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Abstract. In this paper we introduced a notion of the generalized spectral
function for a matrix J = (gk,l)

∞

k,l=0
, gk,l ∈ C, such that gk,l = 0, if |k− l| >

N ; gk,k+N = 1, and gk,k−N 6= 0. Here N is a fixed positive integer. The
direct and inverse spectral problems for such matrices are stated and solved.
An integral representation for the generalized spectral function is obtained.

1. Introduction. The main object of our present investigation is a
matrix J = (gk,l)

∞

k,l=0, gk,l ∈ C, such that

(1) gk,l = 0, k, l ∈ Z+ : |k − l| > N,

(2) gk,k+N = 1, k ∈ Z+,

and

(3) gk,k−N 6= 0, k = N,N + 1, . . . .

2010 Mathematics Subject Classification: 15A29.
Key words: banded matrix, spectral function, polynomials.



10 S. M. Zagorodnyuk

Here N is a fixed positive integer.

Thus, the matrix J has the following form:
(4)

J =

























g0,0 g0,1 g0,2 . . . g0,N−1 1 0 0 . . .

g1,0 g1,1 g1,2 . . . g1,N−1 g1,N 1 0 . . .
...

...
. . .

...
...

...
... . . .

gN,0 gN,1 gN,2 . . . gN,N−1 gN,N gN,N+1 gN,N+2 . . .

0 gN+1,1 gN+1,2 . . . gN+1,N−1 gN+1,N gN+1,N+1 gN+1,N+2 . . .

0 0 gN+2,2 . . . gN+1,N−1 gN+1,N gN+1,N+1 gN+1,N+2 . . .
...

...
...

...
...

...
...

...
. . .

























.

The direct and inverse spectral problems for Jacobi matrices (with matrix el-
ements) are described, e.g., in [1], [2]. For Jacobi fields these problems were
studied in [3], [4].

As far as we know, for the first time the direct and inverse spectral prob-
lems for non-selfadjoint Jacobi matrices were investigated by Guseinov in [5].
In [6], by using a different method we extended Guseinov’s result to the case of
(2N + 1)-diagonal complex symmetric matrices.

The direct and inverse spectral problems for the block Jacobi type unitary
matrices and for the block Jacobi type bounded normal matrices were solved in
[7], [8].

Spectral problems for generalized Jacobi matrices connected with the in-
definite product inner spaces were studied in [9].

For the case of (2N + 1)-diagonal complex skew-symmetric matrices, the
direct and inverse spectral problems were investigated in [10]. In [11] we ob-
tained an integral representation for the spectral function of some three-diagonal
complex symmetric matrices. We remark that complex symmetric and complex
skew-symmetric banded matrices are closely related to J-symmetric and J-skew-
symmetric operators (see [12] and References therein). Notice that the direct and
inverse spectral problems for finite nonself-adjoint Jacobi matrices were recently
investigated by Guseinov in [13].

Our aim here is to introduce a notion of the generalized spectral function
for the matrix J . Then we state and solve the direct and inverse spectral problems
for such banded matrices.

Notations. As usual, we denote by R, C, N, Z, Z+ the sets of real num-
bers, complex numbers, positive integers, integers and non-negative integers, re-
spectively. By Cn×m we denote the set of all n × m matrices with complex
elements, n,m ∈ N. If V ∈ Cn×m, then V T stands for its transpose. Denote
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EM = (δk,l)
M
k,l=0, M ∈ Z+. By P we denote the set of all polynomials with

complex coefficients.

2. The direct spectral problem. Consider the banded matrix (4).
Define a set of monic polynomials {pn(λ)}∞n=0, deg pn = n, by the following
relations:

(5) pk(λ) = λk, k = 0, 1, . . . , N − 1;

(6) pn+N(λ) +

n+N−1
∑

j=n−N

gn,jpj(λ) = λNpn(λ), n = 0, 1, 2, . . . .

Here we set p−1 = · · · = p−N = 0, and gn,j with negative indices are zeros.

Relation (5) may be written in the matrix form:

(7) J~p(λ) = λN~p(λ),

where ~p(λ) = (p0(λ), p1(λ), p2(λ), . . . )T .

