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Abstract. The purpose of this paper is to study the dispersive properties
of the solutions of the Dunkl-Schrödinger equation and their perturbations
with potential. Furthermore, we consider a few applications of these results
to the corresponding nonlinear Cauchy problems.

1. Introduction. Dunkl operators Tj (j = 1, . . . , d) introduced by
Dunkl in [7] are parameterized differential-difference operators on R

d that are
related to finite reflection groups. Over the last years, much attention has been
paid to these operators in various mathematical (and even physical) directions. In
this prospect, Dunkl operators are naturally connected with certain Schrödinger
operators for Calogero-Sutherland-type quantum many-body systems ([1, 6, 14]).
Moreover, Dunkl operators allow generalizations of several analytic structures,
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such as Laplace operator, Fourier transform, heat semigroup, wave equations,
and Schrödinger equations ([2, 8, 9, 19, 20, 21, 24]).

In the present paper, we intend to continue our study of Dunkl-Schrödin-
ger equations started in [20, 21]. Indeed, in [20] we provided a general theory for
the equation

{

i∂tu + ∆ku = f(t, x), (t, x) ∈ I × R
d

u|t=0 = u0,

where ∆k :=

d
∑

j=1

T 2
j is the Dunkl Laplace operator. Furthermore, we studied the

dispersive phenomena and we proved the Strichartz estimate for this equation.
Next in [21], we have studied a class of nonlinear Dunkl-Schrödinger equations:

(1.1) i∂tu + ∆ku = F (u),

where F is a nonlinear complex valued function. We have studied a general theory
for the above equation focusing on the following problems:

(1) Existence and uniqueness of solutions of the Cauchy problem, and
(2) asymptotic behavior in time of the solutions, and in particular scat-

tering theory for the pair of equations consisting of nonlinear equations and of
homogeneous equation.

The main subject of this paper is the study of the dispersive properties
of the Dunkl-Schrödinger equation

i∂tu + ∆ku = 0,

and their perturbation with a potential:

i∂tu + ∆ku + V (t, x)u = 0.

We shall also consider a few applications of these results to the corresponding
nonlinear Cauchy problems.

A first main question studied in the present paper is: what part of the
dispersive properties is preserved if we perturb the equation with a potential term
of the form V (t, x)u or simply V (x)u? The importance of this question is clear
both form the point view of the applications, and as a first step to the general case
of equations with variables coefficients. Notice that classical Schrödinger equation
perturbed with a potential has been studied by many authors, as references see
[3].

The paper is organized as follows. In Section 2, we recall main results in
harmonic analysis associated with the Dunkl operators. In Section 3, we consider
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Dunkl-Schrödinger equation with and without quadratic potential. Instead of the
stronger dispersive estimate, our goal here is to prove the Strichartz estimates.
We give two quite general results of this type. In the first one, we consider the
model case: when V (x) = ‖x‖2, we study and we give some properties of the
semigroup generated by the generalized harmonic oscillator Hk := −∆k + ‖x‖2,
noted by e−zHk with z ∈ C, ℜ z ≥ 0. Next we establish the Strichartz estimate for
the inohomegeneous equation. In our second result, we consider a perturbation
of the equation of the form

{

i∂tu −Hku = V (t, x)u, (t, x) ∈ I × R
d

u|t=0 = u0 ∈ L2
k(R

d),

we prove this problem is well posedness under the assumption on V . In Section 4
we use a change of variables that turns the critical nonlinear Dunkl-Schrödinger
equation into the critical nonlinear Dunkl-Schrödinger equation with isotropic
harmonic potential, in any space dimension. This change of variables is isometric
on L2

k(R
d), and bijective on some time intervals. Using the known results for

the critical nonlinear Dunkl-Schrödinger equation (cf. [21]), this provides the
information for the critical nonlinear Dunkl-Schrödinger equation with isotropic
harmonic potential. In Section 5 we consider the perturbation of the Dunkl-
Schrödinger equation with quadratic potential. We prove that no finite time
blow up can occur for the nonlinear Dunkl-Schrödinger equation with quadratic
potentials, provided that the potential has a strong repulsive component.

Throughout this paper, C stands for a positive constant not necessarily
the same in each occurrence.

2. Preliminaries. This section gives an introduction to the theory of
Dunkl operators, Dunkl kernel and Dunkl transform. Main references are [7, 8, 9].

We consider R
d with the Euclidean scalar product 〈·, ·〉 and ‖x‖=

√

〈x, x〉.
For α in R

d\{0}, let σα be the reflection in the hyperplane Hα ⊂ R
d orthogonal

to α, i.e.

(2.1) σα(x) = x − 2
〈α, x〉
‖α‖2

α.

A finite set R ⊂ R
d\{0} is called a root system if R∩R.α = {α,−α} and

σαR = R for all α ∈ R. For a given root system R the reflections σα, α ∈ R,
generate a finite group W ⊂ O(d), called the reflection group associated with R.

We fix a positive root system R+ = {α ∈ R /〈α, β〉 > 0} for some β ∈ R
d\
⋃

α∈R

Hα.

We will assume that 〈α,α〉 = 2 for all α ∈ R+. A function k : R −→ C on a root
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system R is called a multiplicity function if it is invariant under the action of the
associated reflection group W . For abbreviation, we introduce the index

(2.2) γ = γ(k) =
∑

α∈R+

k(α).

Moreover, let ωk denotes the weight function

(2.3) ωk(x) =
∏

α∈R+

|〈α, x〉|2k(α),

which is W invariant and homogeneous of degree 2γ. We introduce the Mehta-
type constant

(2.4) ck =

(
∫

Rd

e−‖x‖2
ωk(x) dx

)−1

.

In the following we denote by

C(Rd) the space of continuous functions on R
d.

Cp(Rd) the space of functions of class Cp on R
d.

E(Rd) the space of C∞-functions on R
d.

S(Rd) the Schwartz space of rapidly decreasing functions on R
d.

D(Rd) the space of C∞-functions on R
d which are of compact support.

S ′(Rd) the space of temperate distributions on R
d.

Dunkl operators Tj , j = 1, . . . , d, on R
d associated with the finite reflec-

tion group W and multiplicity function k are given by

(2.5) Tjf(x) =
∂f

∂xj
(x) +

∑

α∈R+

k(α)αj
f(x) − f(σα(x))

〈α, x〉 , f ∈ C1(Rd).

In the case k = 0, the Tj, j = 1, . . . , d, reduce to the corresponding partial
derivatives.

Throughout this paper, we will assume that the multiplicity is non-nega-
tive, that is k(α) ≥ 0 for all α ∈ R. We write k ≥ 0 for short.
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We define the Dunkl-Laplace operator on R
d by

(2.6) ∆kf(x) =
d
∑

j=1

T 2
j f(x)

= ∆f(x) + 2
∑

α∈R+

k(α)

[ 〈∇f(x), α〉
〈α, x〉 − f(x) − f(σα(x))

〈α, x〉2
]

.

For y ∈ R
d, the system

(2.7)

{

Tju(x, y) = yju(x, y), j = 1, . . . , d,
u(0, y) = 1,

admits a unique analytic solution on R
d, which will be denoted by K(x, y) and

called Dunkl kernel. This kernel has a unique holomorphic extension to C
d ×C

d.

The Dunkl kernel possesses the following properties.

i) For z, t ∈ C
d, we have K(z, t) = K(t, z);K(z, 0) = 1 and K(λz, t) =

K(z, λt) for all λ ∈ C.

ii) For all ν ∈ N
d, x ∈ R

d and z ∈ C
d we have

(2.8) |Dν
z K(z, x)| ≤ ‖x‖|ν| exp(‖x‖ ‖ℜz‖),

with

Dν
z =

∂|ν|

∂zν1
1 · · · ∂zνd

d

and |ν| = ν1 + · · · + νd.

