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ABSTRACT. We say that a regular graph G of order n and degree r > 1
(which is not the complete graph) is strongly regular if there exist non-
negative integers 7 and 6 such that |S; N'S;| = 7 for any two adjacent
vertices ¢ and j, and |S; N .S;| = 6 for any two distinct non-adjacent vertices
¢ and j, where Sy denotes the neighborhood of the vertex k. Let A\ = r,
A2 and A3 be the distinct eigenvalues of a connected strongly regular graph.
Let my; = 1, mo and m3 denote the multiplicity of r, Ao and A3, respectively.
We here describe the parameters n, r, 7 and 6 for strongly regular graphs
with mo = gm3 and mz = gmsy for ¢ = 2, 3, 4.

1. Introduction. Let G be a simple graph of order n. The spectrum
of G consists of the eigenvalues A\ > Ao > --- > A, of its (0,1) adjacency matrix
A and is denoted by o(G). We say that G is integral if its spectrum o(G) consists
of integral values. Further, we say that a regular graph G of order n and degree
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r > 1 (which is not the complete graph K,,) is strongly regular if there exist non-
negative integers 7 and 0 such that |.S;N.S;| = 7 for any two adjacent vertices ¢ and
J, and |S; NS} = 0 for any two distinct non-adjacent vertices ¢ and j, where Sy
denotes the neighborhood of the vertex k. For a background on strongly regular
graphs see e.g. the books [2, ch. 10] or [6, ch. 21]. We know that a regular
connected graph G is strongly regular if and only if it has exactly three distinct
eigenvalues. Let Ay > Ay > A3 denote the distinct eigenvalues of G and let mq,
mg and mg denote their multiplicities, respectively. It is known that Ay = r and
mi = 1.

Theorem 1 (Lepovi¢ [3]). Let G be a connected strongly reqular graph of
order n and degree r. Then mamsd? = nr7 where § = A\g— A3 and 7 = (n—1)—r.

Remark 1. Let7= (n—1)—7, A\ = —A3— 1 and A3 = —\y — 1 denote
the distinct eigenvalues of the strongly regular graph G, where G denotes the
complement of G. Then 7 =n —2r —2+60 and 0 = n — 2r + 7 where 7 = 7(G)
and 6 = 0(G).

Remark 2. (i) a strongly regular graph G of order 4k + 1 and degree
r =2k with 7 = kK — 1 and 6 = k is called a conference graph; (ii) a strongly
regular graph is a conference graph if and only if my = mg and (iii) if mae # mg
then G is an integral graph.

Remark 3. (i) if G is a disconnected strongly regular graph of degree
r then G = mK, 1, where mH denotes the m-fold union of the graph H; (ii) G
is a disconnected strongly regular graph if and only if § = 0.

Using Theorem 1 we have described the parameters n, r, 7 and 6 for
strongly regular graphs of order 2(2p+1), 3(2p+1) and 4(2p+ 1), where 2p+1 is
a prime number [3], [4]. Besides [5], we have described the parameters n, r, 7 and
0 for strongly regular graphs with |my — mg| < 3. We now proceed to establish
the parameters of strongly regular graphs with mo = ¢mg and mg = gmy for
q=2,3,4, as follows. First,

Proposition 1 (Elzinga [1]). Let G be a connected or disconnected
strongly reqular graph of order n and degree r. Then

(1) r2—(r—04+1)r—(n—10=0.
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Proposition 2 (Elzinga [1]). Let G be a connected strongly regular graph
of order n and degree r. Then

(2) 2r + (1 — 0)(ma +m3) + 6(ma —m3) =0,
where 6 = Ao — A3.

2. Main results.

Remark 4. Since ma(G) = m3(G) and m3(G) = ma(G) we note that if

ma(G) = qms(G) then m3(G) = gma(G).

Remark 5. In Theorems 2, 3 and 4 the complements of strongly regular
graphs appear in pairs in (k°) and (EO) classes, where k denotes the corresponding
number of a class.