Let σ = σ(u, v), u, v ∈ P, be an arbitrary sesquilinear functional (i.e.
linear in the first argument, antilinear in the second argument, but not necessarily

σ(u, v) = σ(v, u)). The functional σ is uniquely determined by complex numbers

(8) fn,j := σ(pn(λ), λj), n, j ∈ Z+.

We shall construct a special functional σ. We set

(9) fn,j = δn,j, 0 ≤ n, j ≤ N − 1;

(10) fn,j = 0, 0 ≤ j ≤ N − 1; n ≥ N.

Consider the following matrices:

(11) F = Fσ = (fn,j)
∞

n,j=0 =







f0,0 f0,1 . . .

f1,0 f1,1 . . .
...

...
. . .






, FM = Fσ,M = (fn,j)

M
n,j=0,

where M ∈ Z+.



12 S. M. Zagorodnyuk

Observe that the first N columns of the matrix Fσ are determined. We
sequently define columns N + 1, N + 2, N + 3, . . . ; by the following relation:

(12) fn,j+N = fn+N,j +
n+N−1
∑

l=n−N

gn,lfl,j, n, j ∈ Z+.

(With j = 0 and n ∈ Z+ we define the (N + 1)-th column, and so on).
In this way, we construct the matrix Fσ which satisfies relations (9), (10)

and (12). Moreover, there exists a unique sesquilinear functional σ(u, v), u, v ∈ P,
with the matrix Fσ which satisfies (9),(10) and (12).

Observe that relations (9), (10) and (12) are equivalent to the relations

(13) σ(pn(λ), pj(λ)) = δn,j, 0 ≤ n, j ≤ N − 1;

(14) σ(pn(λ), pj(λ)) = 0, 0 ≤ j ≤ N − 1; n ≥ N ;

and

(15) σ(λNpn(λ), λj) = σ(pn(λ), λj+N ), n, j ∈ Z+,

respectively. (In (15) one may use relation (6) to get (12)).
If in relation (12) we choose n > j + N then in the right-hand side of this

equation we get elements fr,s with r > s. By induction we obtain that

(16) fn,j = 0, n, j ∈ Z+ : n > j.

Thus, Fσ is an upper triangular matrix. Condition (16) is equivalent to the
following condition:

(17) σ(pn(λ), pj(λ)) = 0, n, j ∈ Z+ : n > j.

By linearity and antilinearity, from (15) it follows that

(18) σ(λNu(λ), v(λ)) = σ(u(λ), λNv(λ)), u, v ∈ P.

Definition 1. Let J = (gk,l)
∞

k,l=0 be a complex numerical matrix satisfy-

ing (1)–(3). Let {pn(λ)}∞n=0 be a set of polynomials determined by relations (5),
(6). A sesquilinear functional σ = σ(u, v), u, v ∈ P, (linear in the first argument,

antilinear in the second argument, but not necessarily σ(u, v) = σ(v, u)) which

satisfies relations (13), (17) and (18) is said to be the (generalized) spectral
function of the matrix J.
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The direct spectral problem for the banded matrix J = (gk,l)
∞

k,l=0

satisfying (1)–(3) consists in searching for answers on the following questions:

1) Does the spectral function exist?

2) If the spectral function exists, is it unique?

3) If the spectral function exists, how to find it (or them)?

The answer on the first two questions is surely affirmative as it follows
from the preceding considerations.

The procedure of the construction of the spectral function was presented
above. Thus, the direct spectral problem for the banded matrix J is solved in
full.

3. The inverse spectral problem. The inverse spectral problem
for the banded matrix J = (gk,l)

∞

k,l=0 satisfying (1)–(3) consists in searching for
answers on the following questions:

1) Is it possible to reconstruct the matrix J using its spectral function?
If it is possible, what is the procedure of the reconstruction?

2) What are the necessary and sufficient conditions for a sesquilinear
functional σ(u, v), u, v ∈ P, to be the spectral function of a complex banded
matrix J = (gk,l)

∞

k,l=0 satisfying (1)–(3)?

An answer on the second question provides the following theorem.

Theorem 1. A sesquilinear functional σ(u, v), u, v ∈ P, is the spectral

function of a complex banded matrix J = (gk,l)
∞

k,l=0 satisfying (1)–(3) if and only

if:

1) σ(λNu(λ), v(λ)) = σ(u(λ), λNv(λ)), u, v ∈ P;

2) σ(λk, λl) = δk,l, k, l = 0, 1, . . . , N − 1;

3) det ΓM 6= 0, M ∈ Z+,

where ΓM = (γk,l)
M
k,l=0, γk,l = σ(λk, λl).

