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Abstract. In this work we will study a problem of optimal investment in
financial markets with stochastic volatility with small parameter. We used
the averaging method of Bogoliubov for limited development for the optimal
strategies when the small parameter of the model tends to zero and the limit
for the optimal strategy and demonstrated the convergence of these optimal
strategies.

1. Introduction. The fundamental stochastic model of optimal invest-
ment was first introduced by Merton [12] who constructed explicit solution under
the assumption that the stock price follows a geometric Brownian motion and
the individual preference are of special type, specifically, the utilities are either
of Constant Relative Risk Aversion (CRRA) type, including the logarithmic, or
of exponential type. The case of general utilities was analyzed in Karatzas at
al.[8, 9] who produced the value function in closed form.
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Financial markets are sometimes quite calm and at other times much
more volatile. To capture the complicated behavior of stock prices and other
derivatives, it is necessary to take into consideration frequent changes of the
volatility, it is more suitable to use a stochastic process to model the variation of
the volatility; see [6], [5], [4] and [11].

Recently, in the book [2] and subsequent papers [1], [3] and [10], a class of
volatility models has been studied in detail. Under the setup of mean reversion,
two time scale methods are used. A number of interesting results were obtained.

The paper is organized as follows. In Section 2, we describe the model
and give preliminary results on the value function, as well as on special cases of
the Merton model. In Section 3 we introduce the class of stochastic volatility
models, we discuss an approximation method based on asymptotic analysis that
is effective for models in which asset prices have randomly varying volatility, we
show that the optimal control for the Merton problem with constant volatility
approximates the expectation of the optimal control for the some problem with
stochastic volatility and obtains the desired error bounds.

2. Class of constant volatility models. We start with brief review
of the Merton model. To this end, we consider an economy with two securities,
a bond and a stock. The bond’s price Bs is deterministic and evolves

(2.1)

{

dBs = rBsds
B0 = B > 0,

with r > 0 being the interest rate. The stock price is modeled as a diffusion
process Ss the stochastic differential equation

(2.2)

{

dSt = µStdt + σStdWt

S0 = S > 0.

The market parameters µ and σ are respectively the mean rate of return and the
volatility, it is assumed that µ − r > 0 and σ > 0. The process Wt is standard
Brownian motion defined on a probability space (Ω,F , P ).

Trading takes place between the bond and the stock accounts continuously
in time, in the trading horizon [t, T ] , 0 ≤ t ≤ T . Denoting by us and 1 − us the
fraction of wealth in the stock and bond (respectively) at time s, for s ∈ [t, T ].
Using the price equation (2.1, 2.2) one may easily derive the equation for the sate
process

(2.3)

{

dXs = Xs [(r + (µ − r)us)ds + σusdWs]
Xt = x > 0.



Optimal investment under stochastic volatility . . . 239

’We assume that the wealth process must satisfy the state constraint

(2.4) Xs > 0 a.e. t ≤ s ≤ T.

A stochastic control process (us)t≤s≤T is called admissible if it is Ft-progressively
measurable, where Fs = σ(Wv; t ≤ v ≤ s), satisfies the integrability condition

(2.5) E

∫ T

t

u2
sdt < ∞,

and it is such that the state constraint (2.4) is satisfied, we denote by U the class
of all admissible control processes.

For u ∈ U we define the cost function

(2.6) V (t, x;u) = E

[

(Xu
T )p

p
| Xu

t = x

]

.

The goal of the investor is to choose the strategy (us) to maximize the cost
function at some given finite terminal time T, we define :

(2.7) V (t, x) = sup
u∈U

V (t, x;u).

By Bellman Principle V (t, x) satisfies the nonlinear Hamilton-Jacobi-Bellman
(HJB) partial differential equation

(2.8)
∂V

∂t
+ sup

u

{

1

2
σ2u2x2 ∂2V

∂x2
+ (r + (µ − r)u)x

∂V

∂x

}

= 0,

with terminal condition

(2.9) V (T, x) =
xp

p
.