Theorem 2. Let G be a connected strongly regular graph of order n and
degree r with may = 2mg or msg = 2mo. Then G is one of the following strongly
reqular graphs:

(1°) G is the complete bipartite graph Koo of order n =4 and degree r = 2 with
7=0 and 0 = 2. Its eigenvalues are Ag = 0 and A3 = —2 with my = 2 and
mg = 1;

(2°) G is a strongly reqular graph of order n = (3k+1)? and degree r = k(3k+2)
with = (k—1)(k+1) and 0 = k(k + 1), where k € N. Its eigenvalues are
Ao =k and A3 = —(2k + 1) with ma = 2k(3k + 2) and mg = k(3k +2);

(50) G is a strongly regular graph of order n = (3k+1)% and degree r = 2k(3k+2)
with T = 4k? + 3k — 1 and 0 = 2k(2k + 1), where k € N. Its eigenvalues are
Ao =2k and A3 = — (k + 1) with ma = k(3k + 2) and ms = 2k(3k + 2);

(3%) G is a strongly regular graph of order n = (3k + 2)? and degree r = (k +
)3k + 1) with 7 = k(3k + 2) and 0 = k(3k + 1), where k € N. Its
eigenvalues are Ao = 2k + 1 and A3 = — (k + 1) with mg = (k+ 1)(3k + 1)
and mz = 2(k + 1)(3k + 1);

(30) G is a strongly regular graph of order n = (3k + 2)? and degree r = 2(k +
1)(3k + 1) with 7 = k(4k +5) and 6 = 2(k + 1)(2k + 1), where k € N. Its
eigenvalues are Ay = k and A3 = — (2k 4+ 2) with mg = 2(k+1)(3k+ 1) and
ms = (k+1)(3k + 1).
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Proposition 3. Let G be a connected strongly regular graph of order n
and degree r with ma = 2m3. Then G belongs to the class (2°) or (30) represented
in Theorem 2.

Proof. Let ms = p and mo = 2p where p € N. Since mg+m3 =n—1 we
obtain n = 3p+ 1. Since 7 — 0 = Ay + A3 and § = Ay — A3 we can easily see that
(2) is reduced to r = p(|Az| — 2X2). Let [A3| — 2y = ¢ where t € N. Let \y = k
where k is a positive integer. Then (i) A3 = — (2k +t); (ii) 7 — 0 = — (k + t);
(iii) 6 = 3k +t and (iv) r = pt. Since 62 = (7 — 0)% + 4(r — 0) (see [1]) we obtain
(v) 6 = pt — 2k* — kt. Using (ii), (iv) and (v) it is not difficult to see that (1) is
transformed into

3) (p+ 1)t — (3p + 1)t + 6k? + 4kt = 0.

Case 1. (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that Ay = %k and
AM=—2k+1),7—0=—(k+1),0=3k+1,r=pand 0 =p—2k? — k. Using
(3) we find that p = k(3k+2). So we obtain that G is a strongly regular graph of
order (3k+1)? and degree r = k(3k+2) with 7 = (k—1)(k+1) and 6 = k(k+1).
Case 2. (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that Ay = k and
AM=—-2k+2),7—0=—(k+2),6 =3k+2,r=2pand § = 2p — 2k — 2k.
Using (3) we find that p = (k 4+ 1)(3k + 1). So we obtain that G is a strongly
regular graph of order (3k+2)? and degree r = 2(k+1)(3k+1) with 7 = k(4k+5)
and 6 = 2(k +1)(2k +1).

Case 3. (t > 3). Using (iv) we obtain r =n — 1 if ¢ = 3, a contradiction. Using
(iv) we obtain r > n if t > 4, a contradiction. O

Proposition 4. Let G be a connected strongly regular graph of order n
and degree r with ms = 2mg. Then G belongs to the class (50) or (3%) represented
in Theorem 2.

