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ABSTRACT. An analogue of the symbolic method of classical invariant the-
ory for a representation and manipulation of the elements of the kernel of
Weitzenbock derivations is developed.

1. Introduction. Let K be a field of characteristic 0 and let K[X] be a
polynomial algebra in a set of variables X. A linear locally nilpotent derivation
of the polynomial algebra K[X] is called a Weitzenbock derivation. Denote by
Dy, d := (dy,ds,...,ds) the Weitzenbock derivation of the algebra K[X] if its
matrix consists of s Jordan blocks of size dy + 1, do + 1, ..., ds + 1, respectively.
The only derivation which corresponds to a single Jordan block of size d + 1 is
called the basic Weitzenbock derivation and is denoted by D;. The algebra

ker Dy = {f € K[X] | Da(f) = 0},
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is called the kernel of the derivation Dg. It is well known that the kernel ker Dy
is a finitely generated algebra ( see [19], [16], [17]). However, it remained an
open problem to find a minimal system of homogeneous generators of the algebra
ker D4 even for small tuples d.

The aim of this paper is to develop an effective method for the represen-
tation and manipulation of the kernel elements of Weitzenbock derivations.

In a previous work [5] we showed that the kernel of the derivations Dy,
d := (dy,ds,...,ds) is isomorphic to the algebra of joint covariants for s binary
forms of orders dy, ds, . .., ds. Algebras of joint covariants of binary forms were an
object of research in invariant theory in the 19th century. To describe the kernel
of linear locally nilpotent derivations we should involve computational tools of
classical invariant theory, including the famous symbolic method. The symbolic
method was developed by Aronhold, Clebsch, and Gordan. It is the most powerful
tool of classical invariant theory. A classic presentation of the symbolic method
can be found in [9], [11], [10]. Recently, a rigorous foundation for the symbolic
method has been given by [15] and by [14].

In this paper we develop an analogue of the classical symbolic method
for computing of the kernel of Weitzenbock derivations. We explain the essence
of the method by examples. Let D4 be the basic Weitzenbock derivation of the
polynomial algebra K[X4] = K[xo, r1,x2,I3, 1'4] i.e., ’D4(.%) = X1, D4($0) = 0,
i = 1,...,4. Also, consider the Weitzenbock derivation D44y of the algebra
K[X4,Y4] : Dy ay(wi) = Da(xi), Diaa)(¥i) = Yi—1, D(a,4)(¥0) = 0. The following

differential operator Pénm) : K[X,] — K[X,,,Y,] defined by

’P(n) — i + i + + i
y,x — Y0 Ao Y1 o1 Yn 81'”7

is called the polarization operator. The operator R?(Jn% s KX, Y] — K[X,],
defined by

RM(F)=F

Yi=T;

is called the restitution operator. If F'is a homogeneous polynomial then Euler’s
homogeneous function theorem implies that Rénx) (PY(F)) = deg(F) F. The po-
larization operator commutes with the Weitzenbock derivations:

(Da(F)) = Dy (PLUF))

It is easy to verify that the polynomial F = 23 + 2 x9z4 — 2 7123 belongs
to ker D, and its polarization

4
P

Pﬁ(F) = 2yor4 — 2y103 + 2y2m2 — 2y371 + 2 Y470,
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belongs to ker Dy 4y. Let us change the variables by

1 ... 1,
(1) 901':5043 104117%:553‘ Bli=1,...,4.

Then we get that

733(,2(}7) = 11—2 (aoB1 — Poaq) = %[0&,5]47

where [, ] := apf1 — foar. The polynomial ¥ = 11—2[a,ﬂ]4 is called the sym-
bolic representation of the polynomial F. The letters a, 3 are called the symbol
letters. Observe that ¥ belongs to the kernel of the derivation D(; 1) which acts
on Koy, a1, fo, 41]. Moreover, the polynomial ¥ has much simpler form than the
polynomial F'.

On the other hand, let us consider the polynomial ® = a%ﬂg[a,ﬂP €
ker D(; 1y. Then by (1) we get

® = ap? 802612 — 200®Bo> B + ap®Botar? = 2(woy2 — 21y1 + T2m0),

1
and Rg‘;(@) = 2(2xoz2 — %) € ker Dy. Thus 5@%@% [, B)? is a symbolic repre-

sentation for 2zgxs — 3. To get elements of degree 3 we should involve one more
symbolic letter . Similarly, one may show that

1
A [av 5]2 [av 7]2[ﬁ7 7]2 € ker D(l,l,l)

4l
is a symbolic representation for the following element of the kernel of derivation
Dy :
12x9x419 + 6 12320 — 2%23 — 91’01’32 — 6:1:12304

and for all its polarizations.

