-Riemannian man-
ifolds N; and Ny embedded into an LP-Sasakian manifold M such that the struc-
ture vector field £ is tangential to the submanifold M = ;, N1 X  No.

Theorem 3.1. Let M = ;,N1 X 5 Na be a doubly warped product sub-
manifold of an LP-Sasakian manifold M where Ny and Ny are submanifolds of
M. Then fy is constant and Ny is anti-invariant if the structure vector field & is
tangent to N1 and f1 is constant and N1 is anti-invariant if £ is tangent to No.

Proof. Consider £ tangent to Nq, then for V € T Ny we get
(3.5) Vy€ = (EInf1)V + (Vin f2)€.
Thus from equations (2.4), (2.5), (2.8) and (3.5), we get
(3.6) Vvé=(Ef)V + (Vinfo)é +h(V, &) = PV + FV.

On comparing tangential and normal parts and using the fact that £, V and PV
are mutually orthogonal vector fields, (3.6) implies that

Vinfo=0, £lnf; =0

hV,§) = FV, PV =0.

Showing that fo is constant and N is an anti-invariant submanifold of M.
Similarly, if £ is tangent to No and U € T'N; we have

(3.7) Vué = (En fo)U + (Uln f1)¢ + h(U,€) = PU + FU,

which gives
Ulnfi =0, €lnfo=0

PU =0, h(U,¢)=FU.
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Which shows that f; is constant and N is an anti-invariant submanifold of M.
This completes the proof. 0O

The following corollaries are immediate consequences of the above theo-
rem.

Corollary 3.1. There does not exist a proper doubly warped product
submanifold in LP-Sasakian manifolds.

Corollary 3.2. There does not exist a warped product submanifold Ny x
N2 of an LP-Sasakian manifold M such that € tangential to No.

Thus the only remaining case to study is the warped product submanifold
N1 x yNa with structure vector field { tangential to N7. In particular, warped
products of the type M = Np x (N, and M = N, x yNr, where Ny and N |
are invariant and anti-invariant submanifolds of an LP-Sasakian manifold M are
discussed in the following section.

4. CR-~warped product submanifolds. Throughout this section
the structure vector field £ is either tangent to the invariant submanifold Ny or
tangent to the anti-invariant submanifold N,. There are two types of warped
product submanifolds in an LP-Sasakian manifold M, namely Np x fN1 and
N, x ¢Nr are called CR-warped product submanifolds, with § tangential to Np
and N, respectively. In the following theorem we deal with the case £ is tangent
to the submanifold Np.

Theorem 4.1. There does not exist a proper warped product submanifold
N x §N| where Nt is an invariant and N | is an anti-invariant submanifold of
an LP-Sasakian manifold M such that & is tangent to Nr.

Proof. Let M = Np x yN . For any X € TNy and Z € TN, by (3.2)
we deduced that

(4.1) VxZ=VzX=(XIf)Z
In particular, for X = &
(4.2) VzE=(EInf)Z.
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Whereas by formulae (2.4) and (2.5) we have
V7€ =¢Z =FZ,

or

V& +h(Z.6) = FZ,

which on using (4.2), we get
(4.3) ¢nf=0, hZ¢€) =FZ

Now, for any X € TNy and Z,W € TN, and using (2.2), (2.4), (2.5), (2.6),
(2.7), (2.10) and (3.2), we have

9(VxZW) = g(VzX, W) = g(VzX, W) = g(¢V 2 X, W) —n(VzX)n(W),

(XInf)g(Z,W) = g(V20X,oW)—g((V20) X, W) = g(V 20X +h(Z,$X), sW)

(XInf)g(Z, W) = g(h(Z,$X),¢W) + (X In f)g(Z, FW) = g(h(Z, $X), W).
That is
(4.4) (X1nf)g(Z,W) = g(h(Z,$X), pW).
Again, we have
(4.5) 9(M(Z,¢X),oW) = g(Vyx Z, oW).

Making use of equations (2.3), (2.6), (2.7) and (2.10) and the fact that M is
LP-Sasakian, we deduce from (4.5) that

(4.6) 9(h(Z,9X),oW) = —g(h(¢X, W), 9Z).

Interchanging Z and W in equation (4.4) and adding the resulting equation with
(4.6), we obtain that

(4.7) (X In f)g(Z, W) =0,

for all X € TNy. Equations (4.3) and (4.7) imply that f is constant on Np,
proving the result. O
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Now, the other case i.e., N| x ;Np with § tangential to IV is dealt with
the following theorem.

Theorem 4.2. Let M = N x Np be a warped product submanifold of
an LP-Sasakian manifold M, with ¢ € TN, where N7 and N| are invariant
and anti-invariant submanifolds of M, respectively. Then

(i) Elnf =0,
(i) th(X,Z) =0,
(iii) g(h(X,Z),FW) = —g(h(X, W), FZ)

forany X € TNy and Z, W € TN .

Proof. The first result is an immediate consequence of the formula
Vué = ¢U, for U € TM, and using formulae (2.4), (3.2) and the fact that U and
PU are mutually orthogonal vector fields. Now, for any U,V € TM we have

(VuP)V = ApyU + th(U,V) + g(¢U, ¢V )& + (V)¢ U.
Using the above fact for any X € TNy and Z € TN, we get
(4.8) (VzP)X =th(X, Z).
Also, for any X € TNy and Z € TN, , we have
(4.9) (VzP)X =VzPX — PVzX = (ZIn f)PX — P(ZIn f)X = 0.

Part (ii) follows by equations (4.8) and (4.9). For (iii), consider for any X € T'Np
and Z,W € TN,

Using (2.5) and (2.2), we get
9(Apz X, W) = (VxW,¢Z) = g(¢VxW, Z).
Then from (2.10), we obtain

9(Apz X, W) = g(VxoW, Z) — g(Vx )W, Z).
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Thus, on using (2.4) and (2.6), we derive

9( Az X, W) = —g(Agw X, Z) — n(W)g(X, Z).

By orthogonality of two distributions, the second term of right hand side is iden-
tically zero. Hence, from (2.7), we obtain

(4.10) g(W(X, W), 62) = —g(h(X, Z), ).

Part (iii) thus follows by equation (4.10). Hence the theorem is proved. O
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