Proof. Let my = p, ms = 2p and n = 3p + 1 where p € N. Using (2) we
obtain r = p(2|A3| — A2). Let 2|A3| — Ao =t where t = 1,2. Let A3 = — k where
k is a positive integer. Then (i) Ao = 2k —¢; (ii) 7 — 0 = k — ¢t; (iii) 6 = 3k — ¢;
(iv) r = pt and (v) 6 = pt — 2k? + kt. Using (ii), (iv) and (v) we can easily see
that (1) is reduced to

(4) (p+1)t2 — (3p+ 1)t + 6k> — 4kt = 0.

Case 1. (t =1). Using (i), (ii), (iii), (iv) and (v) we find that Ay = 2k—1
and \3 = -k, 7—0=k—1,6=3k—1,r =pand § = p—2k>+ k. Using (4) we



On strongly regular graphs with mo = gms and ms = qgms 357

find that p = k(3k — 2). Replacing k with k£ + 1 we arrive at p = (k+1)(3k + 1),
where k is a positive integer. So we obtain that G is a strongly regular graph of
order (3k+2)? and degree r = (k+1)(3k+1) with 7 = k(3k+2) and 6 = k(3k+1).

Case 2. (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that Ay = 2k —2
and \g = —k, 7—0=k—2,8=3k—2,r=2pand 0 = 2p — 2k% + 2k. Using
(4) we find that p = (k — 1)(3k — 1). Replacing k with k£ + 1 we arrive at
p = k(3k + 2), where k is a positive integer. So we obtain that G is a strongly
regular graph of order (3k +1)? and degree r = 2k(3k + 2) with 7 = 4k + 3k — 1
and 0 = 2k(2k +1). O

Proof of Theorem 2. According to Proposition 3 it turns out that
G belongs to the class (2Y) or (30) if mg = 2mg. According to Proposition 4 it
turns out that G belongs to the class (§0) or (3%) if mg =2my. O

Remark 6. We note that the complete bipartite graph K> o is a strongly

regular graph with mo = 2mg. It is obtained from the class Theorem 2 (30) for
k=0.

Theorem 3. Let G be a connected strongly regular graph of order n and
degree r with mao = 3msg or mg = 3ma. Then G is one of the following strongly
reqular graphs:

(1°) G is the strongly reqular graph 3K3 of order n =9 and degree r = 6 with
T =23 and 0 = 6. Its eigenvalues are Ag = 0 and A3 = —3 with my = 6 and
mg=2;

(2°) G is a strongly reqular graph of order n = (4k+1)? and degree r = 2k(2k+1)
with 7 = k> —k — 1 and 0 = k(k + 1), where k > 2. Its eigenvalues are
Ao =k and A3 = — (3k + 1) with mg = 6k(2k + 1) and ms = 2k(2k + 1);

(50) G is a strongly regular graph of order n = (4k-+1)% and degree r = 6k(2k-+1)
with 7 = 9k? + 5k — 1 and 0 = 3k(3k + 1), where k > 2. Its eigenvalues are
Ao =3k and A3 = — (k + 1) with ma = 2k(2k + 1) and ms = 6k(2k + 1);

(3%) G is a strongly regular graph of order n = (4k + 3)? and degree r = 2(k +
1)(2k + 1) with 7 = k> + 3k + 1 and 0 = k(k + 1), where k € N. Its
eigenvalues are Ay = 3k +2 and A3 = — (k+ 1) with mo = 2(k+1)(2k + 1)
and m3 = 6(k +1)(2k + 1);
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(30) G is a strongly regular graph of order n = (4k + 3)? and degree r = 6(k +
1)(2k 4+ 1) with 7 = 9k + 13k + 3 and 0 = 3(k + 1)(3k + 2), where k € N.
Its eigenvalues are Ao =k and A3 = — (3k + 3) with mg = 6(k + 1)(2k + 1)
and ms = 2(k +1)(2k + 1).

Proposition 5. Let G be a connected strongly regular graph of order n
and degree r with mg = 3ms. Then G belongs to the class (2°) or (go) represented
in Theorem 3.