P r o o f. Necessity. Conditions 1) and 2) follows directly from the defin-
ition of the spectral function. Consider the following matrices:

(19) Γ = (γk,l)
∞

k,l=0, ΓM = (γk,l)
M
k,l=0, γk,l = σ(λk, λl), M ∈ Z+.

We may write

(20) λk = pk(λ) +
k−1
∑

r=0

bk,rpr(λ), bk,r ∈ C, k ∈ Z+.



14 S. M. Zagorodnyuk

Therefore

γk,l = σ(λk, λl) = σ(pk(λ), λl) +

k−1
∑

r=0

bk,rσ(pr(λ), λl)

= fk,l +

k−1
∑

r=0

bk,rfr,l, k, l ∈ Z+.

Then

(21)





















γ0,l

γ1,l

...
γk,l

...
γM,l





















=





















1 0 0 0 0 . . . 0
b1,0 1 0 0 0 . . . 0
...

...
...

...
...

...
bk,0 . . . bk,k−1 1 0 . . . 0
...

...
...

...
...

...
bM,0 . . . . . . . . . . . . bM,M−1 1









































f0,l

f1,l

...
fk,l

...
fM,l

,





















for l ∈ Z+ and M ∈ Z+.
Denote the square matrix in the right-hand side of the last equality by

BM , M ∈ Z+. Observe that det BM = 1. We may write

(22) ΓM = BMFM .

By relations (12) and (16) we get

(23) fn,n = fn+N,n−N +

n+N−1
∑

l=n−N

gn,lfl,n−N = gn,n−Nfn−N,n−N , n ≥ N.

Using relations (3) and (9), by induction we obtain that

(24) fn,n 6= 0, n ∈ Z+.

Therefore det FM 6= 0 and

(25) det ΓM = detBM detFM 6= 0.

Sufficiency. Let a sesquilinear functional σ(u, v), u, v ∈ P, satisfying
conditions 1), 2), 3) be given. Define a sequence of polynomials pn(λ) in the
following way:

(26) pk(λ) = λk, 0 ≤ k ≤ N − 1;
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and for n ≥ N we set

(27) pn(λ) = λn +
n−1
∑

i=0

an,iλ
i,

where the coefficients an,i are uniquely determined by the following linear system
of equations:

(28)















γ0,0an,0 + γ1,0an,1 + · · · + γn−1,0an,n−1 = −γn,0

γ0,1an,0 + γ1,1an,1 + · · · + γn−1,1an,n−1 = −γn,1

. . .

γ0,n−1an,0 + γ1,n−1an,1 + · · · + γn−1,n−1an,n−1 = −γn,n−1

Notice that the matrix of this linear system is ΓT
n−1. By (26) and condition 2)

we get

(29) σ(pk(λ), pl(λ)) = δk,l, 0 ≤ k, l ≤ N − 1;

and by (27) and (28) we obtain

σ(pn(λ), λj) = σ(λn, λj) +

n−1
∑

i=0

an,iσ(λi, λj)

(30) = γn,j +
n−1
∑

i=0

an,iγi,j = 0,

where j = 0, 1, . . . , n − 1; n ≥ N . Therefore

(31) σ(pn(λ), pj(λ)) = 0, n, j ∈ Z+ : n > j.

By (28) we may write

(32)























γ0,0an,0 + γ1,0an,1 + · · · + γn−1,0an,n−1 + γn,0 · 1 = 0
γ0,1an,0 + γ1,1an,1 + · · · + γn−1,1an,n−1 + γn,1 · 1 = 0
. . .

γ0,n−1an,0 + γ1,n−1an,1 + · · · + γn−1,n−1an,n−1 + γn,n−1 · 1 = 0
γ0,nan,0 + γ1,nan,1 + · · · + γn−1,nan,n−1 + γn,n · 1 = tn

,
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where tn is a complex number. Suppose that tn = 0. The matrix of the linear
system (32) is ΓT

n . Therefore it should possess a unique solution. However rela-
tion (32) shows that there exist a non-trivial and trivial solutions. We obtained
a contradiction. Consequently, we conclude that tn 6= 0. Therefore

σ(pn(λ), λn) = σ(λn, λn) +
n−1
∑

i=0

an,iσ(λi, λn) = γn,n +
n−1
∑

i=0

an,iγi,n

= tn 6= 0, n ≥ N ;

(33) σ(pn(λ), λn) 6= 0, n ∈ Z+.