Notation. We denote by Lp
k(R

d) the space of measurable functions on
R

d such that

‖f‖Lp
k
(Rd) :=

(
∫

Rd

|f(x)|pωk(x) dx

) 1
p

< +∞, if 1 ≤ p < +∞,

‖f‖L∞
k

(Rd) := ess sup
x∈Rd

|f(x)| < +∞.

The Dunkl transform of a function f in L1
k(R

d) is given by

(2.9) FD(f)(y) =

∫

Rd

f(x)K(−iy, x)ωk(x)dx, for all y ∈ R
d.

Next, we give some properties of this transform (cf. [8, 9]).

i) For f in L1
k(R

d) we have

(2.10) ‖FD(f)‖L∞
k

(Rd) ≤ ‖f‖L1
k
(Rd).
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ii) For f in S(Rd) we have

(2.11) FD(Tjf)(y) = iyjFD(f)(y), for all j = 1, . . . , d and y ∈ R
d.

Proposition 1. The Dunkl transform FD is a topological isomorphism
from S(Rd) onto itself. If we put for f in S(Rd)

(2.12) FD(f)(y) =
c2
k

4γ+ d
2

FD(f)(−y), y ∈ R
d,

we have

FDFD = FDFD = Id.

Proposition 2. i) Plancherel formula for FD.
For all f in S(Rd) we have

(2.13)

∫

Rd

|f(x)|2ωk(x) dx =
c2
k

4γ+ d
2

∫

Rd

|FD(f)(ξ)|2ωk(ξ) dξ.

ii) Plancherel theorem for FD.

The renormalized Dunkl transform f → 2−(γ+ d
2
)ckFD(f) can be uniquely extended

to an isometric isomorphism on L2
k(R

d).

3. Dunkl-Schrödinger equations with and without harmonic

potential In this section we will discuss Strichartz type estimates for the Dunkl-
Schrödinger equations with and without harmonic potential.

3.1. Dunkl-Schrödinger semigroup. This subsection deals with the
Dunkl-type analogues of the classical Schrödinger semigroup on several Banach
spaces. These semigroups are generated by the Dunkl Laplacian, and they are
governed by a generalized Schrödinger kernel which was introduced and studied
in [20]. Firstly we collect some notations and results which we need in the sequel.

Notations. We denote by eit∆k the Dunkl-Schrödinger semigroup on
L2

k(R
d) defined by

(3.1) eit∆kv :=
1

ck|t|γ+ d
2

e−i(d+2γ)π
4
sgn tei

‖.‖2

4t

[

FD

(

ei
‖.‖2

4t v

)]

( .

2t

)

.

For any interval I of R (bounded or unbounded), we define the mixed
space-time Lp(I;Lq

k(R
d)) Banach space of (classes of) measurable functions u :
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I → Lq
k(R

d) such that ‖u‖Lp(I;Lq
k
(Rd)) < ∞, with

‖u‖Lp(I;Lq
k
(Rd)) =

(∫

I
‖u(t, .)‖p

Lq
k
(Rd)

dt

)
1
p

, if 1 ≤ p, q < ∞,

‖u‖L∞(I;Lq
k
(Rd)) = ess sup

t∈I
‖u(t, .)‖Lq

k
(Rd), if 1 ≤ q < ∞.

For any interval I of R (bounded or unbounded) and a Banach space X,
we define the mixed space-time C(I;X) space of continuous functions I → X.
When I is bounded, C(I;X) is a Banach space with the norm of L∞(I,X).

For 1 ≤ p < ∞, we denote by WLp(I) the weak Lp(I) Lebesgue space
defined as the set of locally integrable functions f on I with the finite norm

‖f‖WLp(I) = sup
r>0

rµ
{

x ∈ I : |f(x)| > r
}

1
p
,

where µ designates the Lebesgue measure.

Definition 1. We say that the exponent pair (q, r) is
d + 2γ

2
-admissible

if q, r ≥ 2,

(

q, r,
d + 2γ

2

)

6= (2,∞, 1) and

(3.2)
1

q
+

d + 2γ

2r
≤ d + 2γ

4
.

If equality holds in (3.2) we say that (q, r) is sharp
d + 2γ

2
-admissible, otherwise

we say that (q, r) is nonsharp
d + 2γ

2
-admissible. Note in particular that when

d + 2γ > 2 the endpoint

P = (2,
2d + 4γ

d + 2γ − 2
)

is sharp
d + 2γ

2
-admissible.

The following Proposition generalize, in the setting of Dunkl’s theory,
the Strichartz estimates studied by Strichartz, Ginibre, Velo, Keel and Tao and
others (cf. [13, 18, 25]).

Proposition 3. Let (U(t))t∈I be a bounded family of continuous opera-
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tors on L2
k(R

d) such that, we have

(3.3) ‖U(t)U∗(t′)f‖L∞
k

(Rd) ≤ C
(

Θ(t − t′)
) d

2
+γ

‖f‖L1
k
(Rd),

with Θ ≥ 0 and Θ ∈ WL1(I).

i) If I is an unbounded interval. Then, the estimates

‖U(t)u0‖Lq(I;Lr
k
(Rd)) ≤ C‖u0‖L2

k
(Rd)(3.4)

∥

∥

∥

∥

∫

R

U∗(t)f(t, ·)dt

∥

∥

∥

∥

L2
k
(Rd)

≤ C‖f‖
Lq′ (R;Lr′

k
(Rd))

(3.5)

holds for any sharp
d + 2γ

2
-admissible exponent (q, r) 6= P , where q′, r′ denotes,

as in all that follows, the conjugate exponent of q and r and U∗ the adjoint
operator of U .

ii) If I is a bounded interval. Then, the estimates (3.4) and (3.5) are

valid for any sharp
d + 2γ

2
-admissible exponent (q, r) 6= P , and for pairs (q, r)

such that 1 ≤ q ≤ 2, 2 ≤ r <
2(d + 2γ)

d + 2γ − 2
.

P r o o f. i) For the convenience of the reader, we prove the result, with
I = R. We have

‖U(t)u0‖Lq(R;Lr
k
(Rd)) = sup

ϕ∈Bq,r
k

∫

Rd+1

U(t)u0(x)ϕ(t, x)dtωk(x)dx

= sup
ϕ∈Bq,r

k

〈

u0,

∫

R

U∗(t)ϕ(t, .)dt

〉

L2
k
(Rd)

,

where Bq,r
k denotes the set of elements of D(Rd+1, C) such that the norm

‖ · ‖
Lq′ (R;Lr′

k
(Rd))

is less or equal to 1, and U∗ the adjoint operator of U.

Thus, using Cauchy-Schwarz inequality, we deduce that

‖U(t)u0‖Lq(R;Lr
k
(Rd)) ≤ ‖u0‖L2

k
(Rd) sup

ϕ∈Bq,r
k

∥

∥

∥

∥

∫

R

U∗(t)ϕ(t, ·)dt

∥

∥

∥

∥

L2
k
(Rd)

.

This duality argument simply says that inequality (3.5) implies (3.4). In order
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to prove (3.5), let us write

∥

∥

∥

∥

∫

R

U∗(t)ϕ(t, ·)dt

∥

∥

∥

∥

2

L2
k
(Rd)

=

∫

R2

〈U∗(t)ϕ(t, ·), U∗(t′)ϕ(t′, ·)〉L2
k
(Rd)dtdt′

=

∫

R2

〈U(t′)U∗(t)ϕ(t, ·), ϕ(t′ , ·)〉L2
k
(Rd)dtdt′.