Proof. Let mg = p, mo = 3p and n = 4p + 1 where p € N. Using (2)
we obtain 7 = p(|Asz] — 3\2). Let [A3| —3X2 = ¢ where t = 1,2,3. Let Ao = k
where k is a positive integer. Then (i) A3 = — 3k +t); (ii)) 7 — 0 = — (2k + t);
(iii) 6 = 4k +¢; (iv) r» = pt and (v) § = pt — 3k? — kt. Using (ii), (iv) and (v) we
can easily see that (1) is reduced to

(5) (p+ 1)t2 — (4p + 1)t + 12k% + 6kt = 0.

Case 1. (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that Ao = k
and \3=—(3k+1),7—0=—(2k+1),6=4k+1,r=pand 0 = p — 3k*> — k.
Using (5) we find that p = 2k(2k + 1). So we obtain that G is a strongly regular
graph of order (4k + 1)? and degree r = 2k(2k + 1) with 7 = k* — k — 1 and
0 =Fk(k+1).

Case 2. (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that Ao = k
and \3 = — (3k+2), 7—0 = — (2k+2), § = 4k+2, r = 2p and 6 = 2p— 3k> —2k.
Using (5) we find that 2p — 1 = 6k(k + 1), a contradiction because 21 (2p — 1).

Case 3. (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that Ay = k and
A3 = — (3k+3),7—0 = — (2k+3), 0 = 4k+3, r = 3p and 0 = 3p—3k?—3k. Using
(5) we find that p = 2(k + 1)(2k + 1). So we obtain that G is a strongly regular
graph of order (4k + 3)? and degree r = 6(k + 1)(2k + 1) with 7 = 9k? + 13k + 3
and § =3(k+1)(3k+2). O

Proposition 6. Let G be a connected strongly regular graph of order n
and degree r with ms = 3mg. Then G belongs to the class (50) or (3%) represented
in Theorem 3.

Proof. Let my = p, m3s = 3p and n = 4p + 1 where p € N. Using (2) we
obtain r = p(3|A3] — A\2). Let 3|A3] — Ao =t where t = 1,2, 3. Let A\3 = — k where
k is a positive integer. Then (i) Ao = 3k —¢; (i) 7 — 0 = 2k — ¢; (iii) 0 = 4k — ¢;
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(iv) r = pt and (v) 6 = pt — 3k* + kt. Using (ii), (iv) and (v) we can easily see
that (1) is reduced to

(6) (p+ 1)t — (4p + 1)t + 12k — 6kt = 0.

Case 1. (t =1). Using (i), (ii), (iii), (iv) and (v) we find that Ay = 3k—1
and \3 = —k,7—0=2k—1,0 =4k—1,r = pand 0 = p— 3k + k. Using (6) we
find that p = 2k(2k —1). Replacing k with £+ 1 we arrive at p = 2(k+1)(2k+1),
where k is a positive integer. So we obtain that G is a strongly regular graph
of order (4k + 3)? and degree r = 2(k + 1)(2k + 1) with 7 = k? + 3k + 1 and
0=k(k+1).

Case 2. (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that Ay = 3k —2
and \3 = —k,7—0 =2k —2,8 =4k — 2, r = 2p and 0 = 2p — 3k? + 2k. Using
(6) we find that 2p — 1 = 6k(k — 1), a contradiction because 2 1 (2p — 1).

Case 3. (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that Ay = 3k —3
and \3 = —k,7—0 =2k —3,5 =4k -3, r = 3p and 0 = 3p — 3k? + 3k. Using
(6) we find that p = 2(k — 1)(2k — 1). Replacing k with k£ + 1 we arrive at
p = 2k(2k + 1), where k is a positive integer. So we obtain that G is a strongly
regular graph of order (4k +1)? and degree r = 6k(2k + 1) with 7 = 9k + 5k — 1
and 0 =3k(3k+1). O

Proof of Theorem 3. According to Proposition 5 it turns out that
G belongs to the class (2Y) or (30) if mg = 3mg. According to Proposition 6 it
turns out that G belongs to the class (50) or (3%) if mg = 3my. O

Remark 7. We note that 3Kj3 is a strongly regular graph with ms =
3ms. It is obtained from the class Theorem 3 (30) for k= 0.