We may write

(34) λNpn(λ) = pn+N (λ) +
n+N−1
∑

j=0

ξn,jpj(λ), n ∈ Z+,

with some complex coefficients ξn,j.
Let us check that

(35) λNpn(λ) = pn+N (λ) +
n+N−1
∑

j=n−N

ξn,jpj(λ), n ∈ Z+,

where we set p−1 = · · · = p−N = 0, and ξn,j with negative indices are zeros.
If 0 ≤ n ≤ N this is already obtained.
Let n = N + r, r ≥ 1. By (34), (31) we get

σ(λNpn(λ), p0(λ)) = σ(pn+N (λ), p0(λ)) +

n+N−1
∑

j=0

ξn,jσ(pj(λ), p0(λ))

(36) = ξn,0σ(p0(λ), p0(λ));

On the other hand, by condition 1) and (31) we obtain

(37) σ(λNpn(λ), p0(λ)) = σ(pn(λ), λNp0(λ)) = 0.

By (36),(37) and (33) we conclude that

(38) ξn,0 = 0.
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As a consequence, if r = 1, then relation (35) is proven.
Consider the case r ≥ 2. Suppose that

(39) ξn,0 = · · · = ξn,k = 0,

where 0 ≤ k ≤ r − 2. Let us check that

(40) ξn,k+1 = 0.

In fact, we may write

σ(λNpn(λ), pk+1(λ)) = σ(pn+N (λ), pk+1(λ)) +

n+N−1
∑

j=k+1

ξn,jσ(pj(λ), pk+1(λ))

(41) = ξn,k+1σ(pk+1(λ), pk+1(λ)).

By condition 1) and (31) we obtain

(42) σ(λNpn(λ), pk+1(λ)) = σ(pn(λ), λNpk+1(λ)) = 0.

By (41), (42) we obtain that relation (40) is true.
By induction we conclude that relation (35) holds. Notice that a similar

idea of the proof of a recurrence relation was applied in [14, pp. 364–365].
Observe that for an arbitrary n ≥ N we may write

σ(λNpn(λ), pn−N (λ)) = σ(pn+N (λ), pn−N (λ)) +

n+N−1
∑

j=n−N

ξn,jσ(pj(λ), pn−N (λ))

(43) = ξn,n−Nσ(pn−N (λ), pn−N (λ)).

By (33) and (31) we obtain that

(44) σ(λNpn(λ), pn−N (λ)) = σ(pn(λ), λNpn−N(λ)) 6= 0.

Therefore

(45) ξn,n−N 6= 0, n ≥ N.

Set

(46) ξn,n+N = 1, ξn,j = 0, n ∈ Z+, j > n + N ;
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and

(47) Jσ := (ξn,j)
∞

n,j=0.

The matrix Jσ satisfies the conditions (1)–(3). The polynomials from (5), (6)
coincide with the defined above polynomials pn(λ) since they satisfy the same
recurrence relation. By (29), (31), condition 1) and Definition 1 we conclude
that σ is the spectral function of the matrix Jσ. �

Let us investigate the first question in the inverse spectral problem. Con-
sider an arbitrary complex banded matrix J = (gk,l)

∞

k,l=0 satisfying (1)–(3). Let
{pn(λ)}∞n=0 be the polynomials defined by (5), (6) and σ be the spectral function
of J.

Denote by Jσ = (ξk,l)
∞

k,l=0 the banded matrix which is constructed for the
functional σ by the procedure in the Sufficiency of the proof of the last theorem.
To omit the confusion, we denote the polynomials pn(λ) which are constructed in
the Sufficiency by rn(λ). Let us check that J = Jσ. Polynomials p0, p1, . . . , pN−1

and r0, r1, . . . , rN−1 coincide by their definitions.

Polynomials rn(λ) are defined by relations (27), (28) which are equivalent
to the following condition:

(48) σ(rn(λ), λj) = 0, j = 0, 1, . . . , n − 1; n ≥ N.

