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ABSTRACT. The Structure of the Unit Group of the Group Algebra of the
group Djg over any field of characteristic 5 is established in terms of split
extensions of cyclic groups.

1. Introduction. Let KG denote the group algebra KG of the group G
over the field K and U (K G) denote the unit group of KG. The homomorphism

€: KG — K given by ¢ Z agg | = Z ag is called the augmentation mapping
geG geG

of KG. It is well known that U(KG) = V(KG) x U(K) where V(KG) is the

group of units of augmentation 1. See [6] for further details on group algebras.
Let F . is the Galois field of pP-elements and Dy,m be the dihedral group

of order 2p™ where p is a prime and m € Ng. The structure of U(FsrDg) is

established in terms of split extensions of elementary abelian groups in [1]. In

(3], the order of U(IF,x Doym) is determined to be p2RE" =D (pk —1)2,
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Let J(KG) denote the Jacobson radical of KG and Z(G) denote the cen-
ter of G. It is shown that V; and V;/Z (V) are elementary abelian 3-groups where
Vi =1+ J(F3:Dg) in [7]. Additionally in [5], it is shown that U(FsxD1g)/Va =
Cisi_12, Vy is nilpotent of class 4 and Z(V;) = C5** where Vo = 1 + J(F5:Dyg).
Our main result is:

Theorem 1. V(Fg)le()) = ((C55k A C52k) X C5k) X C5k_1.

Let C), be the cyclic group of order n and M, (R) be the ring of n x n
matrices over a ring R. Define a circulant matrix over R to be

ajq a asz ... Qg

(0799 a, az ... Qap—1
circ(ay,ag,...,ay) = | @n-1 Gn a1 ... Ap-2

as as a4 ... al

where a; € R. For further details on circulant matrices see Davis [2].
If G = {g1,...,9n}, then denote by M(G) the matrix (g; 'g;) where
n

1,7 = 1,...,n. Similarly, if w= Zagigi € RG where R is a ring, then denote
i=1

by M(RG,w) the matrix (« , which is called the RG-matrix of w.

gi‘lg]‘)
Theorem 2 (see [4]). Let G be a finite group of order n. There is a ring
isomorphism between RG and the n x n G-matrices over R, which is given by
o:wr— M(RG,w).
We fix the presentation of the dihedral group,

Doy = (z,y | 2" = y* = Lyz = 2 y).

n—1 n—1
Let kK = Zaixi + ijxjy € F kDo, where a;,b; € Fx and p is a prime,
i=0 §=0

then
(k) = A B
o(k) = BT AT

where A = circ(ag, a1, ...,an—1) and B = circ(bg, by, ..., bp—1).
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Proposition 1 (see [3]). Let A = circ (ag,az,...,apm 1), where a; € F,
p is a prime and m € No. Then

p"—1
m

det(4) = Y a?".

=0

2. The main result.
Proof. Define the group epimorphism 6 : U(Fsx Do) — U(F5:C2) given
by

4 4 4 4
Zaixi —i—ijl'jy — Zai + ijy
i=0 =0 i=0 =0

Let ¢ : U(F5C2) — U(F5xD1g) be the group homomorphism defined by a+by —

a + by. Then 0o Y(a + by) = 0(a+ by) = a + by. Therefore U(FsxD1p) is a

split extension of U(F5xCsy) by ker(). Thus U(FsxD1g) = H x U(F5.Cs) where
4 4

H = ker(f). Let a = Zaixi + ijmjy € U(FsxD1g) where a;,b; € Fsr. Now

i=0 j=0
4 4
a€ H if and only if  a;=1and » b; =0. Thus |H| = (5*)2 = 5. We
i=0 j=0

shall split the proof in several lemmas.

Lemma 1. H has exponent 5.

4
Proof Ifa=1+ Z[(—ai) + a;x’] +
i=1 j

[(=b;)y +bjaly] € H, then

4
=1

where A = circ (1 +
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4
Lemma 2. Let T be the set of elements H of the form 1 +7"Zixiy
=0
where € Fer. Then T =2 Cs*.
4 4
Proof. Let a = 1+7’Zixiy € T and § = 1+52ixiy € T where
=0 1=0

r,s € Fsr. Then

4 4 2
af =1+ (r—&—s)zmiy—&-rs (sz@) .