Theorem 4. Let G be a connected strongly regular graph of order n and
degree r with mao = 4mg or msg = 4mo. Then G is one of the following strongly
reqular graphs:

(1°) G is the complete bipartite K3 3 of order n =6 and degree r = 3 with 7 = 0
and 0 = 3. Its eigenvalues are Ao = 0 and A3 = —3 with ms = 4 and
m3 = 1 s

(2°) G is the strongly reqular graph 4K, of order n = 16 and degree r = 12 with
T =8 and 0 = 12. Its eigenvalues are Ao = 0 and A3 = —4 with my = 12
and mg = 3;
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G is a strongly regular graph of order n = (5k+1)? and degree r = k(5k+2)
with 7 = k* — 2k — 1 and 6 = k(k + 1), where k > 3. Its eigenvalues are
Ao =k and A3 = — (4k + 1) with my = 4k(5k + 2) and mg = k(5k + 2);

G is a strongly regular graph of order n = (5k-+1)% and degree r = 4k(5k+2)
with T = 16k* + Tk — 1 and 0 = 4k(4k + 1), where k > 3. Its eigenvalues
are Ay = 4k and A3 = — (k+ 1) with ma = k(5k + 2) and mg = 4k(5k + 2);

G is a strongly regular graph of order n = (5k + 4)? and degree r = (k +
1)(5k + 3) with 7 = k? + 4k + 2 and 6 = k(k + 1), where k € N. Its
eigenvalues are Ay = 4k + 3 and A3 = — (k + 1) with mg = (k4 1)(5k + 3)
and mg = 4(k + 1)(5k + 3);

G is a strongly regular graph of order n = (5k + 4)? and degree r = 4(k +
1)(5k + 3) with 7 = 16k* + 25k +8 and 6 = 4(k + 1)(4k + 3), where k € N.
Its eigenvalues are Ao = k and \3 = — (4k 4+ 4) with mg = 4(k + 1)(5k + 3)
and mg = (k + 1)(5k + 3);

G is a strongly regular graph of order n = 6(5k — 1)? and degree r =
2(30k? —12k+1) with T = 24k>—15k+1 and 0 = 6k(4k—1), where k € N. Its
eigenvalues are Ay = 3k—1 and A3 = — (12k—2) with my = 4(30k>—12k+1)
and mz = 30k% — 12k 4 1;

G is a strongly regular graph of order n = 6(5k — 1)? and degree r =
3(30k2—12k+1) with 7 = 18k(3k—1) and 0 = 3(3k—1)(6k—1), where k € N.
Its eigenvalues are Ay = 12k — 3 and A3 = — 3k with my = 30k? — 12k + 1
and mz = 4(30k? — 12k + 1);

G is a strongly regular graph of order n = 6(5k + 1)® and degree r =
2(30k% +12k+1) with 7 = 24k? + 15k +1 and 0 = 6k(4k+1), where k € N.
Its eigenvalues are Ay = 12k+2 and \3 = — (3k+1) with my = 30k*>+12k+1
and my = 4(30k? + 12k + 1);

G is a strongly regular graph of order n = 6(5k + 1)® and degree r =

3(30k2+12k+1) with 7 = 18k(3k+1) and 0 = 3(3k+1)(6k+1), where k € N.
Its eigenvalues are Ay = 3k and A3 = — (12k+3) with my = 4(30k*+12k+1)
and ms = 30k% + 12k + 1.

Proposition 7. Let G be a connected strongly regular graph of order n
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and degree r with my = 4ms. Then G belongs to the class (3°) or (ZO) or (5%) or
(60) represented in Theorem 4.

