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Abstract. In 1952, Dirac introduced the degree type condition and proved
that if G is a connected graph of order n ≥ 3 such that its minimum degree
satisfies δ(G) ≥ n/2, then G is Hamiltonian. In this paper we investigate a
further condition and prove that if G is a connected graph of order n ≥ 3
such that δ(G) ≥ (n − 2)/2, then G is Hamiltonian or G belongs to four
classes of well-structured exceptional graphs.

1. Introduction. We consider only finite undirected graphs without
loops or multiple edges. For a graph G, let V (G) be the vertex set and let E(G)
be the edge set of G. The complete graph of order n is denoted by Kn and the
empty graph of order n is denoted by Kn. For two vertices u and v, let d(u, v)
be the length of the shortest path between vertices u and v in G, i.e., d(u, v) is
the distance between u and v. The minimum degree of the graph G is denoted
by δ(G). For a subgraph H of the graph G and a subset S of V (G), let NH(S)
be the set of vertices in H that are adjacent to some vertex in S and let the
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cardinality of NH(S) be dH(S). Furthermore, we denote by G−H the subgraph
of G induced by V (G) − V (H). For each integer m ≥ 3, let Cm = x1x2 · · · xmx1

denote a cycle of order m and let P be a path of a section of Cm (if |V (P )| = m,
then P = Cm). Define

N+
P (u) = {xi+1 : xi ∈ NP (u)}, N−

P (u) = {xi−1 : xi ∈ NP (u)},

and define N±

P (u) = N+
P (u) ∪ N−

P (u), where subscripts are taken modulo m.
If no ambiguity can arise we sometimes write N(u) instead of NG(u), δ

instead of δ(G), etc. Other notations can be found in [1, 3].
In 1952, Dirac proved the following well-known result on Hamiltonian

graphs.

Theorem 1 (Dirac [2]). If G is a connected graph of order n ≥ 3 and
δ(G) ≥ n/2, then G is Hamiltonian.

Recently we also have investigated some Hamiltonian graphs under other
sufficient conditions such as neighborhood union conditions [4, 5].

In this paper, our purpose is to present the following result, which extends
the above Theorem 1.

Theorem 2. If G is a connected graph of order n ≥ 3 and δ(G) ≥
(n − 2)/2, then G is Hamiltonian or G has one of the following four types:

G(n−2)/2 ∨ (K(n−2)/2 ∪ K2), G(n−2)/2 ∨ K(n+2)/2,

G(n−1)/2 ∨ K(n+1)/2, w : (Kh ∪ K−

t ).

Here h is an integer, Gh denotes an arbitrary graph of order h, and Kh is the
empty graph with h vertices and without edges. The join operator A ∨ B of two
graphs A and B is the graph constructed from A and B by adding all edges joining
the vertices of A and the vertices of B. The graph A∪B denotes the disjoint union
of the graphs A and B. The graph w : (Kh ∪ K−

t ) is defined by the properties:
K−

t is a graph of order t and minimum degree δ(K−

t ) ≥ t − 2, w is a cut vertex
which is adjacent to at least (n− 2)/2 vertices of the disjoint graphs Kh and K−

t ,
(n − 2)/2 ≤ h ≤ t ≤ n/2.

Corollary 3. If G is a 2-connected graph of order n ≥ 3 and δ(G) ≥
(n − 2)/2, then G is Hamiltonian or

G ∈ {G(n−2)/2 ∨ (K(n−2)/2 ∪ K2), G(n−2)/2 ∨ K(n+2)/2, G(n−1)/2 ∨ K(n+1)/2.
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2. The proof of main Theorem.

P r o o f o f T h e o r em 2. Assume that G satisfies the condition of The-
orem 2 and it is not Hamiltonian. Then let Cm = x1x2 · · · xmx1 be the longest
cycle of G and let H be a component of G − Cm. We consider two cases.

Case 1. G is 2-connected.
In this case, there must exist vertices u, v ∈ V (H) such that xi ∈ NCm

(u)
and xj ∈ NCm

(v). (If |V (H)| = 1, then u = v.) Now we claim that d(xi+1) +
d(xj+1) ≤ n − |V (H)|. Otherwise, if the claim is false, let P and R denote,
respectively, the path xi+1xi+2 · · · xj of Cm and the path xj+1xj+2 · · · xi of Cm.
Then, clearly, none of N+

P (xj+1)∪N−

R (xj+1) are adjacent to xi+1. (For example,
if xk ∈ N+

P (xj+1) is adjacent to xi+1, let T be a path in H which has two end-
vertices adjacent to xi and xj, respectively. Then the cycle

xiTxjxj−1 · · · xkxk−1 · · · xi+1xk−1xj+1xj+2 · · · xi

is longer than Cm, a contradiction.) Clearly |N+
P (xj+1) ∪ N−

R (xj+1)| =
|NCm

(xj+1)| − |{xj+1}|. Also, none of NG−Cm
(xj+1) are adjacent to xi+1, and

both xi+1, xj+1 are not adjacent to any vertex of {xi+1} ∪ V (H). Hence we can
check that

d(xi+1) ≤ |V (G)| − |N+
P (xj+1) ∪ N−

R (xj+1)| − |NG−Cm
(xj+1)| − |{xi+1} ∪ V (H)|

≤ |V (G)| − (|NCm
(xj+1)| − |{xj+1}|) − |NG−Cm

(xj+1)| − |{xi+1} ∪ V (H)|

≤ n − (|N(xj+1)| − |{xj+1}|) − |{xi+1}| − |V (H)|,

and this implies that

(1) d(xi+1) + d(xj+1) ≤ n − |V (H)|.

