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ABSTRACT. In 1952, Dirac introduced the degree type condition and proved
that if G is a connected graph of order n > 3 such that its minimum degree
satisfies §(G) > n/2, then G is Hamiltonian. In this paper we investigate a
further condition and prove that if G is a connected graph of order n > 3
such that §(G) > (n — 2)/2, then G is Hamiltonian or G belongs to four
classes of well-structured exceptional graphs.

1. Introduction. We consider only finite undirected graphs without
loops or multiple edges. For a graph G, let V(G) be the vertex set and let F(QG)
be the edge set of G. The complete graph of order n is denoted by K, and the
empty graph of order n is denoted by K,. For two vertices u and v, let d(u,v)
be the length of the shortest path between vertices u and v in G, i.e., d(u,v) is
the distance between w and v. The minimum degree of the graph G is denoted
by 6(G). For a subgraph H of the graph G and a subset S of V(G), let Ng(S)
be the set of vertices in H that are adjacent to some vertex in S and let the
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cardinality of Ny (S) be di(S). Furthermore, we denote by G — H the subgraph
of G induced by V(G) — V(H). For each integer m > 3, let C,, = z129 -+ 121
denote a cycle of order m and let P be a path of a section of Cy, (if |V (P)| = m,
then P = C,,). Define

Np(u) = {xiy1: 2 € Np(u)}, Np (u) = {xi—1 : ¥; € Np(u)},

and define N7 (u) = Nj(u) U Np (u), where subscripts are taken modulo m.

If no ambiguity can arise we sometimes write N(u) instead of Ng(u), 6
instead of §(G), etc. Other notations can be found in [1, 3].

In 1952, Dirac proved the following well-known result on Hamiltonian
graphs.

Theorem 1 (Dirac [2]). If G is a connected graph of order n > 3 and
(G) > n/2, then G is Hamiltonian.

Recently we also have investigated some Hamiltonian graphs under other
sufficient conditions such as neighborhood union conditions [4, 5].

In this paper, our purpose is to present the following result, which extends
the above Theorem 1.

Theorem 2. If G is a connected graph of order n > 3 and §(G) >
(n—2)/2, then G is Hamiltonian or G has one of the following four types:

Gin-2)2 V (Kn_2)2 UK2), GpayaV K(i9)0,

G(n—l)/Q V F(n—i—l)/% w: (Kh U K;)

Here h is an integer, Gy, denotes an arbitrary graph of order h, and K}, is the
empty graph with h vertices and without edges. The join operator AV B of two
graphs A and B is the graph constructed from A and B by adding all edges joining
the vertices of A and the vertices of B. The graph AUB denotes the disjoint union
of the graphs A and B. The graph w : (K, U K, ) is defined by the properties:
K, is a graph of order t and minimum degree 6(K; ) >t —2, w is a cut vertex
which is adjacent to at least (n —2)/2 vertices of the disjoint graphs K, and K,
(n—2)/2<h<t<n/2

Corollary 3. If G is a 2-connected graph of order n > 3 and §(G) >
(n—2)/2, then G is Hamiltonian or

G € {Gn-2)2 V (Kn_2,2 UK2),Gn2)2 VK192, Gin-1y/2 V K ns1)/2-
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2. The proof of main Theorem.

Proof of Theorem 2. Assume that G satisfies the condition of The-
orem 2 and it is not Hamiltonian. Then let C), = z122 - - - .21 be the longest
cycle of G and let H be a component of G — C},,. We consider two cases.

Case 1. (G is 2-connected.

In this case, there must exist vertices u,v € V(H) such that z; € N¢,, (u)
and z; € Ng,, (v). (If [V(H)| = 1, then u = v.) Now we claim that d(x;+1) +
d(zjy1) < n—|V(H)|. Otherwise, if the claim is false, let P and R denote,
respectively, the path x; 12;42---x; of Cy, and the path z; 1212 2; of C,.
Then, clearly, none of Nj (z;41) UNg (2;41) are adjacent to z;11. (For example,
if 2, € N;(l‘j+1) is adjacent to x;11, let T be a path in H which has two end-
vertices adjacent to x; and x;, respectively. Then the cycle

is longer than C,, a contradiction.) Clearly |[Nj(zj41) U Np(zj41)| =
INc,, (xj+1)] — {zj41}]. Also, none of Ng_¢,,(xj4+1) are adjacent to x;41, and
both x;41,2;41 are not adjacent to any vertex of {z;11} UV (H). Hence we can
check that

d(xip1) < |V(G)| = INF (2j11) UNg (zj41)] — [Na—c,, (2511)] — {21} UV (H)|

< V(G| = (INc,,, (zj+1)| = {zj41}) — INo—cp (2541)] = Hzipa} U V(H))
<n—(IN(zjr)l = Kzje}) — Hzi} = [VH)),
and this implies that

1) A1) + (1) < n— |V(H)]

On the other hand, by the condition of Theorem 2 we have d(x;1) + d(xj4+1) >
n — 2. Together with the inequality (1), we have |V (H)| < 2. Now we consider
the subcases |V(H)| =1 and |V (H)| = 2.