As (U(t))t∈R is a bounded family of operators on L2
k(R

d) and using the dispersive
estimate (3.3), we get, thanks to the interpolation theorem, for all r ∈ [2,∞],

(3.6) ‖U(t)U∗(t′)ϕ(t, .)‖Lr
k
(Rd) ≤ C

(

Θ(t − t′)
)β(r)+1‖ϕ(t, ·)‖

Lr′
k

(Rd)
,

where β(r) =

(

d

2
+ γ

)(

1 − 2

r

)

− 1.

In the sharp γ +
d

2
-admissible case we have

1

q′
− 1

q
= −β(r).

The relation (3.6) and Hölder’s inequality gives

∥

∥

∥

∥

∫

R

U∗(t)ϕ(t, ·)dt

∥

∥

∥

∥

2

L2
k
(Rd)

≤
∫

R2

C(Θ(t − t′))β(r)+1‖ϕ(t, ·)‖
Lr′

k
(Rd)

‖ϕ(t′, ·)‖
Lr′

k
(Rd)

dtdt′.

We put

k(t) =

∫

R

(Θ(t − t′))β(r)+1‖ϕ(t′, ·)‖Lr′
k

(Rd)dt′.

Hence
∫

R2

(Θ(t − t′))β(r)+1‖ϕ(t, ·)‖Lr′
k

(Rd)‖ϕ(t′, ·)‖Lr′
k

(Rd)dtdt′ =

∫

R

k(t)‖ϕ(t, ·)‖Lr′
k

(Rd)dt.

Hölder’s inequality implies that

∫

R2

(Θ(t − t′))β(r)+1‖ϕ(t, ·)‖Lr′
k

(Rd)‖ϕ(t′, ·)‖Lr′
k

(Rd)dtdt′

≤ ‖ϕ‖
Lq′ (R;Lr′

k
(Rd))

(
∫

R

|k(t)|qdt

) 1
q

.
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On the other hand, since (q, r) is sharp γ+
d

2
-admissible (and it not an endpoint),

then we can apply weak Young inequality, obtaining
∥

∥

∥

∥

∫

R

U∗(t)ϕ(t, ·)dt

∥

∥

∥

∥

2

L2
k
(Rd)

≤ C‖Θ‖
q
2

WL1(I)
‖ϕ‖2

Lq′ (I;Lr′
k

(Rd))
.

As Θ is in WL1(I), (3.5) follows.

ii) We proceed as above we prove the result for any sharp
d + 2γ

2
-admis-

sible exponent (q, r) 6= P . Moreover it is easy to see that the weak spaces WLρ(I)

are in L1
loc for ρ > 1. Thus as Θβ(r)+1 ∈ WL

1
β(r)+1 , we deduce that Θβ(r)+1 ∈

L1(I) for 2 ≤ r <
2(d + 2γ)

d + 2γ − 2
. Hence, by Minkowski inequality for integrals,

‖k(t)‖Lq(I) ≤ ‖Θ‖Lβ(r)+1(I)‖ϕ‖Lq(I;Lr′
k

(Rd))
.

Integrating this inequality for q = ∞ over I yields

‖k(t)‖L1(I) ≤ C‖Θ‖Lβ(r)+1(I)‖ϕ‖L∞(I;Lr′
k

(Rd)).

Interpolation this with the above Lq estimate for q = 2 we get

‖k(t)‖Lq(I) ≤ C‖Θ‖Lβ(r)+1(I)‖ϕ‖Lq′ (I;Lr′
k

(Rd)) for 1 ≤ q ≤ 2.

Thus, using Hölder’s inequality and the following estimate
∥

∥

∥

∥

∫

I
U∗(t)ϕ(t, ·)dt

∥

∥

∥

∥

2

L2
k
(Rd)

≤
∫

I
k(t)‖ϕ(t, ·)‖

Lr′
k

(Rd)
dt

we deduce the result. �

Next, we recall the result proved in [20].

Proposition 4 (Strichartz-type Schrödinger estimate). Suppose that d ≥
1 and (q, r) and (q1, r1) are

d + 2γ

2
-admissible pairs. If u is a solution to the

problem

(3.7)

{

i∂tu(t, x) + ∆ku(t, x)=f(t, x), (t, x) ∈ I × R
d

u|t=0 =u0

for some data, u0, f and an interval I of R (bounded or not), then

(3.8) ‖u‖Lq(I;Lr
k
(Rd)) + ‖u‖C(I ;L2

k
(Rd)) ≤ C

(

‖u0‖L2
k
(Rd) + ‖f‖

Lq
′
1 (I;L

r
′
1

k
(Rd))

)

.
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Remark 1. We can prove this Proposition otherwise for admissible
pairs different from of extremal point P . Indeed we apply Proposition 3 i) with
U(t) := eit∆k the Dunkl-Schrödinger semigroup, which verifies the assumptions
of Proposition 3.

The last of this subsection is motivated by a different kind of uncertainty
principles written via the Dunkl-Schrödinger semigroup. Indeed, the following
identity proved in [20]

(3.9) u(t, x) = eit∆ku0(x) =
1

ck|t|γ+ d
2

e−i(d+2γ)π
4
sgn tei ‖·‖

2

4t

[

FD(ei ‖·‖
2

4t u0)

]

( x

2t

)

,

tells us that this kind of results for the free solution of the Dunkl-Schrödinger
equation with data u0

(3.10)

{

i∂tu(t, x) + ∆ku(t, x) = 0, (t, x) ∈ R × R
d

u|t=0 = u0,

is related to uncertainty principles. In this regards we use some uncertainty
principles for the Dunkl transform proved in [5, 12, 26] for obtain the following.

Proposition 5. (i) Let u0 a mesurable function on R
d and a, b > 0 such

that

u0(x) = O(e−a‖x‖2
), eit∆ku0(x) = O(e−b‖x‖2

).

If ab >
1

16t2
, then u0 ≡ 0. Moreover, if ab =

1

16t2
, then u is solution with initial

data, Ce−(a+ i
4t )‖x‖

2
.

(ii) Let u0 a mesurable function on R
d and a, b > 0 such that

ea‖x‖2
u0(x) ∈ Lp

k(R
d), eb‖x‖2

eit∆ku0(x) ∈ Lq
k(R

d)

with p, q ∈ [1,∞], with at least one of them finite. If ab ≥ 1

16t2
, then u0 ≡ 0.

(iii) If u0 ∈ L2
k(R

d), p ∈ (1, 2),
1

p
+

1

q
= 1, and a, b > 0 such that for some

t 6= 0
∫

Rd

|u0(x)|e
(2a)p

p
‖x‖p

ωk(x)dx +

∫

Rd

|eit∆ku0(x)|e
(2b)q

(2t)qq
‖x‖q

ωk(x)dx < +∞.

If ab ≥ 1

4
, then u0 ≡ 0.
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(iv) If u0 ∈ L2
k(R

d) such that for some t 6= 0
∫

R2d

|u0(x)‖eit∆ku0(y)|e
‖x‖‖y‖

2t ωk(x)dxdy < ∞,

then u0 ≡ 0.
(v) Let u0 a mesurable function on R

d such that

ea‖x‖2
u0 ∈ L1

k(R
d) + L∞

k (Rd) and

∫

Rd

log+ |eit∆ku0(ξ)e
b‖ξ‖2 |

λ
dξ < ∞,

for some constants a > 0, b > 0, λ > 0.