For the general case consider the polynomial algebra Klo; | o € J,i =
0,1] where « runs on a set J of symbol letters. Elements of the kernel of the
Weitzenbock derivation

D7:=Dq,1,...,1)
—_——
| T | times
defined by Dy (ap) =0, Dy(a1) = ayp, for all a € J, are called symbolic expres-

sions.
The following statement is the main point of the symbolic method:
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The Symbolic Method.

o Any element of ker Dq allows a symbolic representation;

o Any symbolic expression is a symbolic representation for an element of
ker Dq for some d.

Thus we arrive at the remarkable fact that the kernel of an arbitrary
Weitzenbock derivation Dy is completely defined by the kernel of the special
Weitzenbock derivation D . The kernel ker D7 is well-known and generated by
ap and the brackets [«, 5] where a, 8 run over J.

The paper is organized as follows. In Section 2 we review some of the
standard facts on the representation theory of the Lie algebra sly and its maximal
nilpotent subalgebra us.

In Section 3 we develop an analogue of the classical symbolic method for
Weitzenbock derivations. In Section 4 we introduce the notions of the convolution
and the semi-transvectant which are used for calculation of a generating set of
the kernel of the derivations.

2. Basic facts. A representation of the Lie algebra g on a finite-
dimensional complex vector space V is a homomorphism p : g — gl(V'), where
gl(V) is the Lie algebra of endomorphisms of V. We say that such a map gives
V' the structure of a g-module. The algebra g acts on V by linear operators
p(9), g € g. When there is little ambiguity about the map p we sometimes call V'
itself a representation of g; in this vein we will suppress the symbol p and write
g for p(g)v.

If U,V are representations, then the tensor product U ® V is also a rep-
resentation with the action

g(u®v) =gu®Rv+u® gv.

For a representation V', the tensor algebra T(V') is again a representation of g
by this rule, and the symmetric algebra Sym(V') is its subrepresentation. Thus,
the algebra g acts on Sym(V') by derivations. An element v € V is called an
invariant of the g-module V if gv = 0. Denote by V9 the set of all invariants of
the g-module V.

Let sl be the Lie algebra of 2 x 2 traceless matrices and let uy be its
maximal nilpotent subalgebra. The canonical basis of sly is the basis (e, f, h),

where
0 1 00 1 0
=0 o) =0 o) n=(0 )
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We have

(2) [h,@]:26,[h,f]:—2f,[€,f]:h.

For each nonnegative integer n, the algebra sls has an irreducible representation
V., of dimension n + 1, which is unique up to isomorphism. The endomorphisms
p(e), p(f), p(h) act on V,, := (v, v1,...,v,) by the formulas

ple)vi =vi—1, ple)vi = (n =) (i + Dvigr,  p(h)vi = (n — 2i)v;.

The action of sly extends by derivations to the symmetric algebra Sym(V},) and
to the algebra

Sym(Vd) = SyHl(Vd1 b Vd2 D...D Vds), d:= (dl,dg, - ,ds).

For convenience, the derivations of Sym(Vy) which correspond to the operators
p(e), p(f), p(h) are denoted by D, D, and E, respectively. Let us identify
the algebra Sym(V},) with the polynomial algebra K[V,,] := Kluvg,v1,...,v,] and
the algebra Sym(Vg) with the polynomial algebra K[Vy,, Vy,, ... V4, ]. Under this
identification, the kernel of the derivation D coincides with the algebra of in-
variants Sym(Vg)"2, and the algebra ker D N ker D, coincides with the algebra
of invariants Sym(Vy)%2. Any us-invariant is called a semi-invariant. It is clear
that the derivation D is exactly the Weitzenbock derivation Dgy.

To begin, let us describe the algebras of invariants and semi-invariants of
the symmetric algebra Sym(V; @ Vi @ ... @ V).

Let & = {«,(3,...} be an alphabet consisting of an infinite supply of
Greek letters. The letters in & are called symbol letters. To each symbol letter
«a we associate two variables ag, a; and the two-dimensional vector space V,, :=
Kap @ Kay. For a finite subset J C & let V7 := @47V, The algebra Sym (V)
turns into an sls-module by the action

(3) D(ap) =0, D(a1) =ao, Di(ag)=a1, Di(az)=0,
E(al) = (1—2i)ai, 1=0,1,a € J.

A direct check shows that the conditions (2) hold. We note that the symmetric
group S| 7 naturally acts on Sym (Vz), where | 7| is the cardinality of the set J.

