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ABSTRACT. We investigate the blow-up of the solutions to a nonlinear
parabolic system with Robin boundary conditions and time dependent coef-
ficients. We derive sufficient conditions on the nonlinearities and the initial
data in order to obtain explicit lower and upper bounds for the blow up
time t*.

1. Introduction. The blow-up phenomena for solutions to linear and
nonlinear parabolic equations and systems have been widely studied and different
methods have been introduced in order to find bounds for blow-up time t*. We
refer to the books of Straughan [11] and Quittner-Souplet [10], and the papers of
Vazquez [12] and Weissler [13], [14]. Recently Payne, Philippin, Schaefer in [5]-
[6] and Payne, Philippin and Vernier-Piro in [7]-[8] (see also references therein)
have considered nonlinear boundary value problems under different boundary
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conditions, deriving lower and upper bounds for the blow-up time t* as well as
sufficient conditions for global existence of the solutions.

In this paper we investigate the blow-up phenomena of the classical solu-
tion (u(z,t),v(z,t)) of the following Robin system
( Au + Kl(t)fl(’l)) =u; inQx (O,t*),

Av+ Ka(t) fo(u) = v in Q% (0,t%),

%(x,t) = —au, on 0N x (0,t"),
(1.1) v

ov »

a(a:,t) = —fv, on IN x (0,t%),

’U,(.’E,O) - ’U,O(l') Z 07 on Q?

U(JI,O) = ’UO(‘%‘) >0, on Q?

where Q is a bounded domain in RV, N > 2 with 0Q sufficiently smooth, the

ou Ov
coefficients K (t), Ko(t) and fi, fo positive functions and 5, 5y, e the out-

v’ Ov
ward normal derivative of the vector-valued solution (u,v) on the boundary 052,
« and (3 are two positive constants satisfying

(1.2) 0<a<p

The initial data ug(x),vo(z) are nonnegative smooth functions, such that

0 0
g0 _ —Quy, % = —fBuvg, r € 0L, while t* stands for the blow-up time if blow

up occurs, otherwise t* = co. It is well known that the solution can fail to exist
only by blowing up at finite time ([1], [2]) and the geometry of the domain €2,
the nonlinearities, the boundary data and the initial conditions greatly affect the
evolution in time of the solution.

We note that u and v are non negative in = and t € (0, ¢*) by the parabolic
maximum principle applied to the the system (1.1).

The main aim of this paper is to derive explicit upper and lower bounds
for the blow-up time for the solution of (1.1). We remark that if K;, Ky are

constant, bounds for the blow-up time are derived in [3], where on 92 x (0,t*)

ou v .. .
5 — % (u), — = g2(v), g1, g2 positive functions.
v

For systems with Dirichlet and Neumann boundary conditions we refer
to [3] and [9].

We consider another class of parabolic systems with Robin type boundary
conditions in [4], where sufficient conditions are introduced in order to obtain
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global existence of the solution as well as upper and lower bounds for the blow-
up, if blow-up occurs.

The paper is organized as follows. In Section 2 we derive a lower bound
for the blow up time ¢* under suitable conditions on data and for convex domain
in R3. In Section 3 we remove the restriction on the domain and under alternative

conditions on data an upper bound is obtained.

ou .
Throughout the paper the notations u; = ot 1,...,N and (-) for
”
the derivative of the coefficients will be used and the slummation convention over

repeated indexes will be assumed.

2. Lower bound. Under suitable conditions on non linearities and
we get a differential inequality and we derive a lower bound for ¢*.

To this end we will use a Sobolev-type inequality introduced in [3] which
plays an important role in deriving the lower bound. However, it must be noted
that the inequality holds only if we consider our domain Q C R3.

Let us suppose K1 < K5 and we define the auxiliary function

(2.1) d(t) = K2(t) /Q(u2 + 0B Pdz, p>1

We say that (u,v) blows up in ®-measure when

lim ®(t) = oc.

t—t*
We now prove the following result

Theorem 2.1. Let (u,v) be the solution of (1.1), in a convexr domain
Q) C R?, blowing up at time t* in ®-measure. Assume that there exists a positive
constant Cy such that

(2.2) wfy(v) + vfa(u) < Co(u? + v*)PHh
Moreover assume that Ko(t) satisfies

K5(t)
Ks(t)

(2.3) <5, 6>0.