Proof. Let ms = p, my = 4p and n = 5p + 1 where p € N. Using (2)
we obtain r = p(|A3] —4A2). Let |A3g| —4X2 =t where t = 1,2,3,4. Let Ao = k
where k is a positive integer. Then (i) A3 = — (4k +t); (ii) 7 — 0 = — (3k + 1);
(iii) 6 = 5k +¢; (iv) r» = pt and (v) § = pt — 4k? — kt. Using (ii), (iv) and (v) we
can easily see that (1) is reduced to

(7) (p+ 1)t2 — (5p+ 1)t + 20k* + 8kt = 0.

Case 1. (t =1). Using (i), (ii), (iii), (iv) and (v) we find that Ay = k and
A3=—(4k+1),7—0=—Bk+1),5=5k+1,r=pand § = p—4k? — k. Using
(7) we find that p = k(5k +2). So we obtain that G is a strongly regular graph of
order (5k +1)? and degree r = k(5k + 2) with 7 = k? —2k — 1 and 0 = k(k + 1).

Case 2. (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that Ao = k
and \3 = — (4k+2), 7—0 = — (3k+2), § = 5k+2, r = 2p and 6 = 2p— 4k> —2k.
Using (7) we find that 3p — 1 = 2k(5k + 4). Replacing k with 3k — 1 we arrive
at p = 30k? — 12k + 1, where k is positive integer. So we obtain that G is a
strongly regular graph of order 6(5k — 1)? and degree r = 2(30k? — 12k + 1) with
7 =24k — 15k + 1 and 0 = 6k(4k — 1).

Case 3. (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that Ao = k
and \3 = — (4k+3), 7—0 = — (3k+3), 6 = 5k+3, r = 3p and 0 = 3p—4k? — 3k.
Using (7) we find that 3(p — 1) = 2k(5k + 6). Replacing k with 3k we arrive
at p = 30k% + 12k + 1, where k is positive integer. So we obtain that G is a
strongly regular graph of order 6(5k +1)? and degree r = 3(30k? + 12k + 1) with
7 = 18k(3k + 1) and 0 = 3(3k + 1)(6k + 1).

Case 4. (t =4). Using (i), (ii), (iii), (iv) and (v) we find that Ay = k and
A3 = — (4k+4), 7—0 = — (3k+4), = 5k+4, r = 4p and 0 = 4p—4k? —4k. Using
(7) we find that p = (k + 1)(5k + 3). So we obtain that G is a strongly regular
graph of order (5k +4)? and degree r = 4(k + 1)(5k + 3) with 7 = 16k? + 25k + 8
and § =4(k+1)(4k+3). O

Proposition 8. Let G be a connected strongly regular graph of order n
and degree r with mg = 4mgy. Then G belongs to the class (30) or (4°) or (30) or
(6°) represented in Theorem 3.

Proof. Let my = p, ms = 4p and n = 5p + 1 where p € N. Using (2) we
obtain r = p(4|A3| — A2). Let 4|A3] — Ao =t where t = 1,2,3,4. Let \g = — k
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where k is a positive integer. Then (i) Ao = 4k —¢; (ii) 7 — 0 = 3k — ¢; (iii)
§ =5k —t; (iv) r = pt and (v) 0 = pt — 4k*> + kt. Using (ii), (iv) and (v) we can
easily see that (1) is reduced to

(8) (p+ 1)t2 — (5p + 1)t + 20k — 8kt = 0.

Case 1. (t =1). Using (i), (ii), (iii), (iv) and (v) we find that Ay = 4k—1
and \3 = -k, 7—0=3k—1,0 =5k—1,r =pand 0 = p—4k> + k. Using (8) we
find that p = k(5k — 2). Replacing k with k + 1 we arrive at p = (k + 1)(5k + 3),
where k is a positive integer. So we obtain that G is a strongly regular graph
of order (5k + 4)? and degree r = (k + 1)(5k + 3) with 7 = k% + 4k + 2 and
0=k(k+1).