The First Fundamental Theorem for sls. The algebra of semi-inva-
riants Sym (V7)" is generated by ag and by the brackets

ap a1

[ 8] = Bo B

) OZ,BEJ'
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5[2

The algebra of invariants Sym (V.7)°? is generated by the brackets [o, (3].

This is a well-known result of classical invariant theory, see [12]. In the
theory of locally nilpotent derivations the first part of this statement is known as
the Nowicki conjecture, see, for instance, [3].

uz

Corollary. As a vector space the algebra Sym (V)
polynomials

s generated by the

P = [l @ [0 . 87 €T
a#f

The order ord P and the weight wt P := (wtoP)aes of the symbolic
expression P are defined by

ord P := va,wt P .= Z a8+ 15,a) + ma.

In particular, wt, P is equal to the number of times the symbol « occurs in the
symbolic expression P. Observe, that

ord P =min{k € N | D (P) =0}, E(P) = wtP - P.

The symbolic expression P is called decomposable if it can be written as
a product P = P; P» in a non-trivial way where P; and P» are disjoint, i.e., no
symbol occurs in both. We denote by supp P the support of P, i.e., the set of
symbols o € J occurring in P. Put a ~ 8 if wt, = wtg. Then the relation
~ is an equivalence relation defined on the set supp P C J. Denote by J1,
Jo, ..., Ji the equivalence classes and by my, me, ...m; denote their cardinality,
t = |supp P/ ~ |. Denote by nq, na, ...n; the corresponding weights of elements
of the classes J;.

Let x4 8,2, for a, 8,7 € J, a # 3, denote independent variables and
define the free polynomial algebra

Symy :=Klza,g, 2+ | @, 8,7 € T, # f].
Define the map x : Sym; — Sym (V7)" by
X(Za,8) = [, B, x(z4) =0,

and extend it in the natural way to monomials and all of Sym ;.

The Second Fundamental Theorem sls. There is a canonical iso-
morphism
Sym s/ ker x = Sym (V)"
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where the ideal ker x is generated by the elements

Tap + 280 = 0,27%a,8 + 23Ty,a + TaZpy =0,

xa’ﬂx776 + x77axﬁ’5 + xﬂ:’}’xa,f; = O'

The theorem implies that the following three relations (syzygies)

[avﬁ] + [Bva] =0,
Yole, B] + Bolv, a] + ao[B,7] =0,
[Ol,ﬁ] [776] + [’Y?a][/@#ﬂ + [/877][@76] =0,

for distinct o, 3,7y, € J generate all the relationship among the semi-invariants
Sym (V7).

The algebra Sym (V)" is graded by weight. Let Sym (V7). be the
vector space of the elements of weight w. Then Sym (V7)™ = ®wSym (V7)y2. If

w = (n,n,...,n) we will write w = (n)l71. If
W= (N1, M1,y N, N2, N2y ey N2y ey Ty Mgy e ey M)
m1 times mo times my times

me

we write w = (nq)"(ng)"2 .- (ny)™, or more compact w = n™. Here n :=

(n1,n2,...1n¢), m:= (my,mg,...my) and mi +mg + -+ +my = |J|.

3. Symbolic method. We will show that symbolic expressions can
be used in a very efficient way to describe and manipulate semi-invariants of the
ug-module Sym(Vy), d:= (di,da, . ..,ds). Recall that Sym(Vg)"2 = ker Dy.

Let R = {x,y,z,...} be an alphabet consisting of an infinite supply of
ordered roman letters. Denote by n, the ordinal number of the letter x in the set
M. To each letter z and to each integer number n associate the n + 1-dimension
vector space

me =Krg®dKe1 ®--- & Kep, 2V,

For a finite subset Z C R and for d := (dl,dg,...,dm) let V4 := ®pezVad,-

The action

(4) D(.I'Z) =Ti-1, D*(.I'Z) = (Z + 1)(dnm — i)xiﬂ,
E(.I'Z‘)Z(dnx—Qi)xi, iZO,l,...,dnm,xEZ.
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gives Sym (V7 4) the structure of an slp-module. The order ord S of a homoge-
neous semi-invariant S € Sym (V7 4)** is defined by

ord § := mkm{k | DFL(S) = 0}.

The algebra Sym (Vz,4)"* is graded by multidegree. Let (Sym (V7 4)*)
be the homogeneous component of multidegree m. Then

m

Sym (Vz,a)"? = ®m (Sym (Vz,4)"?)

m
The following result summarizes what is classically called “symbolic method”:

Theorem 3.1. There is a surjective us-homomorphism of vector spaces
A: (Sym (Vj)uQ)dm — (Sym (Vz,0)™),,,m = (m1,ma,...my),|Z| =t,

such that the composition Ao : (Symj)dm — (Sym (Vzvd)uQ)m 1§ surjective with
kernel

ker A o xy = (ker x)gm + <P— oP | P (Symy)am,
o€ 8,7,Ji €Supp P/ ~, i = 1,...t>.