By (17) we see that polynomials pn(λ) satisfy this relation, as well. Since the
solution of the linear system (28) is unique we conclude that rn = pn, n ∈ Z+.

Since deg pn = n, n ∈ Z+, the polynomials {pn(λ)}∞n=0 form a linear
basis in P and an arbitrary polynomial u(λ) ∈ P has a unique representation as
the linear combination of polynomials pn. Therefore ξk,l = gk,l, k, l ∈ Z+, and
J = Jσ .

Thus, the procedure of the construction of the matrix Jσ provides a tool to
reconstruct a complex banded matrix satisfying (1)–(3) by its generalized spectral
function.

Theorem 1 can be reformulated in another form. We shall use the follow-
ing definition (cf. [15, Definition 3.2, p. 16]).

Definition 2. Let σ = σ(u, v), u, v ∈ P, be a sesquilinear functional.

The functional σ is said to be quasi-definite if

(49) det ΓM 6= 0, M ∈ Z+,

where ΓM = (γk,l)
M
k,l=0, γk,l = σ(λk, λl).
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Theorem 2. A sesquilinear functional σ(u, v), u, v ∈ P, is the spectral

function of a complex banded matrix J = (gk,l)
∞

k,l=0 satisfying (1)–(3) if and only

if σ is quasi-definite and the matrix

(50) Γ = (γi,j)
∞

i,j=0, γi,j = σ(λi, λj),

is a (N × N) block Hankel matrix:

(51) Γ = (Gk+l)
∞

k,l=0, Gj ∈ CN×N ,

such that G0 = EN .

P r o o f. Consider an arbitrary sesquilinear functional σ(u, v), u, v ∈ P

and define the matrix Γ by (50). Split the matrix Γ into (N × N) blocks:

(52) Γ = (Gk,l)
∞

k,l=0, Gk,l ∈ CN×N .

Observe that
(53)

Gk,l =











γkN,lN γkN,lN+1 . . . γkN,lN+N−1

γkN+1,lN γkN+1,lN+1 . . . γkN+1,lN+N−1
...

...
. . .

...
γkN+N−1,lN γkN+N−1,lN+1 . . . γkN+N−1,lN+N−1











, k, l ∈ Z+.

If Condition 1) of Theorem 1 holds then

(54) γkN+r,lN+s = γ(k+l)N+r,s, 0 ≤ r, s ≤ N − 1, k, l ∈ Z+,

and hence

Gk,l = Gk+l, k, l ∈ Z+.

On the other hand, if G is a (N × N) block Hankel matrix, then relation (54)
holds. Then

σ(λaN+r, λNλcN+s) = σ(λaN+r, λ(c+1)N+s) = σ(λ(a+c+1)N+r , λs)

= σ(λ(a+1)N+r , λcN+s) = σ(λNλaN+r, λcN+s),

where 0 ≤ r, s ≤ N − 1, a, c ∈ Z+. By linearity we conclude that Condition 1
holds.

Thus, Condition 1 of Theorem 1 is equivalent to the condition (51).

If conditions of Theorem 1 hold, then G0 = EN and relation (49) holds.
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Conversely, if conditions of Theorem 2 hold, then Condition 2) and Con-
dition 3) hold. �

4. An integral representation for the spectral function. Recall
that the matrix Hamburger moment problem consists of finding a non-decreasing
Cn×n-valued function M(x) such that

(55) Sk =

∫

R

xkdM(x), k ∈ Z+,

where {Sk}
∞

k=0 is a prescribed set of complex Hermitian N ×N matrices, N ∈ N.
This problem has a solution if and only if ([16])

(56) (Sk+l)
M
k,l=0 ≥ 0, M ∈ Z+.

On the other hand, by applying [15, Theorem 6.3, p. 74] we may state that for
an arbitrary sequence {Sk}

∞

k=0, Sk ∈ CN×N , there exists a Cn×n-valued function
M(x) = (mk,l(x))N−1

k,l=0 with functions mk,l(x) of bounded variation such that
relation (55) holds.