If ab >
1

16t2
, then u0 = 0 almost everywhere.

If ab =
1

16t2
, then u is solution with initial data, Ce−(a+ i

4t
)‖x‖2

.

P r o o f. We only prove the estimate (i), the proofs of (ii)–(v) being simi-
lar.

Set h(y) = ei ‖y‖2

4t u0(y). Then from (3.9) we get

u(t, x) =
1

ck|t|γ+ d
2

e−i(d+2γ)π
4
sgn tei ‖·‖

2

4t [FD(h)]
( x

2t

)

.

From the hypothesis on u(t, x), we have

|FD(h)|
( x

2t

)

≤ Ce−b‖x‖2
.

Thus

|FD(h)|(x) ≤ Ce−4bt2‖x‖2
.

Clearly |h(y)| ≤ Ce−a‖y‖2
. Now we apply Hardy’s uncertainty principle for the

Dunkl transform (cf. [12]) for h, we obtain the result. �

3.2. Generalized Hermite semigroup. In this subsection we recall
some facts about generalized Hermite semigroup related to the Dunkl operators.
We cite here, as briefly as possible, only those properties actually required for
the discussion. For more details we refer to [24].

In the setting of general Dunkl’s theory Rösler [24] constructed systems of
naturally associated multivariables generalized Hermite polynomials and Hermite
functions. The system of generalized Hermite polynomials {Hk

µ, µ ∈ N
d} is

orthogonal and complete in L2(Rd, e−‖·‖2
ωk), while the system {hk

µ, µ ∈ N
d} of

generalized Hermite functions

hk
µ(x) =

1
√

2|µ|µ!ck

e−
‖x‖2

2 Hk
µ(x), x ∈ R

d, µ ∈ N
d,
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is an orthonormal basis in L2
k(R

d). Moreover, hk
µ are eigenfunctions of the gen-

eralized harmonic oscillator:

(3.11) Hk := −∆k + ‖x‖2.

More specifically, one has

Hkh
k
µ = (2|µ| + d + 2γ)hk

µ,

where |µ| = µ1 + · · ·+µd. We not that the operator Hk is positive and symmetric
in L2

k(R
d) on the domain D(Rd).

Thus every f ∈ L2
k(R

d) has the expansion

(3.12) f =
∑

µ

〈f, hk
µ〉L2

k
(Rd)h

k
µ,

where 〈·, ·〉L2
k
(Rd) denote the canonical inner product in L2

k(R
d).

The above expansion may be written as

(3.13) f =
∑

n

P k
n f,

where

(3.14) P k
nf =

∑

|µ|=n

〈f, hk
µ〉L2

k
(Rd)h

k
µ,

is the spectral projection corresponding to the eigenvalue 2n + d + 2γ.

By orthonormality of the generalized Hermite functions

(3.15) ‖f‖2
L2

k
(Rd) =

∑

n

‖P k
n f‖2

L2
k
(Rd).

The semigroup
{

e−tHk , t > 0
}

generated by Hk (cf. [24]), can be defined
also with a complex parameter z instead of t, for ℜz > 0. We remark that the
semigroup complex e−zHk have the following integral representation:

(3.16) e−zHkf(x) =

∫

Rd

Hk
z (x, y)f(y)ωk(y)dy, z = r + it, ℜz > 0.

with

(3.17) Hk
z (x, y) =

∑

µ∈Nd
0

e−(2|µ|+d+2γ)zhk
µ(x)hk

µ(y).

The sum is the weil-known Mehler kernel, which can be found for instance in [24].
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For ℜz > 0 one has

(3.18) Hk
z (x, y)=

1

(2 sinh 2z)
d+2γ

2

exp

(

1

2
(− coth 2z(‖x‖2+‖y‖2)

)

K
( x

sinh 2z
, y
)

,

where K designate the Dunkl kernel given by the relation (2.7). This expression

is well defined also for z on the imaginary axis, except a multiples of i
π

2
. Indeed,

for t ∈ R\π

2
Z we get

(3.19) Hk
it(x, y) =

e−iπ d+2γ
4

(2 sin 2t)
d+2γ

2

exp

(

i

2
(cot 2t(‖x‖2 + ‖y‖2))

)

K

( −x

sin 2t
, y

)

.

From (3.17) it follows that Hk
z (x, y) = Hk

z (x, y), and also that

Hk
z+i π

2
(x, y) = e−iπ d+2γ

2 Hk
z (−x, y).

Here ℜz > 0, but if t ∈ R is not a multiple of π
2 also we conclude that

Hk
−it(x, y) = Hk

it(x, y) and Hk
i(t+ π

2
)(x, y) = e−iπ( d+2γ

2 )Hk
−it(x, y).

For initial data u0 belongs to the space of finite linear combinations of
generalized Hermite functions, the solution of the following problem

(3.20)







i
∂u

∂t
= Hku

u(·, 0) = u0

can be written

(3.21) e−itHku0 =

∞
∑

n=0

e−it(2n+d+2γ)P k
n (u0).

Comparing (3.15) with (3.21) we see that

(3.22) ‖e−itHku0‖L2
k
(Rd) = ‖u0‖L2

k
(Rd), t ∈ R.

The solution given by (3.20) can also be formally expressed as an integral operator
with kernel (3.19), which converges in the distribution sense. For real functions

u0, it follows that the Lp
k(R

d) norm of e−itHku0 is even and
π

2
-periodic as a

function of t, and thus determined by its values for 0 < t <
π

4
. The following

kernel estimate is crucial in our analysis.
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Proposition 6. Let Hk
z (x, y) be the kernel given by the Eq. (3.17). Then

for ℜz > 0, Hk
z satisfies the uniform estimate

(3.23) |Hk
z (x, y)| ≤ e−(2γ+d)r

| sin(2t)| d+2γ
2

, z = r + it, 0 < |t| ≤ π, x, y ∈ R
d.

P r o o f. In view of (3.17), we can write (3.18) in the form

(3.24) Hk
z (x, y) =

(

v

1 − v2

)
d+2γ

2

exp

[−(1 + v2)

2(1 − v2)
(‖x‖2 + ‖y‖2)

]

K

(

2v

1 − v2
x, y

)

,

where v = e−2(r+it). As

1 − v2 = 2e−2(r+it) sinh[2(r + it)],

and

| sinh[2(r + it)]| = | cos(2t) sinh(2r) + i sin(2t) cosh(2r)| ≥ | sin(2t) cosh(2r)|.
It follows from (3.24) and (2.8) that

|Hk
z (x, y)| ≤ e−(2γ+d)r

| sin(2t)| d+2γ
2

exp

[

ℜ
(−(1 + v2)

2(1 − v2)
(‖x‖2 + ‖y‖2) +

2v

1 − v2
‖x‖ ‖y‖

)]

.

Moreover by a simple calculations we see that
[

ℜ
(−(1 + v2)

2(1 − v2)
(‖x‖2 + ‖y‖2) +

2v

1 − v2
‖x‖ ‖y‖

)]

≤ 0.

The prove is immediately. �

The following proposition is a simple application of the estimate (3.23)
and the Riesz-Thorin interpolation theorem.

Proposition 7. Let p ∈ [2,∞], z = r + it such that r > 0 and t 6= 0.

Then the operator e−zHk maps Lp′

k (Rd) continuously to Lp
k(R

d) and

‖e−zHkf‖Lp
k
(Rd) ≤

(

e−2r

| sin 2t|

)(d+2γ)( 1
p′
− 1

2
)

‖f‖
Lp′

k
(Rd)

for all f ∈ Lp′

k (Rd).