Proof. Let V,, = (ao,a1) and V. = (20,21, ... ,) be two slp-modules
as above. It is well-known that the linear map ag ‘o) —— ilz; is an sly-
isomorphism of the vector spaces Sym"™(V,) and V, 5. In fact, we have

b 1 n—i+1 i—1

D(aya}) = iag~ oy (i = 1) wig = it D(w),

D.(af"a}) = (n —i)ag~taitt v (n — i) (i + 1) i1 = 3! Du(a).

Let us consider a set J C &, |J| = n. The linear multiplicative map
ag_ioﬂi —— il z; for all « € J determines the slo-homomorphism of the compo-
nent (Sym (V7))g—(g» into Sym"(Vq).

Let us now consider the component (Sym (VJ)“Q)W, where w =
(n1)™ (ng)™2 - (ny)™ and my + -+ + my = |J|. Let P be a symbol expres-
sion of (Sym (VJ)UQ)W. Let ¢ be a surjective map of the coset suppP/ ~ into a
finite set Z C R. Define the map A by

a‘gt"_i 11 — il o(a);,
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1 =0,1,...wtq, for all @ € supp P and extend it in the natural way to mono-
mials. Then A(P) is a multihomogeneous polynomial of multidegree m :=
(mq, ma,...my) in the set of ¢ letters Z. We associate to each roman letter z € 7
the variable set zg, x1, . .., Twt,, where p(a) = z, and wt,, = n; for some i. There-
fore we can conclude that A(P) € (Sym (V7 4)),,- Since A is a uz-homomorphism
and D (P) = 0, we see that the following inclusion holds:

A ((Sym (V7)*2) ) € (Sym (V1,0)"?)

Let us prove the surjectivity of the map A. Rewrite the us-module V7 4 as
V14 = ®amiVi(a)n;» where a runs over all coset representatives. Every semi-
invariant is a sum of multihomogeneous semi-invariants. Moreover, a multiho-
mogeneous semi-invariant S € (Sym (szd)”)m of multidegree (mi,mo,...my)
can be polarized to produce a multilinear semi-invariant P(S) of multidegree
(1,1,...,1). Note that

——

|J| times

e (7)),

where XN/I’d =@ 7Ven, 7 is union 7 with the set of new polarizing variables,

. €L
|Z| = |J|. Clearly, P(S) can be reconstructed from S by restitution. Since
|Z| = |J| we can associate to each symbol letter o € J a vector space Vj =,

for some natural n*. Extend the map zy — 1/k! ag**ka’f multiplicatively to all
monomials and denote it by A. We have the commutative diagram

(Sym (Vj)uQ)dm A (Sym (Vj’d)uQ)m
x /
~ us
Sym (V“) )(1, 1,...,1)
|Z| times

where all arrows are slp-homomorphisms, and A <Z~\(P(S ))) = S. Thus A is a
surjective map.

The part of the theorem concerning ker A o x can be proved in the same
manner as the proof in the preprint [14], see also [13]. O
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Observe that (Sym (Vz,4)*?), = (kerDg),,, where Dg is a derivation
of the polynomial algebra K[Z]. Therefore we obtain a handy tool for writing
elements of the kernel of arbitrary linear locally nilpotent derivations.

It is best to look now at some examples.

Example 3.1. Let us to consider the symbolic expression P :=

[, B8, 7]7§- Then supp P = {a, 3,7}, wt P = (2,3,3) = (2)'(3), supp P/ ~=
{{a},{B,7}}, |supp P/ ~ | = 2. Let T = {x,y}. Associate a to = and both f3,~
associate to y. Since d = (2, 3) then the map A acts by

a% — T, Qo — xl,a% — 2l g,

B3 = yo, B3 51 = y1, BoBi — 2lya, B — 3lys,
Yo = Y0, Va1 = Y1,707E = 2lya, 73— 3lys.

We have
P = [a, BI[B, 716 = a0’ 512 Bor0* 11 — a0 B1*0° — 2 apan B1Bo* o 1+
+2 apa1 812 6oy + a1? B0 v0 1 — 1?80 B10”.
Thus
A(P) = 2z0y2y1 — 6 T0ysyo — 2217 + 4 T1y290 + 2 T2Yoy1 — 2T2y1Yo =
= 220y2y1 — 6 ToYsyo — 2T1Y1 + 4 T1Y2Y0.