The special form of the chosen utility function motivates the representation

V (t, x) =
xp

p
c(t).

This leads to the linear ordinary differential equation for c(t),

∂c

∂t
+ αp sup

u

{

−1

2
σ2u2(p − 1) + r + (µ − r)u

}

= 0,
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with c(T ) = 1. The supremum is attained at

(2.10) u∗
t =

µ − r

σ2(1 − p)
.

The corresponding maximum expected utility is given by

(2.11) V (t, x) = V (t, x, u∗) =
xp

p
exp

[

(T − t)p

(

r +
(µ − r)2

2σ2(1 − p)

)]

.

The following result was proved in Karatzas [9]

Theorem 1. The optimal value of The value V (t, x, u) is given by (2.11),
which is the unique increasing and concave solution of the Hamilton-Jacobi-

Bellman equation (2.8) and (2.9).

3. Class of stochastic volatility models. We consider now the
Merton optimal portfolio, under the assumption of stochastic volatility. Then
the wealth process evolves according to the following system

(3.1)

{

dXs = Xs [(r + (µ − r)us)ds + f(Ys)usdW x
s ]

X0 = x > 0.

The wealth process must also satisfy the state constraint

Xs > 0 a.e. s ∈ [t, T ] .

The volatility f(.) is driven by another stochastic process Ys given by

(3.2)

{

dYs = −αYsdt + βdW y
s

Y0 = y ∈ R.

The process W x
s and W y

s are independent Brownian motions defined on a prob-
ability space (Ω,F , P ). The function f : R → R

+ satisfy the global Lipschitz
condition

(3.3) |f(y) − f(y)| ≤ K |y − y| ,

and the linear growth condition

(3.4) f(y) ≤ K(1 + y),
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for every y, y ∈ R, K is positive constant. Moreover,the volatility coefficient
f(y) satisfies f(y) ≥ N > 0 for some constant N . The control us is said
to be admissible if it is Fs-progressively measurable processes, where Fs =
{σ(W x

v ,W y
v ); t ≤ v ≤ s}, satisfying condition E

∫ T

t
f2(Ys)u

2
sds < ∞ and is such

that the above state constraint is satisfied. We denote by A the set of admissible
policies. The Merton problem consists in choosing a strategy u, which maximize
a given utility function at some final time T . In particular the problem can be
described in terms of the value function

(3.5) V (t, x, y) = sup
u∈A

V (t, x, y;u),

where

(3.6) V (t, x, y;u) = E

(

(Xu
T )p

p
| Xt = x, Yt = y

)

.

By Bellman Principle V (t, x, y) satisfies the nonlinear Hamilton-Jacobi-Bellman
(HJB) partial differential equation

0 =
∂V

∂t
+ sup

u

{

1

2
f2(y)u2x2 ∂2V

∂x2
+ (r + (µ − r)u)x

∂V

∂x

}

+
1

2
β2 ∂2V

∂y2
− αy

∂V

∂y
,

with terminal condition

(3.7) V (T, x, y) =
xp

p
.

Using the transformation

V (t, x) =
xp

p
c(t, y),

we obtain the following equation for c,

0 =
∂c

∂t
+ pc sup

u

{

−1

2
(p − 1)f2(y)u2 + (r + (µ − r)u)

}

+
1

2
β2 ∂2c

∂y2
− αy

∂c

∂y
,

with c(T, y) = 1. The supremum is attained at

(3.8) u∗
t =

µ − r

f2(y)(1 − p)
.
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For the proof of the following result we refer the reader to [13].

Proposition 1. The value function V is given by

V (t, x, y) =
xp

p
c(t, y)

where c : [0, T ] × R → R
+ solves the linear parabolic equation

(3.9)







∂c

∂t
+

1

2
β2 ∂2c

∂y2
− αy

∂c

∂y
+ pc

(

r +
(µ − r)2

2f2(y)(1 − p)

)

= 0

c(T, y) = 1.