P r o o f. It follows from Proposition 6 and the fact that e−zHk is a bounded
on L2

k(R
d)

‖e−zHkf‖L∞
k

(Rd) ≤
e−(2γ+d)r

| sin 2t| d+2γ
2

‖f‖L1
k
(Rd), ‖e−zHkf‖L2

k
(Rd) ≤ ‖f‖L2

k
(Rd).
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The general case is obtained by interpolation between the case p = 2 and
p = ∞. �

We shall compare the operators e−itHk and eit∆k by finding a link between
their kernels. The kernel of eit∆k is the Dunkl-Schrödinger kernel (cf. [20])

Ik(t)(x, y) = e−iπ d+2γ
4

sgn t 1

ck|t|
d+2γ

2

exp
[

i
1

4t
(‖y‖2 + |x‖2)

]

K

(−iy

2t
, x

)

.

The following Proposition gives an explicit relation between the two solution
operators e−itHk and eit∆k .

Proposition 8. For any f ∈ L2
k(R

d) and v > 0,

e−i arctan v
2

Hkf(x) = exp

(

−iv
‖x‖2

2

)

(1 + v2)
d+2γ

4 ei v
2
∆kf(x

√

1 + v2).

P r o o f. For 0 < t <
π

4
, we let tan 2t = v in (3.19) and get

Hk
i arctan v

2
(x, y) =

e−iπ d+2γ
4

ck

(√
1 + v2

v

)
d+2γ

2

exp
(

−i
v

2
‖x‖2

)

×

× exp

(

i

2v
(‖y‖2 + (1 + v2)‖x‖2)

)

K

(−iy

v
, (1 + v2)x

)

= exp

(

−iv
‖x‖2

2

)

(1 + v2)
d+2γ

4 Ik

(v

2

)

(x
√

1 + v2, y).

Integration against f(y)ωk(y)dy, we obtain the desired equation when f ∈ D(Rd).
The general case then follows by continuity in L2

k(R
d). �

As in the free Dunkl-Schrödinger equation (3.7), we want to prove the
Strichartz estimate.

(3.25) ‖e−itHkf‖Lq((0,2π),Lr
k
(Rd)) ≤ C(d, q, r)‖f‖L2(Rd)

with (q, r) is
d + 2γ

2
-admissible pairs. It makes it easy to prove the following re-

sult, which implies that the estimates (3.8) for the free Dunkl-Schrödinger equa-
tion and (3.25) are actually equivalent.

Proposition 9. Let 1 ≤ q, r ≤ ∞ and assume that
d + 2γ

r
+

2

q
=

d + 2γ

2
.

Then for f ∈ L2
k(R

d)

‖e−itHkf‖Lq((0, π
4
),Lr

k
(Rd)) = ‖eit∆kf‖Lq((0,∞),Lr

k
(Rd)).
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P r o o f. Assuming q, r < ∞, we get

∫ π
4

0

(
∫

Rd

|e−itHkf(x)|rωk(x)dx

)
q
r

dt =

=

∫ ∞

0

(∫

Rd

e−i arctanv
2

Hkf(x)|rωk(x)dx

)
q
r dv

2(1 + v2)

=

∫ ∞

0

(∫

Rd

∣

∣

∣(1 + v2)
d+2γ

4 ei v
2
∆kf(x

√

1 + v2)
∣

∣

∣

r
ωk(x)dx

)
q
r

× dv

2(1 + v2)
.

Using the relation
d + 2γ

r
+

2

q
=

d + 2γ

2
, and by a simple changement of variable

we obtain
∫ π

4

0

(
∫

Rd

|e−itHkf(x)|rωk(x)dx

)
q
r

dt =

∫ ∞

0

(
∫

Rd

|ei v
2
∆kf(x)|rωk(x)dx

)
q
r

dv.

The cases when q or r is infinite are similar. �

Now we state the our result of this section.

Theorem 1. Let u0 ∈ L2
k(R

d) and let u(t, x) = e−itHku0(x) be the
solution of the problem (3.20). Then u is periodic in t and u ∈ Lq([0, 2π];Lr

k(Rd))

for any sharp
d + 2γ

2
-admissible exponent (q, r) 6= P , and for all pairs (q, r)

1 ≤ q ≤ 2, 2 ≤ r <
2d + 4γ

d + 2γ − 2
, d ≥ 2. Further u satisfies the inequality

(3.26) ‖u‖Lq([0,2π];Lr
k
(Rd)) ≤ C(d, k)‖u0‖L2

k
(Rd)

for all u0 ∈ L2
k(R

d) and for the above ranges of q and r.

P r o o f. First we show that there is a subsequence zj = xj + it such that
e−zjHku0 converges to e−itHku0 in Lq([0, 2π];Lr

k(Rd)) as xj → 0. Notice that
since u0 ∈ L2

k(R
d), for each fixed t > 0 and xj > 0, we have

‖e−zjHku0 − e−itHku0‖2
L2

k
(Rd) =

∥

∥

∥

∥

∥

∞
∑

n=0

|e−xj(2n+d+2γ) − 1|eit(2n+d+2γ)P k
n u0

∥

∥

∥

∥

∥

2

L2
k
(Rd)

=

∞
∑

n=0

|e−xj(2n+d+2γ) − 1|2‖P k
n u0‖2

L2
k
(Rd)(3.27)

which converges to zero as xj → 0, by a dominated convergence argument applied
to the summation. Thus e−zjHku0 converges to e−itHku0 in L2

k(R
d) for each fixed
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t > 0 as xj → 0. By periodicity of e−itHku0 in t, we need to consider only
0 < t ≤ 2π. Since ‖e−zjHku0 − e−itHku0‖2

L2
k
(Rd)

→ 0 as xj → 0, and since

‖e−zjHku0 − e−itHku0‖2
L2

k
(Rd) ≤ (2‖e−itHku0‖2

L2
k
(Rd))

2 = 4‖u0‖2
L2

k
(Rd)

by dominated convergence theorem, it follows that

lim
xj→0

∫ 2π

0
‖e−zjHku0 − e−itHku0‖2

L2
k
(Rd)dt → 0.

Thus e−zjHku0 converges to e−itHku0 in L2([0, 2π], L2
k(Rd)). Hence we can ex-

tract a subsequence of this sequence, denoted also by e−zjHku0 that converges to
e−itHku0 for a.e. (t, x) ∈ [0, 2π] × R

d as xj → 0.

Now we want to prove (3.26). Indeed by Fatou’s lemma

‖e−itHku0‖r
Lr

k
(Rd) =

∫

Rd

|e−itHku0(x)|rωk(x)dx

≤ lim inf
xj→0

∫

Rd

|e−zjHku0(x)|rωk(x)dx.

Applying Fatou’s lemma once again, we get

∫ 2π

0
‖u(t, .)‖q

Lr
k
(Rd)

dt ≤
∫ 2π

0

(

lim inf
xj→0

∫

Rd

|e−zjHku0(x)|rωk(x)dx

)
q
r

dt

≤ lim inf
xj→0

∫ 2π

0

(
∫

Rd

|e−zjHku0(x)|rωk(x)dx

)
q
r

dt.

Moreover, from the relation (3.23), the generalized Hermite-Schrödinger semi-
group e−zjHk verify

‖e−zjHk‖L(L1
k
(Rd),L∞

k
(Rd)) ≤ C|t|− d+2γ

2 for |t| ≤ δ

and

‖e−zjHk‖L(L1
k
(Rd),L∞

k
(Rd)) ≤

C

| sin(2t)| 2γ+d
2

for |t| > δ,

for some δ > 0. Therefore (3.3) is satisfied for U(t) := e−zjHk with

Θ(t) = C

(

1

|t|1|t|≤δ +
1

| sin(2t)|1|t|>δ

)

.