Case 2. (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that Ay = 4k —2
and \3 = —k,7—0 =3k —2,6 =5k —2,r=2pand 0 = 2p — 4k® + 2k. Using
(8) we find that 3p — 1 = 2k(5k — 4). Replacing k with 3k + 1 we arrive at
p = 30k? 4+ 12k + 1, where k is a positive integer. So we obtain that G is a
strongly regular graph of order 6(5k +1)? and degree r = 2(30k? + 12k + 1) with
T = 24k? + 15k + 1 and 0 = 6k(4k + 1).

Case 3. (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that Ay = 4k —3
and \3 = -k, 7—0 =3k—3,5 =5k—3,r = 3p and 0 = 3p — 4k*> + 3k.
Using (8) we find that 3(p — 1) = 2k(bk — 6). Replacing k& with 3k we arrive
at p = 30k% — 12k + 1, where k is a positive integer. So we obtain that G is a
strongly regular graph of order 6(5k — 1)? and degree r = 3(30k? — 12k + 1) with
7= 18k(3k — 1) and 0 = 3(3k — 1)(6k — 1).

Case 4. (t =4). Using (i), (ii), (iii), (iv) and (v) we find that Ay = 4k —4
and \3 = —k,7—0 =3k —4,6 =5k —4, r = 4p and 0 = 4p — 4k> + 4k. Using
(8) we find that p = (k — 1)(5k — 3). Replacing k with k£ + 1 we arrive at
p = k(5k + 2), where k is a positive integer. So we obtain that G is a strongly
regular graph of order (5k+1)? and degree r = 4k(5k +2) with 7 = 16k? + 7k —1
and 0 =4k(4k +1). O

Proof of Theorem 4. According to Proposition 7 it turns out that
G belongs to the class (3°) or (4°) or (5%) or (6°) if my = 4ms. According to
Proposition 8 it turns out that G belongs to the class (30) or (4%) or (50) or (6°)
if ms3 = 4m2. O

Remark 8. We note that the complete bipartite graph K3 3 is a strongly

regular graph with mo = 4mg. It is obtained from the class Theorem 4 (60) for
k=0.
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Remark 9. We note that 4K, is a strongly regular graph with ms =
4ms. It is obtained from the class Theorem 4 (ZO) for k = 0.

3. Concluding remarks. Using the same procedure applied in this
work we can establish the parameters n, r, 7 and 6 for strongly regular graphs
with me = ¢mg and m3 = gmsy for any fixed value ¢ € N, as follows. First,
let mg = p, my = gp and n = (¢ + 1)p + 1 where ¢ € N. Using (2) we obtain
r = p(|A3] — gA2). Let |Ag| — g\o =t where t = 1,2,...,q. Let Ay = k where k
is a positive integer. Then (i) A3 = — (¢k +¢); (i) 7 — 0 = — ((¢ — 1)k + ¢); (iii)
§=(qg+1Dk+t; (iv) r = pt and (v) 0 = pt — qk? — kt. Using (ii), (iv) and (v) we
can easily see that (1) is reduced to

(9) (p+1)t* — ((g+1)p+ 1)t +q(q+ 1)k* + 2kt = 0.

Second, let mg = p, m3 = gp and n = (¢ + 1)p + 1 where ¢ € N. Using (2) we
obtain r = p(q|As| — A2). Let g|A3| — Ao =t where t = 1,2,...,q. Let A3 = —k
where k is a positive integer. Then (i) Ao = ¢k —¢; (ii) 7 — 0 = (¢ — 1)k — ¢; (iii)
§=(qg+1)k—t; (iv) r = pt and (v) 0 = pt — qk? + kt. Using (ii), (iv) and (v) we
can easily see that (1) is reduced to

(10) (p+ 1)t — ((g+1)p+ 1)t +q(g+ 1)k* — 2gkt = 0.

Using (9) and (10) we can obtain for ¢ = 1,2, ..., ¢ the corresponding classes of
strongly regular graphs with mo = gms and m3 = gms, respectively.
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