3.1. Singular perturbation analysis. We introduce the scaling

(3.10) α =
1

ǫ
, and β = δǫ/

√
ǫ,

where ǫ is small positive parameter, then the processes Xǫ
s , Y

ǫ
s can be treated as

”slow” and ”fast” variable. We consider a singularly perturbed stochastic control
problem on a finite time interval [0, T ] for a system described by the variable
(Xǫ

s, Y
ǫ
s ), then the wealth process Xǫ

s satisfies

(3.11) dXǫ
s = Xǫ

s [(r + (µ − r)us)ds + f(Y ǫ
s )usdW x

s ] , Xǫ
0 = x,

where

(3.12) ǫdY ǫ
s = −Y ǫ

s ds + δǫ
√

ǫdW y
s , Y ǫ

0 = y.

Then the value function of the investor is

(3.13) V ǫ(t, x, y) = sup
u∈A

V ǫ(t, x, y;u).

where

(3.14) V ǫ(t, x, y;u) = E

(

(Xǫ
T )p

p
| Xǫ

t = x, Y ǫ
t = y

)

.

Our aim is to study the control problem below if δǫ is constant, which is related
to the Bogoliubov average principle. In such a case the fast variable may be
oscillatory and it does not converge in probability see [7].
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The distribution of Yt in (3.2) is the Gaussian distribution N
(

0,
β2

2α

)

.

Denoting its variance by v2 =
β2

2α
. The operator αL0 is the infinitesimal generator

of the Ornestrin-Uhlenbeck process Yt with L0 defined by

(3.15) L0 = v2 ∂2

∂y2
− y

∂

∂y
.

The process Yt has an invariant distribution N (0, v2), which admits the density
φ(y) obtained by solving the adjoint equation

(3.16) L∗
0φ = 0,

where L∗
0 denotes the adjoint of L0. The density is explicitly given by

(3.17) φ(y) =
1√

2πv2
exp

(

− y2

2v2

)

Let 〈.〉 denote the average with respect to this invariant distribution

(3.18) 〈g〉 =

∫

+∞

−∞

g(y)φ(y)dy.

Given a bounded function g, by the ergodic theorem, the long time average of
g(Yt) is close to the average distribution

(3.19) lim
t→∞

1

t

∫ t

0

g(Ys)ds = 〈g〉 .

We take advantage of fast mean reversion in volatility and write

(3.20) α =
1

ǫ
and β =

√
2v√
ǫ

,

the constant ǫ > 0 is small to represent fast mean-reversion. Now 1/ǫ is a measure
of the local speed of process and we are interested in asymptotic expansions in
the limit ǫ ↓ 0. The equation (3.9) becomes

(3.21)

{

1

ǫ
L0c

ǫ + L2c
ǫ = 0

cǫ(T, y) = 1,

where

(3.22) L2c
ǫ =

∂cǫ

∂t
+ p

(

r +
(µ − r)2

2f2(y)(1 − p)

)

cǫ.
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We present here the formal asymptotic expansion computed which leads to a
(first-order in

√
ǫ) approximation cǫ ≈ c0 +

√
ǫc1. We start by writing cǫ in

powers of
√

ǫ

(3.23) cǫ = c0 +
√

ǫc1 + ǫc2 + ǫ
√

ǫc3 + · · ·

Substituting (3.23) in (3.21) leads to

0 =
1

ǫ
L0c0 + (L2c0 + L0c2) +

1√
ǫ
L0c1(3.24)

+
√

ǫ (L2c1 + L0c3) + · · ·(3.25)

We shall next obtain expressions of cn, n ≥ 0, by successively equating any order
term in (3.24) to zero, we must have

(3.26)







L0c0 = 0,
L0c1 = 0,
L0cn + L2cn−2 = 0, ∀n ≥ 2.

We will need to solve the Poisson equation associated with L0 :

(3.27) L0χ + g = 0,

which requires the solvability condition (centering condition)

(3.28) 〈g〉 = 0,

in order to admit solutions. Properties of this equation and its solutions are
recalled in (Appendix A)

Consider the first equation

(3.29) L0c0 = 0.