Consider the polynomial algebra K[Xo,Ys] := K|zo,z1,22,Y0,91,Y2,y3]. The
polynomial A(P) belongs to the kernel of the derivation Dy 3) of the algebra
K[X2, Y3] defined by

Da3)(wi) = wi—1,i = 1,2,D(93)(yi) = yi-1,1 = 1,2,3,Da.3)(z0) = D(2,3)(30) = 0.

Example 3.2. Let P = [a, 8]". Then supp P = {«, 5}, wt P = (n,n) =
(n)?, supp P/ ~= {{a, B}}, |[supp P/ ~ | = 1. Let T = {x} and associate a, 3 to
x. The map A acts by

n—i i . n—1i 3t . .
ay oy = ilag, By A = il = 0,1, n.

We have

n

A ([, B) = A (Z(—l)iaz}"aﬁﬁéﬂ?i) =Y (Vi = )iz

1=0
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Observe that [, 5]" = (—1)"[8,a|™ but, obviously, A ([, B]") = A([3,a]"). It
follows that A ([, 5]™) = 0, for odd n. Note, that the polynomial belongs to the
kernel of the basic Weitzenbdck derivation D,, of K[V}, ,,| defined by Dy, (z;) = 1.

Example 3.3. Consider the polynomial A = 312920 — 32320 — 21° €
ker D3. Find a symbolic expression of the semi-invariant A. To get a multilinear
polynomial polarize A two times with respect to the letters y and z:

Py(A) =3 yoz122 — 6yor320 + 3y12072 — 3y121° + 3y2m071 — 3Y370°,
P(A) =P.(P,(A)) = 3 20y172 — 6 20y073 + 3 20y271 — 6 20Y370 + 3 21Y0T2—
— 6219171 + 3 z1y200 + 3 22y01 + 3 22y170 — 6 23Y0X0-
The polynomial P(A) has multidegree (1,1,1). The map A acts by
T; l/i!agﬂ'aﬁ,yi — 1/i!ﬁgiiﬁi,zi — l/ilvgﬂ'%.

We have

A(P(A)) = —70*Bo°on® + 3/270° Bo* Brawar® + 3/270° BB’ an’ ar — 70° B’ a®+
+3/290°7180°a0en® — 670”71 80” Bran’ar + 3/270% 1 o o’ +
+3/270m1 %o a0’ ar + 3/270m % Bo* Bran® — 11° B’ a0’

After simplification we obtain

2 (P(A)) = 3 Boro’[a, B[] + 3 Bo®olev, Bller, 7 — 2 B0’ 7] — 290°[ev, B)°.

Taking into account A('yo3[a,ﬁ]3) = A(Bo®[o,7]?) = 0, and

A(Boro? (e, B, 7]) = A(Bo*volev, B[, 11?),

we get that A (P(A)) = 350702[a,5]2[a,’y]. Thus 50702[a,5]2[a,’y] is a symbolic
expression of A and

A=A (50702[%5]2[&,7]) :

Example 3.4. Let P = Ha<ﬁ[a,ﬁ]2, |suppP| = 2k. We have, see the
proof in [15], that
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A H [a7/8]2 -

a<pf
o 1 2! x9 k!'xp
X 219 3las s (k + 1)!xk+1
R 1) e .
(k} — 1)!1‘k_1 klay, (k} + 1)!$k+1 oo (2]{2 — 1)!1‘2k_1
klxy, (k + 1)! Thot1 (k + 2)! Tkt - (2k)' Tok

This semi-invariant belongs to ker Dy, has degree k+ 1 and is called the catalec-
ticant.

4. Convolution and semi-tranvectant. There is a simple and effec-
tive way to find semi-invariants of given multidegree m. The following differential
operator on Sym (V)

2
Iy’

is called a convolution with respect to the symbol letters o and 5. Obviously,
the convolution operator does not change the weight of a symbolic expression, so
Conv,, g is an endomorphism of the vector space Sym (V;Q)

Convoz,ﬁ = [avﬁ] O[,ﬁ €J,

gm-

Example 4.1. Let us find elements of the kernel of the derivation Dj 5 3
of multidegree (1,2, 1) and weight (1,2,2,3) = (1)}(2)?(3)!. Let J = {«a, 3,7, 6},
Z = {x,y, z}. We associate the roman letter = to the symbol letter «, the letter
y to both letters §,v and the letter z to the symbol letter &, respectively. The
map A acts by «; — x;, 7 = 0,1, ﬂg_’ﬁ{' — ily;, 'yg_"’yi’ — dly;, ¢ = 0,1,2, and
58’”5% — ilz;, z = 0,1,2,3. It is clear that the following symbolic expression
® = B335 has weight (1)1(2)?(3)!. The polynomial A(®) is equal to zoy3zo
and has multidegree (1,2,1). By direct calculations we get

o o
Convy,5(®) = 2 [, B1Bordds — 2voz0 | ° ",
Yo Y1
Conv,, 5 (Convy g(®)) = 12|« %) 52 12|70 Tl % Y1 7
.0 ( ,5(®)) [, B][7, 81807005 o wlleo =