Subcase 1.1. |V(H)| = 2.

In this case, if u € V(H), then we have |j — 4| > 3 for all pairs x;,z; €
N¢,, (H) such that {41,242, - zj—1} N N(u) = 0. (Otherwise, if |7 —i| < 2
for some x;,x; € N, (H), by |V(H)| = 2, it is easy to construct a cycle longer
than C,,, a contradiction.) Thus, we can check that

IN(W)] < [V(Cw)I/3+ [V(H) \{u}| < (n—-2)/3+1,
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ie., d(u) < (n—2)/3+1. Clearly, n > |[V(Cp,)|+|V(H)| > 8, s0 d(u) < (n—3)/2,
and this contradicts the assumption of Theorem 2 that d(u) > (n — 2)/2.

Subcase 1.2. |V(H)| = 1.

In this case, if u € V(H), then we have |j — 4| > 2 for all pairs x;,z; €
Ne,,, (H) with {zi11, zip2, - zj—1} N N(u) =0, so |[N(u)| < [V(Cp)|/2 < (n—
1)/2. Together with the assumption of Theorem 2 that d(u) > (n—2)/2, we have
(n—2)/2 <d(u) < (n—1)/2. Then we consider the following subcases.

Subcase 1.2.1. d(u) = (n —2)/2.

Then, since Cy, is the longest cycle of G, the vertex w is not adjacent to
two consecutive z;, z;+1 on Cp,. By d(u) = (n —2)/2, [V(Cp,)| > 2d(u) > n — 2,
so |[V(G—Cp)l <2.

First, let |[V(G — C),)| = 1. In this case, since G does not have a Hamil-
tonian cycle C), and d(u) = (n —2)/2, it is easy to obtain N(u) = {z;, Tiy3, Tits,
Ziy7, - Ti—o} on Cy,, i.e., there exists only one pair of consecutive neighbor ver-
tices x;, ;43 of u on C, such that |(i+3)—1i| = 3 and for all other two consecutive
neighbor vertices x; g, x;+p of uw with {z;1 k11, Tizkro, Tirh—1} NN (u) =0, we
have |(i + k) — (i + h)| = 2.

In this case, since G does not have a Hamiltonian cycle C),, we derive that

G €G22 V (K(n_2)2 U K3),

where
V(Gn—2)/2) = {Ti, Tit3, Tivs, Tiyr, -+ Ti2},
F(n—Q)/2 = {Zita, Tive, - wi1,u}, Ko ={Tiy1, 712}
Now, let |V(G — Cy,)| =2 and let v € V(G — Cy, — u). Since G does not have a
Hamiltonian cycle C), and d(u) = (n — 2)/2, it is easy to obtain N(u) = N(v) =
{xi, Ti41y " CCZ‘_Q}. This implies
GEeGup_gpV F(n+2)/27
where

V(Gn-2)2) = {xi, Tiy2, - Tia}, K (ny2y2 = {Tiv1, Tigs, -~ Tio1,u, 0}

Subcase 1.2.2. d(u) = (n —1)/2.
In this case, since Cy, is the longest cycle of G, the vertex u is not adjacent
to two consecutive x;, z;11 on C,, so |[V(Cp,)| > 2d(u) > n — 1. This implies
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V(G — Cy,)| = 1. In this case, it is easy to obtain N(u) = {x;, zjy2, - z;—2} on
Cin, s0 we have B
G €Gm-1)2V Kmnty/2,

where
V(G(nq)/z) = {7, xit0,- "$i—2},7(n+1)/2 ={wiy1,Ti13, - Tio1,u}.

Case 2. The connectivity of G is 1.

In this case, let w be a cut vertex of G. Then, since d(z) > (n —2)/2
for each vertex x in G, we have that G — w has two components. (Otherwise,
let G — w have at least three components H;, Hs and Hs, and let |V (H;p)| =
min{ [V (Hy)J, IV ()|, [V (Hs)|}. Then we have d(y) < n/3 — [{y}| + {w}| <
(n—2)/2 for each vertex y in Hj, a contradiction.) Let Hy, Hy be the components
of G—w,ie, G—w= H;UHy. We denote G by w : (H;U H3). Clearly, we have

(n—2)/2 <min{|V(H1)][, [V (Hy)[} <max{[V(H1)l, |V (H2)|} <n/2.
Without loss of generality we may assume that
[V(H)| = h = min{|V (H1)][, [V (H2)[}

[V (H2)| =t = max{|V(Hy)|, |V (Hz)[}.

(1) When h = (n — 2)/2, then H; is the complete subgraph K}, the vertex w is
adjacent to all vertices of Hy, and each vertex of Hs is not adjacent to at least
one vertex of Ho. (i) When h = (n — 1)/2, then H; and Hy are both complete
subgraphs. However, we can write w : (Hy U Hy) = w : (K, U K, ), where
(n—2)/2 < h <t <n/2 and each vertex of K, is not adjacent to at least one
vertex of K, .

Therefore, the proof is complete. 0O
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