Consider an arbitrary complex banded matrix J = (gk,l)
∞

k,l=0 satisfy-
ing (1)–(3). Let σ be the generalized spectral function of J . We shall obtain
an integral representation for the functional σ. Define the matrix Γ by (50). By
Theorem 2 the matrix Γ has the form (51). By the above mentioned result, there
exists a Cn×n-valued function M(x) = (mk,l(x))N−1

k,l=0 with functions mk,l(x) of
bounded variation such that

(57) Gk =

∫

R

xkdM(x), k ∈ Z+.

We shall use the following operator [17]:

(58) RN,m(p) =
∑

n

p(nN+m)(0)

(nN + m)!
tn, p ∈ P, 0 ≤ m ≤ N − 1.

Observe that

(59) RN,m(λkN+r) =

{

xk, if m = r

0, if m 6= r
, 0 ≤ m, r ≤ N − 1; k ∈ Z+.

By (53) we may write

(60) γkN+r,lN+s = ~erGk+l~e
∗

s, k, l ∈ Z+; 0 ≤ r, s ≤ N − 1,
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where ~er = (δr,0, δr,1, . . . , δr,N−1).
By (57), (60) we get

γkN+r,lN+s = ~er

∫

R

xk+ldM(x)~e∗s =

∫

R

xk~erdM(x)xl~e∗s

=

∫

R

(RN,0(x
kN+r), RN,1(x

kN+r), . . . , RN,N−1(x
kN+r))dM(x)









RN,0(x
lN+s)

RN,1(x
lN+s)

. . .

RN,N−1(x
lN+s)









.

Therefore

(61)
γi,j =

∫

R

(RN,0(x
i), RN,1(x

i), . . . , RN,N−1(x
i))dM(x)









RN,0(x
j)

RN,1(x
j)

. . .

RN,N−1(x
j)









,

i, j ∈ Z+.

By linearity we obtain that

σ(u, v) =

∫

R

(RN,0(u)(x), RN,1(u)(x), . . . , RN,N−1(u)(x))dM(x)









RN,0(v)(x)
RN,1(v)(x)

. . .

RN,N−1(v)(x)









,

(62) u, v ∈ P.

We have proved the following theorem.

Theorem 3. Let J = (gk,l)
∞

k,l=0 be a complex banded matrix satisfy-

ing (1)–(3) and σ be its generalized spectral function. The spectral function σ

admits an integral representation (62) where M(x) = (mk,l(x))N−1
k,l=0 is a Cn×n-

valued function with functions mk,l(x) of bounded variation.

Theorem 3 can be reformulated from another point of view. Namely,
we can state it as a Favard-type theorem (see [15, Theorem 4.4, p. 21] and [15,
Theorem 6.4, p. 75]). We shall make use of the following definition (cf. [15,
Definition 3.2, p. 16]).

Definition 3. Let σ = σ(u, v), u, v ∈ P, be a quasi-definite sesquilinear

functional. A set of monic polynomials {pn(λ)}∞n=0, deg pn = n, such that

(63) σ(pn(λ), λj) = 0, n, j ∈ Z+ : n > j,
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is said to be the set of monic left-orthogonal polynomials with respect to
σ.

Theorem 4. Let {pn(λ)}∞n=0, be a set of polynomials satisfying rela-

tions (5), (6), where gk,j are arbitrary complex numbers satisfying (3). Then

there exists a quasi-definite sesquilinear functional σ such that {pn(λ)}∞n=0 is the

set of monic left-orthogonal polynomials with respect to σ. Moreover, the func-

tional σ admits an integral representation (62) where M(x) = (mk,l(x))N−1
k,l=0 is a

Cn×n-valued function with functions mk,l(x) of bounded variation.

Remark. Condition (5) in the last theorem can be replaced by the
following more general initial conditions:

(64) pk(λ) = ϕk(λ), k = 0, 1, . . . , N − 1,

where {ϕk(λ)}N−1
k=0 , deg ϕk = k, is an arbitrary prescribed set of monic polyno-

mials. In fact, we can determine numbers fn,j := σ(pn(λ), λj), n, j ∈ Z+, by
relations (9), (10) and (12). Then relation (16) holds. Relation (12) is equivalent
to the relation (18). Therefore the matrix

(65) Γ = (γi,j)
∞

i,j=0, γi,j = σ(λi, λj),

is a (N × N) block Hankel matrix (see the Proof of Theorem 2). Repeating
considerations after (19) we conclude that σ is quasi-definite. Then we repeat
the construction after (57) to obtain an integral representation for σ.
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