Conv? 5 (Conva,5(®)) = 24 [a, B][v, 8]* Bodo + 48 (2092 — Y121 + yoz2) :53 :?ji
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Convg,s (Conv? 5 (Conva,(®))) = 24 [a, B[, 6]*[80] — 48 (3 moyo23y1—
—2x0y2y022 — 220y1°22 + 3ToY2y121 — 2ToYa’20 — 3Yo 123 + 3Y1T1Y022—

—y12T121 — YoT121Y2 + Y12120Y2)-

For a symbolic expression P denote by Conv(P) the set of all its possible
convolutions. For a subalgebra A € Sym (V.7)"? denote by Conv(A) the subal-
gebra generated by all possible convolutions Conv(P), P € A. The following
statement holds:

Lemma 4.1.

Sym (V7)™ = Conv(Sym (®aesKayp)).

Proof. Let P € (Sym(V7)")w. Then P is obtained by convolutions of
the semi-invariants [],c ayt € Sym (BaesKag). O

Example 4.2. Let J = {«a, 3,7}. The component (Sym(VJ)”)(2 1) 8
generated by the following 5 semi-invariants

O‘%BO’VO? a@p70 [av 5]7 QOBO [(17 ’Y]v a(% [B? ’Y]v [Oé, ’Y] [Oé, B]

All of them are convolutions of the semi-invariant a%ﬁom).

Let F' € Sym (V7 4)" and let ® € Sym (V7)™ be its symbolic represen-
tation. Denote by Conva(F') the set of elements A (Conv(®)). The elements of
Convy (F) are called A-convolutions. For a subalgebra 7 C Sym (V7 4)"? denote
by Conva(7) the algebra generated by all A-convolutions of all elements of the
algebra 7.

Theorem 4.1. Let N7 := K[z | © € Z]. Then Sym (Vz,q)"? = Conva(N7).

Proof. Consider an arbitrary homogeneous semi-invariant F €
Sym (V7 4)"?. Let ® be its symbolic expression. By Lemma 4.1, ® belongs to
Conv(Sym (®4e7Kayp)) and |J| = deg F. It is easy to see that

A(Sym (BacsKap)) = N7 and A (Conv(Sym (Bae7Kap))) = Conva (N7),

thus A(®) = F € Conv(N7). We get Sym (Vz,4)"** C Convy (N7). The inclusion
Convy (N7) C Sym (V7 4)* is obvious. 0O
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We have obtained a tool to find a generating system of the kernel for
Weitzenbock derivations.

Example 4.3. Let |Z| =n and d = (1,1,...,1). Prove that
ker Dg = K|z, zoy1 — 190 | * # y,x,y € I].

In fact, let F' be a homogeneous polynomial of N7 of degree m. Then its symbolic
representation ® has the form ® =[] ., a0, J C &, |J| = m. Since all factors
of ® have degrees 1, we obtain that all possible convolutions of the polynomial ®

have the form [[,c 7 a0 [15,e7[8:7], for a # 3,7. It follows

A H ap H B9 | = Hl‘o H (Yoz1 — y120), T # ¥, 2.

aceJ ByeT €T y,2€L
Thus Convy (F) € Klzg, xoy1 — 190 | * # y,z,y € Z] and

Convp (N7) = K[z, oY1 — 2190 | = # y, x,y € Z].

Example 4.4. Let |[Z| =n > 3,d = (2,2,...,2) and let F' be a homo-
geneous polynomial of degree m in N7. Then its symbolic representation ® has
the form ® = [[,c; a8, J C &, |J| =m-n. For m =1 we have ® = af,a € J.
It is obvious that Conv(®) = {a3,a € J}.

For m = 2 we have ® = o382, o # 3, a, 3 € J. There are only two
convolutions of ® : apfg|a, A] and [a, B]2.

For m = 3 we have & = a%ﬂgfyg, a, B, v € J. There exists a unique
indecomposable convolution: [«, 5][c, v][5,7]-

If m > 3 then any symbol expression is either decomposable or belongs
to ker A, see [12, p. 162]. We have

rog I1

A(ag) = z0, A (a0 fo[ar, B]) = I

A ([o, B) = 2 (zoy2 — 2191 + T2y2),

A ([a, B[, M[B,7]) = Ao’ 1712 B0 — o’ B> 1o+
+apB1®v0 a1 — Bo?araomi® + Bolar* v — Boarvo?B) =
= 2x022y1 — 2x0Y221 + 2T1Y220 — 2Yor122 + 2Yox221 — 2Y10220 =

o Yo =0
=2 r1r Yi -

Ty Y2 22
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Thus, the kernel ker Dy 5 oy is generated by the semi-invariants of these four
types.