The operator L0 is the generator of an ergodic Markov process and takes deriv-
atives with respect to y, any function independent of y satisfies this equation.
Therefore we seek solutions which are independent of y : c0 = c0(t) with the
terminal condition c0(T ) = 1.

Consider next

(3.30) L2c0 + L0c2 = 0,

L2 does not involve the derivative with respect to y; but the variable y is present
through f(y), we have a Poisson equation (in y) for c2. The solvability condition
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is that L2c0 must be centered with respect to the invariant distribution of the
process Yt. Therefore

(3.31) 〈L2c0〉 (t, y) = 0.

The averaged operator is

〈L2c0〉 (t, y) =

∫

+∞

−∞

(L2c0)(t, u)φ(u)du

=

∫

+∞

−∞

(

∂c0

∂t
(t) + p

(

r +
(µ − r)2

2f2(y)(1 − p)

)

c0(t)

)

φ(u)du

=
∂c0

∂t
(t) + pc0

(

r +
(µ − r)2

2(1 − p)

(
∫

+∞

−∞

1

f2(u)
φ(u)du

))

=
∂c0

∂t
(t) + pc0

(

r +
(µ − r)2

2(1 − p)

〈

1

f2

〉)

.

If we set

(3.32) σ∗ =
1

√

〈1/f2〉
,

then

(3.33) c0 = exp

[

(T − t)p

(

r +
(µ − r)2

2 (σ∗)2 (1 − p)

)]

.

Similarly of c0 in order to calculate c1, we must have

L0c1 = 0(3.34)

L2c1 + L0c3 = 0(3.35)

it follows that

(3.36) c1 = exp

[

(T − t)p

(

r +
(µ − r)2

2 (σ∗)2 (1 − p)

)]

,

then the first-order maximum expected utility is

V ∗(t, x) =
xp

p
exp

[

(T − t)p

(

r +
(µ − r)2

2 (σ∗)2 (1 − p)

)]

+
√

ǫ
xp

p
exp

[

(T − t)p

(

r +
(µ − r)2

2 (σ∗)2 (1 − p)

)]

.
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Theorem 2. Under the boundedness assumption on the function of the

volatility f , at any fixed time t > T , and fixed point x >, y ∈ R

(3.37) |V ǫ(t, x, y) − V ∗(t, x)| = o(ǫ1−η),

for any η > 0.

P r o o f. We first introduce some additional notation. Define the error Zǫ

in the approximation of cǫ in (3.23) by

cǫ = c0 +
√

ǫc1 + ǫc2 + ǫ
√

ǫc3 − Zǫ

Setting

Lǫ =
1

ǫ
L0c

ǫ + L2c
ǫ,

we can write,

LǫZǫ = Lǫ
[

c0 +
√

ǫc1 + ǫc2 + ǫ
√

ǫc3 − cǫ
]

(3.38)

=
1

ǫ
L0c0 +

1√
ǫ
L0c1

+(L0c2 + L2c0) +
√

ǫ(L0c3 + L2c1)

+(ǫL2c2 + ǫ
√

ǫL2c3)

= ǫ(L2c2 +
√

ǫL2c3))

= (ǫ + ǫ
√

ǫ)L2c2 =: Gǫ

because Lǫ solves the original equation (3.21): Lǫcǫ = 0 and we choose c0,
c1, c2, c3 to cancel the first four terms.

Using that

L2c0 = L2c0 − 〈L2c0〉

=
1

2

p(µ − r)2

(1 − p)

(

1/f2(y) − 1/ (σ∗)2
)

c0,

we choose

(3.39) c2(t, y) = −1

2

p(µ − r)2

(1 − p)
c0(t)χ(y),

with χ(y) is a solution of the Poisson equation

L0χ(y) = 1/f2(y) − 1/ (σ∗)2 .
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So that

L0c2(t, y) = −1

2

p(µ − r)2

(1 − p)

(

1/f2(y) − 1/ (σ∗)2
)

c0

= −L2c0(t).