Then the solution blows up in the ®-measure and

A
(2.4) ST A(O) et
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(&:®M) with some if not all h; greater than one.

[]es

where ¢p(P) =
i=1

Proof. We compute
Ky

d'(t) =2 (F) K3 / (u? 4+ v?)%P + 4pK?3 / (u? 4 v?)?PH(uAu + vAv)dz
2 Q Q

+4pK22/(u2 + v2)2P K uf1 (v) + Kavfo(u)]de.
Q

Now by (2.2), (2.3) and the assumption K; < Ks we obtain
B'(t) < 200 + ApK2 /Q div [(UQ o)L (uVu + uvv)} dz
— 8p(2p — 1) K3 /Q(u2 + v2)?P72(uVu + vVo) (uVu + vVu)de
— 4pK3 /Q(u2 + 0?2 (|Vul? + |Vo|?)dz + 4pCo K /Q(u2 +v?)3Pdz.

Now by divergence theorem and boundary conditions in (1.1) and as-
sumption (1.2) we get

(2.5) ®'(t) <260 — 4pK22a/ (u® + v?)*Pds
o0

—8p(2p — 1) K3 / (u? 4+ v?)*P~2(uVu + vVo) (uVu + vVv)de
Q

— 4pK3 / (u? 4+ v*)?P7H(|Vul* + |Vol*)d + 4pCo K / (u® 4 v*)*Pdz.
Q Q

Now we neglect the second (negative) term in (2.5), and we use the in-
equality (u? +v?)(|Vul|? +|Vv|?) > (uVu+vVv)(uVu+vVo) in the fourth term
to have

(2.6) ®'(t) <200 —4p(4p — 1)K2 / (u? 4 v?)?P~2(uVu + vVo) (uVu + vVv)de
Q

+ 4pCo K3 / (u? 4 v?)*Pdz.
Q
For simplicity we define

(2.7) V= (u? + )P,



Remarks on blow up time 231

then
(2.8) ViVi = 4p* (u® + v*)? 2 (uVu + vVo) (uVu 4+ vVo).
By plugging (2.7) and (2.8) in (2.6) we have
1
(2.9) P/(t) <260 — (4 — ];)KQZ /Q ViVi + 4pCo K3 /Q Vida.

In the third term in (2.9) we use the inequality

3

1 1y 3
/V3d:c§ {i/ VZidz + <1+i) (/ Vde)Q (/ \VV\Qd:c)Z}
Q 2p0 Jo Po Q Q

with
= min(z; - v; d? = max(z; - T
00 r%n(xl Vi), m@x(zl x;),

obtained by application of a Sobolev type inequality derived in [8] Lemma A.2,
valid only in a convex domain C R? we have

(2.10) Kg(t)/ V3dr < {iKg/ V2dx
Q 2po Q

3
1 1y 3
1
+ (1 + i) (—Kg/ V2dx>2 <TK§/ yvam) i
P0 T [¢) Q

7 > 0 a suitable constant to be chosen later on. , ,
In (2.10) we use the basic inequality (a + b)2 < /2 ((ﬁ + bi) and we

w

obtain

(SIS

3
V3de < \/5(21)2 o

o

3 3 3
+V2 (1 + 1)2 (LI))4 <TK§/ \VV\Qd:c>4.
Po T Q

Now we use the inequality a"b* < ra + sb, r + s = 1, we have

(2.11) Kg(t)/

Q

3 3
33 1 d\?
(2.12) KS/V?’da;g — B3 4 (1+—> S
Q 22 2273 Po

3
3 d\?2
+ <—3> (1 + —) TKg/ ViVide = C,®3 +02<1>3+037K§/ V;Vidx
22 Po Q Q
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with
3
33 1 d\? 3 d\?
(213) O =2 Cy=— <1+—> L 3= <1+—>
202 2273 Po 22 )

Inserting (2.12) in (2.9) we obtain
1
(2.14) (I)/(t) <260 — (4 - = — 4p03007'> K22/ %%4—4}?0100@% +4p0200<133.
Q