As d; increases it becomes harder to apply Theorem 4.1. We will of-
fer other similar but more effective approach to find the kernel of Weitzenbock
derivations. In the paper [1] we introduced the concept of semi-transvectant,
an analogue of the classical transvectant. Recall that the algebra us, acts on
Sym (V7 4) by the locally nilpotent derivation D = Dg4. Let F,G € Sym (V7 4)"
be two semi-invariants of degrees p and ¢, respectively. The semi-invariant of the
form

Ny (T PLUF) DLG)
®) =30 () S

0 <7 < min(p,q), [m]; :==m(m—1)...(m— (i —1)),m € Z, is called the r-th
semi-transvectant of the semi-invariants F' and G.

Example 4.5. The semi-transvectant [F,G]! := [F,G] is called a semi-
Jacobian. If F,G, H are three semi-invariants of orders greater than unity, then
the iterated semi-Jacobian [[F,G], H] is reducible [10] and

ord(F) — ord(QG)

[F,G],H] = 2 (ord(F) + Ord(G) — 2)

1 1 1
+ 5l G’H + S H)?G — 3G, HJ?F.

Example 4.6. The semi-invariant [F, F]? := Hes(F) is called a semi-
Hessian. The square of a semi-Jacobian [F, G| is given by the formula

1 1
[F,G|[F,G] = |[F,G’F G — 5Hes(F)G2 - EHes(G)F?
Example 4.7. We have

2 1 1 1 2
(a5, B075)” = 3 a0’ Bimivo + 6 ao®Bon® — 3 a0 B170° — 3 aragy1 Boyo+

1 1 1
+ B 041250702 =3 [0477]250 -3 aola, v][8,7]-

The following statement holds:

Lemma 4.2 ([1]).
(i) For 0 < r < min(ord(zg), max(ord(F'),ord(G)) the semi-transvectant [zq, F' G]"
is reducible;

(i) If ord(F) = 0, then [z, F G]" = F[x¢,G]";
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(@) ord([F,G]") = ord(F') + ord(G) — 2r.
There is a close relationship between convolutions and semi-transvectants.

A k-fold contraction of two disjoint symbolic expressions ¢ and W is the symbolic
expression

H Convy g | (- V),
a?ﬁ

where the product runs over k pairs (o, 3) € Supp ® x Supp V.

Lemma 4.3 ([14]). Let ® and ¥ be two disjoint symbolic expressions.
The semi-transvectant [®, U]* is a linear combination of semi-invariants T, where
T runs through the k-fold contractions of ® and ¥, and each such T occurs with
a positive rational coefficient qr, where Y . qr = 1.

Using semi-transvectants we offer an algorithm for computation of the ker-
nel of Weitzenbdck derivations. For x € T let 7,;(F) := (20, F), i < min(ord(zy),
ord(F')). For a subalgebra T' C Sym (V7 4)" denote by 7(T') the algebra gener-
ated by the elements 7, ;(F),F € T, i < min(ord(zo),ord(F)). The following
theorem is a weak form of Gordan’s theorem:

Theorem 4.2 ([4]). Let T be a subalgebra of ker Dg containing N7 and
7(T)CT. ThenkerDgq =T7.

The theorem implies the following algorithm for ker D4. Define the series
of subalgebras

~
N

LTS CT C--

where 7; = N7 and 7; :
7; = ker Dy.

I
N

7(Z;—1). If for some ¢ we have that 7; = 7;;1, then

Example 4.8. Consider the basic Weitzenbock derivation D3, Z = {x}.
We have 77 = K[zg]. The subalgebra 75 is generated by the elements 7;(z}). By
Lemma 4.2, (i) for j > 1 all of them are reducible ones. The only irreducible semi-
invariant is dv = 1o(z9). Therefore, 7, = K|z, dv]. The algebra 73 is generated
by 7;(zfdv!), i, k,1 € N. Since ord(dv) = 2, then Lemma 4.2, (i) implies that the
algebra 73 is generated only by the elements 71 (dv), 72(dv) and 73(dv?). By (5) we
obtain that 73(dv?) = 0, 7o(dv) = 0 and tr := 71(dv) # 0. The direct calculation
shows that tr does not belong to Ts, thus T3 = K[t,dv,tr|. The algebra 7 is
generated by 7;(xEdv'tr™), i,k,1,m € N. As above we find the only new element
ch = 73(tr) for 7;. We have ord(ch) = 0 but the algebra 73 does not contain any
such invariants. It implies that 7y = K[t, dv, tr, ch]. By Lemma 4.2, (ii) we have
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that the algebra 75 does not contain any new semi-invariants. Thus 75 = T and
ker D = K[¢t, dv, tr, ch], where

dv = 112 — 220 T2,
_ 2 3 _
tr = 3x3x0” + 71 3xoT129,

ch = 8xgx® + 93220 + 621323 — 321222° — 18 2oz  T223.