By a simple calculations we see that Θ belongs to WL1([0, 2π]). Now we apply
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Proposition 3 ii) we obtain

∫ 2π

0

(
∫

Rd

|e−zjHku0(x)|rωk(x)dx

)
q
r

dt ≤ (C(d, k)‖u0‖L2
k
(Rd))

q

where the last inequality follows from (3.4) since the constant C(d, k) is indepen-
dent of xj . Taking the qth root on both sides, we get the required inequality. �

Remark 2. In the classical case, a similar result can be found in [11, 15],
where the authors used another methods that we can not adapt at the moment.
Our method use some ideas inspired by the works [16, 23].

Now let us consider the inhomogeneous problem:

(3.28)











i
∂u

∂t
−Hku = f(t, x), (t, x) ∈ R

d+1,

u(0, ·) = u0.

In this case, the solution is given by Duhamel’s formula:

(3.29) u(t, x) = e−itHku0(x) − i

∫ t

0
e−i(t−s)Hkf(s, x)ds.

In this case the solution need not be periodic in the t variable, unless u0 is periodic
in the t variable. For the inhomogeneous equation in the periodic case we prove
the following:

Theorem 2. Let u0 ∈ L2
k(R

d) and f ∈ Lq′([0, 2π];Lp′

k (Rd)) then the

solution u to the problem (3.28) lies in Lq([0, 2π];Lq
k(Rd)), for any sharp

d + 2γ

2
-

admissible exponent (q, r) 6= P , and for all pairs (q, r) 1 ≤ q ≤ 2, 2 ≤ r <
2d + 4γ

d + 2γ − 2
, d ≥ 2. Further u satisfies the inequality

(3.30) ‖u‖Lq([0,2π];Lr
k
(Rd)) ≤ C(d, k)

(

‖u0‖L2
k
(Rd) + ‖f‖

Lq′ ([0,2π];Lr′
k

(Rd))

)

,

for the above ranges of q and r.

P r o o f. By Theorem 1, we have

‖e−itHku0(x)‖Lq([0,2π];Lp
k
(Rd)) ≤ C‖u0‖L2

k
(Rd).

Therefore by (3.29), it is enough to show that

(3.31)

∥

∥

∥

∥

∫ t

0
e−i(t−s)Hkf(s, ·)ds

∥

∥

∥

∥

Lq([0,2π];Lr
k
(Rd))

≤ C(d, k)‖f‖
Lq′ ([0,2π];Lr′

k
(Rd))

.
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In view of Proposition 7 we have
∥

∥

∥

∥

∫ t

0
e−i(t−s)Hkf(s, ·)

∥

∥

∥

∥

Lr
k
(Rd)

≤
∫ t

0

∥

∥

∥e−i(t−s)Hkf(s, ·)
∥

∥

∥

Lr
k
(Rd)

ds

≤ C(d, k)

∫ 2π

0

‖f(s, ·)‖
Lr′

k
(Rd)

| sin 2(t − s)|(d+2γ)( 1
r′
− 1

2
)
ds.(3.32)

Since f ∈ Lq′([0, 2π];Lr′

k (Rd)), we have ‖f(s, ·)‖Lr′
k

(Rd) ∈ Lq′([0, 2π]) as a function

of s. Now by an application of the Young’s inequality as in Proposition 3, we see
that

∫ 2π

0

‖f(s, ·)‖
Lr′

k
(Rd)

| sin 2(t − s)|(d+2γ)( 1
r′
− 1

2
)
ds ≤ C‖f‖Lq′ ([0,2π];Lr′

k
(Rd)).

This completes the proof of the theorem. �

We consider the Cauchy problem for the Dunkl-Schrödinger equation with
the forced generalized harmonic oscillator:

(3.33)











i
du

dt
−Hku = V (t, x)u, (t, x) ∈ R × R

d

u(0, ·) = u0 ∈ L2(Rd).

Theorem 3. Let d≥2 and
1

p
+

2

r
=1, and assume that ‖V ‖L∞([0,∞);Lp

k
(Rd))

is sufficiently small where p ∈
[

d + 2γ

2
,∞
]

. Then there exists a unique global

solution of (3.33) belonging to C([0,∞);L2
k(Rd)) ∩ L2

loc([0,∞);Lr
k(Rd)).

P r o o f. We use the standard contraction mapping argument. By Duha-
mel’s formula

u(t, x) = e−itHku0 − i

∫ t

0
e−i(t−s)HkV (s, ·)u(s, ·)(x)ds.

For 2 ≤ r <
2d + 4γ

d + 2γ − 2
, by Theorem 1, there exists a positive constant C such

that

(3.34) ‖e−itHkf‖L2([0,2π];Lr
k
(Rd)) ≤ C‖f‖L2

k
(Rd),

and, by duality, this yields

(3.35)

∥

∥

∥

∥

∫ t

0
eisHkG(s, ·)ds

∥

∥

∥

∥

L2
k
(Rd)

≤ C‖G‖
L2([0,2π];Lr′

k
(Rd))

, t ∈ [0, 2π].
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Now, by various applications of Fubini’s theorem
∫

Rd

∫ 2π

0

∫ t

0
e−i(t−s)HkV F (s, ·)(x)dsG(t, x)ωk(x)dxdt =

∫ 2π

0

∫ t

0

∫

Rd

e−i(t−s)HkV F (s, ·)(x)G(t, x)ωk(x)dxdsdt =

∫ 2π

0

∫ t

0

∫

Rd

eisHkV F (s, ·)e−itHkG(t, x)ωk(x)dxdsdt =

∫

Rd

∫ t

0
eisHkV F (s, ·)(x)ds

∫ 2π

0
e−itHkG(t, x)dtωk(x)dx,

where the second equality follows using the orthogonality of the generalized Her-
mite functions. Thus, by the Cauchy-Schwarz inequality followed by two appli-
cations of (3.35) and duality,

(3.36)

∥

∥

∥

∥

∫ t

0
e−i(t−s)HkV (s, ·)F (s, ·)(x)ds

∥

∥

∥

∥

L2([0,2π];Lr
k
(Rd))

≤ C2‖V F‖L2([0,2π],Lr′
k

(Rd)).

We define the Banach space Xk = C([0, 2π];L2
k(Rd))∩L2([0, 2π];Lr

k(Rd))
via the norm

‖u‖Xk
= sup

t∈[0,2π]
‖u(t, ·)‖L2

k
(Rd) + ‖u‖L2([0,2π];Lr

k
(Rd)),

and the nonlinear map Lk : Xk → Xk by

LkF := e−itHku0 − i

∫ t

0
e−i(t−s)HkV (s, ·)F (s, ·)(x)ds.