41
P we obtain

By choosing 7 = 1050,
(1) < 6D + &D2 + £0° = §(D),

(2.15)
with & = 24, & = 4pC1Cy, & = 4pCaCy.
Then if ® blows up at time ¢*, there exists a time ¢ such that ®(¢) > ®(0)

and by integration from 0 to t*, we obtain the following lower bound for ¢*

— =<

/°° /B
o(0) ¢(n) 0=

which is the desired lower bound (2.4)

3. Upper bound. We seek in this section an upper bound for the blow

up time t* by defining the following auxiliary function
1 1
B X =al) el = K07 [ wpde+ K@ [ vpds,
Q Q
where 1 is the first eigenfunction of the following membrane problem
Apr+ g1 =0, 1 >0, inQ,
(3.2) 9
1 —Bp1, on 0N
ov
with
/ prde =1
Q

(3.3)
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with @ in (1.1) satisfying (1.2). We prove the following

Theorem 3.1. Let (u,v) be the solution of (1.1), in a bounded domain
Q in RN, Let K(t) = min{K(t), Ko(t)}. Assume that

(3.4) fi(s)=s? g>1, i=12,
and
K!
3.5 X >A
(3.5) K27

with 4 a positive constant. Assume moreover that there exists a constant 5 with
0 <4 <1 such that

| =

(3.6) - > 7.

=

If (u,v) becomes unbounded in x measure at some finite time t*, then t*
is bounded from above by T with

© g
(3.7) T :/ a9
x(0) 72M% —71n

where ~
9
MN=A - L, Yo = 219y,
q—1
provided
(3.8) Yox?1(0) > ;.

Proof. By derivative of (3.1) we have

1 [(K!'\ . -L 1 [KL\ L
3.9 "ty=— (=L K‘H/ dr + —— [ =2 Kq—l/ d
(39 X() q_l(Kl)l e+ L (R2) K5 [ v
_1 1
+Kf—1/utcpldq:+K2q_1/vtcp1dz.
Q Q

By applying in (3.9) the condition (3.5) we obtain

1 1
(3.10) X' (t) > le—i— Kt / Auprdr + KJ ™ / Avprdx
q-— Q Q

9 _q
+Kf_l/ﬂf1¢1dl‘+K2q_1/Qf2@1dl‘7
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We compute

/Augpldac:/div[V(uLpl)]d:c—/quld:c—Q/Vthpldac.
Q Q Q Q

By the equation in (3.2), the divergence theorem and boundary condition
in (3.2) we obtain

(3.11) / Auprdzr = (6 — a)/ uprds — /\1/ uprder > —)\1/ up1dx
Q o0 Q

Q

analogously, we obtain

(3.12) /Avgold:c:—)\l/vcpldx.
Q Q

By inserting (3.11) and (3.12) in (3.10) we have

5 1 1
(3.13) X () > ——x—X\ [Kfl / uprde + Ky / Ug01d$:|
Q

q—1 Q

9 9
+K1q1/ﬂf1</31d90+K2ql/Qf2<P1dw

~ _q_ _9q
=— ()\1 - L) X+ K / vlp1dr + K / ulpide.
q—1 0 Q

In the last two terms of (3.13) we used (3.4), and by expression of K (t) we obtain
(3.14) X (t) > —ymx + K71 /(uq + v?)p1dz,
Q

with Y1 = )\1 — qz;l

To estimate [, (u? + v9)p1dx we use Holder inequality and (3.3)

q
/quoldx > (/ ucplda:)
Q Q
q
/vqgoldac > (/ Ugold:c>
Q Q

By substitution of (3.15) in (3.14) we find

(316)  X'(1) > —yx + Ko { </Q “W“)q * </Q mdx)q}

(3.15)
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9 9
_ + K\t 4 + K\t 4
=—"X K, X1 K, X2

By inserting in the last term of (3.16) the assumption (3.6), we obtain

_q
(3.17) X' () = —mx + 77T (X + x9)-
Using in (3.17) the inequality x7 + x4 > 2179(x1 + x2)? we obtain
(3.18) X' (t) > —mix +y2x?
_q
with 7o = 2179541,

Since (3.8) holds we conclude that x(¢) is an increasing function of ¢ €
(0,t*) and that by integration of (3.18) from 0 to ¢ we find

x(t) d
(3.19) / S/
x(0) 2Nt —mn

and we obtain the upper bound for ¢*:
< / R —
= Jx nzn®t =)
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