On the other hand, by the condition of Theorem 2 we have d(xi+1) + d(xj+1) ≥
n − 2. Together with the inequality (1), we have |V (H)| ≤ 2. Now we consider
the subcases |V (H)| = 1 and |V (H)| = 2.

Subcase 1.1. |V (H)| = 2.

In this case, if u ∈ V (H), then we have |j − i| ≥ 3 for all pairs xi, xj ∈
NCm

(H) such that {xi+1, xi+2, · · · xj−1} ∩ N(u) = ∅. (Otherwise, if |j − i| ≤ 2
for some xi, xj ∈ NCm

(H), by |V (H)| = 2, it is easy to construct a cycle longer
than Cm, a contradiction.) Thus, we can check that

|N(u)| ≤ |V (Cm)|/3 + |V (H) \ {u}| ≤ (n − 2)/3 + 1,
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i.e., d(u) ≤ (n−2)/3+1. Clearly, n ≥ |V (Cm)|+ |V (H)| ≥ 8, so d(u) ≤ (n−3)/2,
and this contradicts the assumption of Theorem 2 that d(u) ≥ (n − 2)/2.

Subcase 1.2. |V (H)| = 1.

In this case, if u ∈ V (H), then we have |j − i| ≥ 2 for all pairs xi, xj ∈
NCm

(H) with {xi+1, xi+2, · · · xj−1} ∩ N(u) = ∅, so |N(u)| ≤ |V (Cm)|/2 ≤ (n −
1)/2. Together with the assumption of Theorem 2 that d(u) ≥ (n−2)/2, we have
(n − 2)/2 ≤ d(u) ≤ (n − 1)/2. Then we consider the following subcases.

Subcase 1.2.1. d(u) = (n − 2)/2.

Then, since Cm is the longest cycle of G, the vertex u is not adjacent to
two consecutive xi, xi+1 on Cm. By d(u) = (n − 2)/2, |V (Cm)| ≥ 2d(u) ≥ n − 2,
so |V (G − Cm)| ≤ 2.

First, let |V (G − Cm)| = 1. In this case, since G does not have a Hamil-
tonian cycle Cn and d(u) = (n− 2)/2, it is easy to obtain N(u) = {xi, xi+3, xi+5,
xi+7, · · · xi−2} on Cm, i.e., there exists only one pair of consecutive neighbor ver-
tices xi, xi+3 of u on Cn such that |(i+3)−i| = 3 and for all other two consecutive
neighbor vertices xi+k, xi+h of u with {xi+k+1, xi+k+2, · · · xi+h−1}∩N(u) = ∅, we
have |(i + k) − (i + h)| = 2.

In this case, since G does not have a Hamiltonian cycle Cn, we derive that

G ∈ G(n−2)/2 ∨ (K(n−2)/2 ∪ K2),

where

V (G(n−2)/2) = {xi, xi+3, xi+5, xi+7, · · · xi−2},

K(n−2)/2 = {xi+4, xi+6, · · · xi−1, u}, K2 = {xi+1, xi+2}.

Now, let |V (G − Cm)| = 2 and let v ∈ V (G − Cm − u). Since G does not have a
Hamiltonian cycle Cn and d(u) = (n − 2)/2, it is easy to obtain N(u) = N(v) =
{xi, xi+1, · · · xi−2}. This implies

G ∈ G(n−2)/2 ∨ K(n+2)/2,

where

V (G(n−2)/2) = {xi, xi+2, · · · xi−2},K(n+2)/2 = {xi+1, xi+3, · · · xi−1, u, v}.

Subcase 1.2.2. d(u) = (n − 1)/2.

In this case, since Cm is the longest cycle of G, the vertex u is not adjacent
to two consecutive xi, xi+1 on Cm, so |V (Cm)| ≥ 2d(u) ≥ n − 1. This implies
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|V (G − Cm)| = 1. In this case, it is easy to obtain N(u) = {xi, xi+2, · · · xi−2} on
Cm, so we have

G ∈ G(n−1)/2 ∨ K(n+1)/2,

where

V (G(n−1)/2) = {xi, xi+2, · · · xi−2},K(n+1)/2 = {xi+1, xi+3, · · · xi−1, u}.

Case 2. The connectivity of G is 1.
In this case, let w be a cut vertex of G. Then, since d(x) ≥ (n − 2)/2

for each vertex x in G, we have that G − w has two components. (Otherwise,
let G − w have at least three components H1, H2 and H3, and let |V (H1)| =
min{|V (H1)|, |V (H2)|, |V (H3)|}. Then we have d(y) ≤ n/3 − |{y}| + |{w}| <
(n−2)/2 for each vertex y in H1, a contradiction.) Let H1, H2 be the components
of G−w, i.e., G−w = H1∪H2. We denote G by w : (H1∪H2). Clearly, we have

(n − 2)/2 ≤ min{|V (H1)|, |V (H2)|} ≤ max{|V (H1)|, |V (H2)|} ≤ n/2.

Without loss of generality we may assume that

|V (H1)| = h = min{|V (H1)|, |V (H2)|}

|V (H2)| = t = max{|V (H1)|, |V (H2)|}.

(i) When h = (n − 2)/2, then H1 is the complete subgraph Kh, the vertex w is
adjacent to all vertices of H1, and each vertex of H2 is not adjacent to at least
one vertex of H2. (ii) When h = (n − 1)/2, then H1 and H2 are both complete
subgraphs. However, we can write w : (H1 ∪ H2) = w : (Kh ∪ K−

t ), where
(n − 2)/2 ≤ h ≤ t ≤ n/2, and each vertex of K−

t is not adjacent to at least one
vertex of K−

t .
Therefore, the proof is complete. �
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