Obviously

L2c2 = −1

4

(

p(µ − r)2

(1 − p)

)2

c0(t)χ(y)
(

1/f2(y) − 1/ (σ∗)2
)

,

By boundedness assumption of f ,there exist a constant K > 0

(3.40) |L2c2| ≤ Kχ(y).

At the terminal time T , we have

Zǫ(T, y) = ǫc2(T, y) + ǫ
√

ǫc3(T, y)

= (ǫ + ǫ
√

ǫ)c2(T, y)

= −1(ǫ + ǫ
√

ǫ)

2

p(µ − r)2

(1 − p)
χ(y)

It follows that there exist a constant K > 0

|Zǫ(T, y)| ≤ K(ǫ + ǫ
√

ǫ)χ(y)

where we have used the terminal conditions cǫ(T, y) − c0(T, y) = c1(T, y) = 0.
Because of the smoothness of Gǫ and Hǫ, and the regularity of the coef-

ficients of the diffusion (Xǫ, Y ǫ), we have the probabilistic representation of the
solution of equation (3.38), LǫZǫ = Gǫ with terminal condition Hǫ :

Zǫ(t, y) = Et,y

[

Zǫ(T, Y ǫ
T ) exp

(
∫ T

t

p

(

r +
(µ − r)2

2f2(Y ǫ
s )(1 − p)

)

ds

)

+

∫ T

t

Gǫ(s, Y ǫ
s ) exp

(
∫ s

t

p

(

r +
(µ − r)2

2f2(Y ǫ
λ )(1 − p)

)

dλ

)]

ds,

we obtain the upper bounds, for some constant K > 0

|Zǫ(t, y)| ≤ K(ǫ + ǫ
√

ǫ) (|χ(y)| + E [|χ(Y ǫ
s )| | Y ǫ

t = y])

where t ≤ s ≤ T.
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It follows from (A.2) in Appendix, and classical a priory estimates on the
moments of the process Y ǫ

t which are uniform in ǫ and by simple time change
t = ǫt

′

that there exists a constant K > 0 (which may depend on y) such that

E [|χ(Y ǫ
s )| | Y ǫ

t = y] ≤ K < ∞,

Obviously, for (t, y) fixed with t < T :

|Zǫ(t, y)| ≤ K(ǫ + ǫ
√

ǫ),

and therefore also for (t, y) fixed with t < T :

∣

∣c0 +
√

ǫc1 − cǫ
∣

∣ =
∣

∣(ǫ + ǫ
√

ǫ)c2(t, y) − Zǫ(t, y)
∣

∣

≤ K(ǫ + ǫ
√

ǫ)

since c2 evaluated for t < T can also be bounded using (3.39) and (A.2).

It follows that, for (t, x, y) fixed with t < T

|V ǫ(t, x, y) − V ∗(t, x)| ≤ K(ǫ + ǫ
√

ǫ),

then

lim
ǫ→0

|V ǫ(t, x, y) − V ∗(t, x)|
ǫ1−η

= 0,

for any η > 0. �

Appendix A. Solution of the Poisson equation. Let χ solve

(A.1) L0χ + g = 0,

with L0 defined as in (3.15) and with g satisfying the centering condition

〈g〉 = 0,

where the averaging is done with respect to the invariant distribution associated
with the infinitesimal generator L0 (see (3.18 ) for an explicit formula). We note
that the Poisson equation (A.1) is

L0χ =
v2

φ
(φχ

′

)
′

= −g,
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so that, using the explicit form of the differential operator L0, one can easily
deduce that

φ(y)χ
′

(y) =
−1

v2

∫ y

−∞

g(z)φ(z)dz =
1

v2

∫ ∞

y

g(z)φ(z)dz,

with φ being the probability density of the invariant distribution N (0, v2) asso-
ciated with L0. From this it follows that if g is bounded

(A.2) |χ(y)| ≤ N2(1 + log(1 + |y|).
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