By (3.21) and the conservation of the L2
k norm (3.22) we see that

‖e−itHku0‖Xk
≤ (C + 1)‖u0‖L2

k
(Rd),

and combining (3.35) and (3.36), we also have
∥

∥

∥

∥

i

∫ t

0
e−i(t−s)HkV (s, ·)F (s, ·)(x)ds

∥

∥

∥

∥

Xk

≤ (C + C2)‖V ‖L∞([0,∞);Lp
k
(Rd))‖F‖Xk

;

here we have used the fact that

‖V F‖
L2([0,2π];Lr′

k
(Rd))

≤ ‖V ‖L∞([0,2π];Lp
k
(Rd))‖F‖L2([0,2π];Lr

k
(Rd)),

1

p
+

2

r
= 1.
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Thus we see that Lk maps {f : ‖f‖Xk
≤ 2(C + 1)‖u0‖L2

k
(Rd)} into itself provided

(C + C2)‖V ‖L∞([0,2π];Lp
k
(Rd)) ≤

1

2
. This also guarantees that

(3.37) ‖Lk(f − g)‖Xk
≤ 1

2
‖f − g‖Xk

,

so that by the contraction mapping principle, there exists a solution. Now al-
though the L2

k-norm may have increased in size, we know that it is at least finite,
so by iterating the process, replacing u0 with u(2nπ, ·), n ∈ N, we obtain a global
solution.

To see that the solution is unique in L2
loc([0,∞);Lr

k(Rd)), suppose that u1

and u2 are solutions. Then by (3.36) as before, we see that

‖u1 − u2‖L2([2nπ,2(n+1)π];Lr
k
(Rd)) ≤

1

2
‖u1 − u2‖L2([2nπ,2(n+1)π];Lr

k
(Rd))

for all n ≥ 0, so they are in fact the same. �

4. Critical nonlinear Dunkl-Schrödinger equations with and

without harmonic potential. In this section we collect some notations
which we need in the sequel.

Notations. We denote by Hs
k(Rd) (Dunkl-Sobolev space) (s ∈ R) Hilbert

space of elements u ∈ S ′(Rd) such that (1 + ‖ξ‖2)
s
2FD(u) ∈ L2

k(R
d). Hs

k(R
d) is

equipped with the norm

‖u‖Hs
k
(Rd) = ‖(1 + ‖ξ‖2)

s
2FD(u)‖L2

k
(Rd).

The Hilbert space Σk := H1
k,W (Rd)

⋂

FD(H1
k,W (Rd)) equipped with the norm

(4.1) ‖u‖Σk
:= ‖u‖H1

k
(Rd) + ‖xu‖L2

k
(Rd),

where

H1
k,W (Rd) :=

{

u ∈ H1
k(Rd) : u(σα) = u, for all α ∈ R+.

}

Let u be a solution of the nonlinear Dunkl-Schrödinger equation:

(4.2)

{

i∂tu(t, x) + ∆ku(t, x) = λu|u|
4

d+2γ , (t, x) ∈ R × R
d, λ ∈ R

u(0, ·) = u0.

In [21], we have proved that if u0 in Σk, then there exists T such that u ∈
C(] − T, T [; Σk).
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Fix w > 0 and definefor |t| <
arctan(wT )

w

(4.3) v(t, x) =
1

(cos(wt))
d+2γ

2

e−i
w tan(wt)

4
‖x‖2

u

(

tan(wt)

w
,

x

cos(wt)

)

.

Then v solves the following

(4.4)



















i∂tv(t, x) + ∆kv(t, x) =
w2‖x‖2

4
v(t, x) + λv(t, x)|v(t, x)|

4
d+2γ ,

(t, x) ∈ R × R
d,

v(0, ·) = u0

Reciprocally, if v solves (4.4), then u, defined by

(4.5) u(t, x) =
1

(1 + w2t2)
d+2γ

4

e
i w2t

1+w2t2
‖x‖2

4 v

(

arctan(wt)

w
,

x√
1 + w2t2

)

solves (4.2). The transforms (4.3) and (4.5) do not alter the initial data u0, and
are isometric on L2

k(R
d).

The aim of this section is the follow:

Proposition 10. Let u0 ∈ Σk. Then there exist Tmin, Tmax > 0 and there
exists a unique, maximal solution

u ∈ C(] − Tmin, Tmax[; Σk) ∩ C1(] − Tmin, Tmax[;H
−1
k (Rd))

of problem (4.4). It is maximal in the sense that is Tmax < ∞, then ‖u(t, ·)‖H1
k
(Rd)

→ ∞ as t ↑ Tmax, and if Tmin < ∞ then ‖u(t, ·)‖H1
k
(Rd) → ∞ as t ↓ −Tmin. In

addition,

(1) Conservation of mass: ‖u(t, ·)‖L2
k
(Rd) = ‖u0‖L2

k
(Rd).

(2) Conservation of first part of the energy:

E1
k(u) =

∥

∥

∥

∥

1

2
wx sin(wt)u(t, ·) − i cos(wt)∇ku(t, ·)

∥

∥

∥

∥

2

L2
k
(Rd)

+
(d + 2γ)λ

d + 2γ + 2
cos2(wt)‖u(t, ·)‖

2d+4γ+4
d+2γ

L

2d+4γ+4
d+2γ

k
(Rd)

.
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(3) Conservation of second part of the energy:

E2
k(u) =

∥

∥

∥

∥

1

2
wx cos(wt)u(t, ·) + i sin(wt)∇ku(t, ·)

∥

∥

∥

∥

2

L2
k
(Rd)

+
(d + 2γ)λ

d + 2γ + 2
sin2(wt)‖u(t, ·)‖

2d+4γ+4
d+2γ

L

2d+4γ+4
d+2γ

k
(Rd)

.

P r o o f. The results follows from the relation between the problems (4.2)
and (4.4) and the known results for the critical nonlinear Dunkl-Schrödinger
equation proved in [21]. �

5. The nonlinear Schrödinger equation with a quadratic po-

tential. The main results of this Section is in sprit of the classical case (cf.
[3, 4, 10, 13, 17]). Consider a real valued potential U ∈ E(Rd) such that

U ≥ 0 and DµU ∈ L∞
k (Rd) , for all µ ∈ N

d such that |µ| ≥ 2.

The model case being U(x) = ‖x‖2. We define the operator Ak on L2
k(R

d) by
{

D(Ak) := {u ∈ H1
k(Rd) : U |u|2 ∈ L1

k(R
d) and ∆ku − Uu ∈ L2

k(R
d)},

Aku := ∆ku − Uu, for u ∈ D(Ak).

We consider the nonlinear Dunkl-Schrödinger equation

(5.1)

{

iut + Aku = V u + f(u(·), ·),
u(0, ·) = u0;

where V and f are as follows:

V : R
d → R such that V ∈ Lp

k(R
d)+ L∞

k (Rd) for some p ≥ 1, p >
d + 2γ

2
.

f : C × R
d → C be a is measurable in x and continuous in z ∈ C, and

that f(0, x) = 0, almost everywhere on R
d. Assume that there exist constants C

and µ ∈
[

0,
4

d + 2γ − 2

)

such that

|f(z1, x) − f(z2, x)| ≤ C(1 + |z1| + |z2|)µ|z1 − z2|,
for almost all x ∈ R

d and all z1, z2 ∈ C.

Set

F (z, x) =

∫ |z|

0
f(s, x)ds, for all z ∈ C and almost all x ∈ R

d.
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Finally, set

g(u) = V u + f(u(·), ·)

G(u) =

∫

Rd

[

1

2
V (x)|u(x)|2 + F (u(x), x)

]

ωk(x)dx,

and

Ek(u) =
1

2

∫

Rd

|∇ku(x)|2 + U(x)|u(x)|2ωk(x)dx − G(u).

Concerning the existence of solutions of (5.1) for initial data in L2
k(R

d),
we proceed as in the Dunkl-Schrödinger equation without potential (cf. [21]), we
prove the following result:

Proposition 11. Let g be as above, and assume further that µ <
4

d + 2γ
.