Up to a constant factor the symbolic representations of these semi-invariants have

the form agfola, B2, foro?la, B[, ) and [a, B2[a, 2][8, 6][7, 6)2, respectively:

For d = 4,5,6 the kernel of the basic Weitzenbock derivation was calcu-
lated in [4]. The cases d = 7,8 were considered in [2], [6]. For d > 8 the problem
is still open, however the corresponding algebras of invariants were calculated for
d=9,10 in [8], [7].

Example 4.9. Consider the derivation Dy 3y, T = {z,y}, ord(zg) =
2, ord(yo) = 3. We associate the letter = to the set J; = {a,f,v,d} and

the letter y to the set Jo := {g,s¢,m,u}, respectively. The map A acts by

vy v e ilag, i = 0,1,2 for v € Jy and by vy ‘i — ily;, i = 0,1,2,3 for

ved Let D:=A ([a,ﬂ]2), A=A ([e, %]260%()), Q:=A ([8, %]2[77,5]%0778’),

R = A ([e, 5*[e, )¢, ul[n, 1]?).-
The minimal generating set for ker D(5 3) consists of the following 15 ele-
ments:

0, Yo,

D, [z0,y0]*, A, [0, yo),
[z0, A]?, [25, yol”, [z0, A], Q,
R, [z0, Q%

[0, 51°, [, Q1
(25, 50Q1°.

The proof for the corresponding algebras of covariants is in [11] or in [12], [10].

For instance, let us calculate the explicit form of the semi-invariant (zg, Q).
We have

(a2, e, %[, lseomd)” = [, 502, €] (ad, somd)” =
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_ 2 1, 9 1 4 2
= [g, 2]*[n, €] 0% + 300 — 31Q0M 070~
1 1
2 2 2
—sajagxny + 5 Ny | =
3 2
D 2 2 9 2 9 9 9 2 2 9 2 2
= gao 7071 €0 1 No€l — gao 7o M Eo¥r1EL Mo — gao 1" MNo EorpEL” +
2 2 3 9, 2 2.3 2 2 2 3 2
+ §a1040771 »onocp” 1" + §a1a0771 0y 10E1"E0 + §a10é0%1 No~€oxp€1” +
1 1
2 9 9 9 3.3 2.3 2 3.3 2
+ "o 1" eg €1 + 5%0 N a1 e1” — 6040 xom-eo 1"+
I 9 53 93 1 9 g5 3 9 1 45 5 5 4
+60¢0 o MEer 770—6@0 " MNLT€eL 60—§Oéo 21711 " Nog0”+
1 5 3 2_2 1 5 9 92 3 2 3, 2_3
+ gao »1"Mmno e e + gao 1Mo~ Ho"€1” — §a1040771%0 N €1”+
1 3, 2_3 1 3 9 3 1 3.2 2 2
+ §a1040%1 Mo~ €0~ M — §a1040%1770 nye1” + 5%0770 Q1 eg e —
1 1
2 2.3 2 2 3 2 2 3, 2 92_2
- 5%0770 Qa1 €p 21 M1 — 20 7o (1 €Epxi1El — 5%0 Mo &1 €17°€oM —
4 2.2 2 4 2.2 2 3 2 2 2
- §a1040771%0770 €0 1€l — §a1040771 2y MoEo” 1€1 + §a1040771%0 No~€ps1€1”+
I 9 9 3 9 1 3, 3_2
+ gao "M €0 1€1 — quOéo%l Mo €op~€l.
Then

2
(20,Q)* = A ( (0B, [e. 5[, eloeom) ) =
= 620y1°Y3 — 6 YayoT2y1 — 6 T1Y0Y1Y3 — 2Toy1y2” + 6 Yo T2ys — 6 Toy2ysyo+

+8x1yoy2” — 221y2y1” + 291 20

The algebras of joint covariants which are isomorphic to the kernels of the
following derivations Dy 4y, D(3,3) and D3 3 3) were calculated in [11], [12], [18].
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