1=0 i=0

- (%)

=~ [1-0)@)1+32+a%)]’

= —(1—2)%2

Now

=0 since (1 —z)°=0.
Thus T is closed under multiplication and clearly T is abelian. O

Lemma 3. |Ny(T)| = 5.
4

Proof. Nu(T) ={h € H|T" =T} Lett=1+r» ir' € T and
=0

h=1+ Z[(—ai) + a;z'] +
i=1 j

[(=bj)y + bja’y] € H where a;,b;,r € Fp.
1

o) = (pr 7)

where D = circ(rr,r(1 +7),7(2 4+ 7),7(3 4+ 7),r(4 + 7)) where 7 = 2(a1 + 2a2 +
3as + 4ay). Then h € Ny (T) iff ay = a1 + 2a2 + 3as. Thus every element of

4 4



Units of F5k D10 251

Ny (T) has the form

3

4
1+Z[(4—z)al—|—alx+wl +Z y—i—b:cj]
i=1 j=1

Therefore [Ny (T)| = 5. O

Lemma 4. Let S be the set of elements of H of the form 1+r(x+2%)(1—
2%)(1 +y) where r € Fge. Then S = Cs*.

Proof. Let a = 1+ r(x +23)(1 —2?)(1+y) € Sand 8 =1+ s(z +
22)(1 — 2%)(1 +y) € S where r, s € F5x. Then

af =1+ (r+s)(x+2°)(1-2")(1+y)

since ((z + 22)(1 — 22)(1 + y))? = 0. Thus S is closed under multiplication. It
can easily be shown that S is abelian. O

Lemma 5. H = Ny(T) x S.

Proof. Let
3 4
n:1+2[(4—z)al+alx+wl +Z +bxj]€NH(T)
i=1 j=1

and s =1+ r(x +2%)(1 — 2?)(1 +y) € S where a;,bj,r € Fsx. Then

o) = (g0 4r)

where

3
= circ |1 + Z i)ai, ar + y+0,az + 2(y+9), az + 3(y+9), Ziai + 4(y+9)] ,
i=1

4
B = circ Z(_bj —305), 01+ 01,ba + 02, B3 + 03, 81 + 64 |
j=1

0 =a+ 27"([)1 + 2by + 2[)3) + 9,
§y = v+ 21 (by + 203 + 2ba) + 20,
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93 = a+ r(by + ba + 3b3) + 36,
04 = a+7’(b2 + b3 +3b4) + 44,

0= 37’222191,

= T(bl + 4by + 4bs + b4)
a = 2r(az — ag) and a;,bj € Fsr.

Clearly n®* € Ny (T), S normalizes Ny (T') and (Ny(T'),S) = Nu(T)S.
By the Second Isomorphism Theorem Ny (T)S/S = S/Ny(T)NS. Now Ny (T)N
S = {1}, therefore H = Ng(T)S = Ng(T) x S. O

Consider the set

{1 + Z —i)a; + a;z’ + (zal)x‘l]

+3(by + bo)y + by (z + xh)y + by(2? + x3)y},

where a;,b; € F5i. It can easily be shown that R is a group and R = Cs°*. Also
it can be shown that the set

V={1+3(a1 +a2) + a1(z + 2*) + az(z® + 2°) + b1 (1 — 2ty + bo (v — %)y},

is a group and V = C5%.
Lemma 6. Ng(T) = C5°F x C5%F.
Proof. Let

{1 + Z —i)a; + a;xt + (zaz)xﬂ

+3(by + b2)y + b1 (z + 1:4)3/ + b2(x2 + xg)y} ceU

and

v={1+3(c1 + c2) + c1(x + ) + co(z? + 2°)
+di(1— a2y +da(z — 23yl eV
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where a;,b;,¢;, d;, € Fse. Then

o(u’) = (;T fT)

where

3 3
A = circ (1 + ) (4 —1i)a;, a1 + 6,02 + 26,a3 + 36, Y _ia; + 45) ,
i=1 i=1
B = CirC(?)bl + 3by + v,b1 +v,b2 + v,b2 +v,b1 + 7),
o= (bl — bg)(2d1 —+ dg),
v = (2dy + do)(ag — a3) + (3by + 2bo)(d1? + dido + 4ds?).

Clearly ©” € U and V normalizes U. Let
R=UNV ={1+3(a+b)+a(x+a*) +b*+2%}

where a,b € F5.. By the second Isomorphism Theorem Ny (7T') = UV. Clearly
V is an elementary abelian 5-group and therefore V' completely reduces. Let
V2 RxW = C5% x Cs?*. Now WNU = {1} and W normalizes V. Thus
Np(T)=U x W = C5% x 052, O

Now we make the final step of the proof. Recall that U (Fsx Do) = H x
U(Fs.Cy). Also H = Ny (T) x S 22 (C5%F % C52%) x C5*.

U(FsDy) = ((05% 1 C52K) c5k) 1 (Csi_y X Csr_y)

12

[((05“% x C5°%) % C5*) » C5k_1] x U(Fgk).
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