Let r = max

{

µ + 2,
2p

p − 1
,

2q

q − 1

}

and let (q, r) be the corresponding sharp

d + 2γ

2
-admissible pair. Then, for every u0 ∈ L2

k(R
d), there exists a unique

function u ∈ C(R, L2
k(R

d)) ∩ Lq
loc(R, Lr

k(R
d)) with ut ∈ Lq

loc(R, (D(Ak))′), solu-
tion of (5.1). In addition, we have ‖u(t)‖L2

k
(Rd) = ‖u0‖L2

k
(Rd), for all t ∈ R, and

u ∈ La
loc(R, Lb

k(R
d)), for every sharp

d + 2γ

2
-admissible pair (a, b).

On the follow we assume that W = Z
d
2.

Now, we consider the nonlinear Dunkl-Schrödinger equation on R
d:

(5.2)

{

i∂tu(t, x) + ∆ku(t, x) = V (x)u + λu|u|p, (t, x) ∈ R × R
d,

u(0, ·) = u0

where V is of the form:

(5.3) V (x) =
d
∑

j=1

δjω
2
j x

2
j : d ≥ 1, ωj > 0, δj ∈ {−1, 0, 1}, δ1 = −1.

The last assumptions means that we do not consider positive potentials as in the
previous sections.
We denote

HV,k = −∆k + V, Uk
V (t) = e−i tHV,k .

Proposition 12. The semigroup (Uk
V (t))t∈R is a unitary on L2

k(R
d),

satisfying the dispersive estimate (3.3). Then there exists Θ ∈ WL1(R) such that
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for any T ∈ R̄+, and any sharp
d + 2γ

2
-admissible pairs (q, r) and (q̃, r̃) we have

‖Uk
V (t)f‖Lq(]−T,T [;Lr

k
(Rd)) ≤ C‖Θ1]−2T,2T [‖

1
q

WL1(R)
‖f‖L2

k
(Rd),

∥

∥

∥

∥

∫ t

0
Uk

V (t − s)F (s)ds

∥

∥

∥

∥

Lq(]−T,T [;Lr
k
(Rd))

≤ C‖Θ1]−2T,2T [‖
1
q
+ 1

q̃

WL1(R)
‖F‖

Lq̃′ (]−T,T [;Lr̃′
k

(Rd))
.

P r o o f. As V is of the form (5.3), then we have:

(5.4) Uk
V (t)f := e−itHV,kf =

d
∏

j=1

(

1

2igj(t)

)1/2 ∫

Rd

Sk(t, x, y)f(y)ωk(y)dy

where

Sk(t, x, y) =

d
∏

n=1

e
i

gn(t)

�
x2

n+y2
n

2
hn(t)

�
Kαn

(−ixn

gn(t)
, yn

)

and the functions gn, hn and Kαn are given by:

(5.5) (gn(t), hn(t)) =































(

sin h(2wnt)

wn
, cos h(2wnt)

)

, if δn = −1,

(t, 1), if δn = 0,

(

sin(2wnt)

wn
, cos(2wnt)

)

, if δn = 1

(5.6) Kαn(zn, tn) = jαn−
1
2
(izntn) +

zntn
2γ + 1

jαn+ 1
2
(izntn), zn, tn ∈ C, αn ≥ 0

where for β ≥ −1
2 , jβ is the normalized Bessel function defined by

jβ(z) = 2βΓ(β + 1)
Jβ(z)

zβ
= Γ(β + 1)

∞
∑

n=0

(−1)n(z
2 )2n

n!Γ(β + n + 1)
,

with Jβ is the Bessel function of first kind and index β.
Thus we have, for some δ > 0,

‖Uk
V (t)‖L(L1

k
(Rd),L∞

k
(Rd)) ≤ C|t|− d+2γ

2 for |t| ≤ δ.
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Now for |t| > δ, the “worst” possible case is when, say, δ1 = −1 and δj = 1 for
j ≥ 2. Then

‖Uk
V (t)‖L(L1

k
(Rd),L∞

k
(Rd)) ≤ C



e−ω1|t|
d
∏

j=2

1

| sin(2ωjt)|





1
2

for |t| > δ.

Therefore (3.3) is satisfied with

Θ(t) = C







1

|t|1|t|≤δ +



e−ω1|t|
d
∏

j=2

1

| sin(2ωjt)|





1
d+2γ

1|t|>δ






.

By a simple calculations we see that Θ ∈ WL1(R), finally we apply Proposition 3,
we obtain the result. �

Our result of this section is the follow:

Theorem 4. Let d ≥ 3, λ ∈ R, p ≤ 4

d + 2γ − 2
, and V satisfying (5.3).

We assume that u0 ∈ L2
k(R

d).

i) If p < 4
d+2γ , then (5.2) has a unique solution

C ∩ L∞(R;L2
k(R

d)) ∩ L
4p+8

p(d+2γ)

loc (R;Lp+2
k (Rd)).

In addition, the L2
k-norm of u(t, .) is independent of time.

ii) If p ≤ 4

d + 2γ
, then exists δ > 0 such that if ‖u0‖L2

k
(Rd) < δ, then

(5.2) has a unique solution u ∈ C(R;L2
k(R

d)) ∩ Lp+2(R;Lp+2
k (Rd)). In addition,

the L2
k-norm of u(t, ·) is independent of time, and there is scattering: there exist

unique u−, u+ ∈ L2
k(R

d) such that

‖e−itHV,k − u±‖L2
k
(Rd) −→

t→±∞
0.

P r o o f. The first part of Theorem 4 is straightforward : one can mimic
the proof given in the case of the nonlinear Dunkl-Schrödinger equation with no
potential (cf. [21]). We recall the main argument. Duhamel’s formula writes

(5.7) u(t) = Uk
V (t)u0 − iλ

∫ t

0
Uk

V (t − s)(|u|pu)(s)ds.

Define F (u)(t) as the right hand side of (5.7). The idea is to use a fixed point
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argument in the space given in Theorem. Introduce the following Lebesgue ex-
ponents:

r = p + 2, q =
4p + 8

(d + 2γ)p
; s =

2p(p + 2)

4 − (d + 2γ − 2)p
.

Then (q, r) is the sharp d+2γ
2 -admissible pair and

1

r′
=

p

r
+

1

r
;

1

q′
=

p

s
+

1

q
.

The main remark to prove the first point of Theorem is that if p <
4

d + 2γ
, we

have
1

q
<

1

s
and Hölder’s inequality in time yields

‖u‖Ls(I;Lr
k
(Rd)) ≤ |I|

1
s
− 1

q ‖u‖Lq(I;Lr
k
(Rd)) = |I|

4−(d+2γ)p
4p ‖u‖Lq(I,Lr

k
(Rd)).

The positive power of |I| yields contraction in L∞(I;L2
k(R

d))∩Lq(I;Lr
k(Rd)) for

small time intervals, and the conservation of the L2
k norm of the solution shows

global existence at the L2
k level. This proves i).

If p =
4

d + 2γ
, then s = q, and Proposition 12 yields

‖u‖
L

2d+4γ+4
d+2γ (I;L

2d+4γ+4
d+2γ

k
(Rd))

≤ C‖u0‖L2
k
(Rd) + C‖u‖

d+2γ+4
d+2γ

L
2d+4γ+4

d+2γ (I;L

2d+4γ+4
d+2γ

k
(Rd))

,

for some constant C independent of the time interval I. The idea is then to use
a bootstrap argument, for ‖u0‖L2

k
(Rd) sufficiently small. This completes the proof

of the first part of Theorem. Note that in the small data case, we used the fact
that we have global in time Strichartz estimates, due to the repulsive character
of the potential, δ1 = −1 in (5.3), we obtain the results. �
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