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GROUP GRADINGS ON FREE ALGEBRAS

OF NILPOTENT VARIETIES OF ALGEBRAS∗

Yuri Bahturin

Communicated by M. Kochetov

Abstract. The main result is the classification, up to isomorphism, of all
gradings by arbitrary abelian groups on the finitely generated algebras that
are free in a nilpotent variety of algebras over an algebraically closed field
of characteristic zero.

1. Introduction. In this short note I put together two areas that have
been of interest to me for an extended period of time: varieties of algebras and
group gradings on algebras. Namely, we look at the gradings by abelian groups
on relatively free algebras of finite rank in nilpotent varieties of algebras. These
algebras do not need to be associative or Lie but it is important that they are
finite-dimensional and the varieties in question must be defined by multihomo-
geneous identities. If the base field of coefficients is infinite, then this is always
true. Among algebras to which our results apply are free nilpotent associative
or Lie algebras, free metabelian nilpotent Lie algebras and many others. At the
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same time, our Theorem 1 may be of interest also beyond these two areas, for
instance in the study of nil-manifolds equipped with some groups of symmetries.
An example of such applications of the gradings on algebras can be found in [1].

While writing this note, we had an opportunity of using the forthcoming
monograph [2], which we believe will soon become a standard source in the theory
of gradings of algebras. We would like to thank the authors for this.

2. Some basics. We recall that given an algebra A, two gradings
Γ : A =

⊕
g∈GAg and Γ′ : A =

⊕
h∈H A′

h are called equivalent if there is an
automorphism ϕ ∈ AutA and a bijection β : Supp Γ → Supp Γ′ such that for
all g ∈ G we have ϕ(Ag) = A′

β(g). Here Supp Γ denotes the support : Supp Γ =

{g ∈ G | Ag 6= 0}. We call ϕ a weak isomorphism if β can be extended to an
isomorphism of groups G and H. If ϕ(Ag) = A′

g for all g ∈ G (that is, β is the
identity map) then we call Γ and Γ′ isomorphic.

Using the same notation as just above, we call Γ′ a refinement of Γ if for
any h ∈ H there is g ∈ G such that A′

h ⊂ Ag. (In this situation also Γ is called
the coarsening of Γ′.) If at least for one h ∈ H, the latter containment is proper,
we call the refinement proper. A grading Γ is called fine if it does not admit
proper refinements.

Let k be a field and Fn a finite-dimensional algebra which is free of finite
rank n in a variety of algebras given by multihomogeneous identities (of degree
> 1). Let X = {x1, . . . , xn} stand for the set of free generators of Fn. Given
α = (d1, . . . , dn) ∈ Z

n, we consider the span Fα
n of all the monomials in X whose

degree with respect to each variable xi equals di, i = 1, . . . , n. The subspaces Fα
n

form a Z
n-grading of Fn:

(1) Fn =
⊕

α∈Zn

Fα
n .

Since Fn is finite-dimensional, there is c such that Fα
n = {0} as soon as |α| > c.

Thus Fn is a nilpotent algebra.
The automorphism group AutFn is an algebraic group and it contains

an n-dimensional toral subgroup Dn whose elements are defined as follows. Pick
t = (t1, . . . , tn) ∈ (k×)n. The map x1 7→ t1x1, . . . , xn 7→ tnxn uniquely extends
to an automorphism δ(t) of Fn. We set Dn = {δ(t) | t ∈ (k×)n}. Obviously,
Dn

∼= (k×)n.

3. Quasitori in Aut Fn. In the theory of gradings by abelian groups an
important role is played by the toral subgroups and their normalizers in AutFn.
Let us define a subgroup Pn in AutFn as follows. Given a permutation σ on
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{1, 2, . . . , n} and t, as before, we consider the map x1 7→ t1xσ(1), . . . , xn 7→ tnxσ(n).
The extension of this map to the whole of Fn will be denoted by δ(σ, t). Clearly,
δ(t) = δ(id, t). The set of all δ(σ, t) where σ ∈ Sn and t ∈ (k×)n is a subgroup of
AutFn. We denote this subgroup by Pn.

Proposition 1. If the ground field k is infinite, the normalizer of Dn in
AutFn equals Pn.

P r o o f. Suppose an automorphism µ belongs to the normalizer of Dn.
On the elements of the generating set X the action of µ can be written as

µ(xi) =
n∑

j=1

aj
ixj +

∑

α,|α|>1

wα
i where for all i, j, α we have aj

i ∈ k, wα
i ∈ Fα

n .

Pick δ(t) ∈ Dn. Then µ−1δ(t)µ ∈ Dn. In other words, there is δ(s) ∈ Dn such
that δ(t)µ = µδ(s). Using the definition of µ we determine that

µδ(s)(xi) =

n∑

j=1

sia
j
ixj +

∑

α,|α|>1

siw
α
i

while

δ(t)µ(xi) =

n∑

j=1

aj
i tjxj +

∑

α,|α|>1

td1

1 · · · tdn
n wα

i .

It follows that we must have aj
i tj = sia

j
i for all i, j and also td1

1 · · · tdn
n wα

i = siw
α
i

for any α with |α| > 1.
From the equations of the first kind, provided that all ti are chosen pair-

wise different, it follows that for each i = 1, . . . , n there is only one j such that
aj

i 6= 0 and we must have si = tσ(i). Since µ is an automorphism, σ is a permu-
tation on the set {1, . . . , n}.

Now if wα
i 6= 0 we must have tσ(i) = t

α
. Since t1, . . . , tn are chosen

different from 0, it follows that t
α
6= 0. If this is the case for some α and i, we

have, for any (t1, . . . , tn) ∈ (k×)n that tσ(i) = td1

1 · · · tdn
n where |α| = d1+· · ·+dn >

1. If dj 6= 0 for some j 6= σ(i) then, replacing all tk, k 6= j, by 1 we obtain

a contradiction 1 = t
dj

j , for all tj ∈ k×, k infinite. Otherwise, we have that

tσ(i) = t
|α|
σ(i), for any tσ(i) ∈ k×, which is again a contradiction. Therefore, we

must have wα
i = 0, for all σ and i.

Our conclusion is that for each µ in the normalizer of D there exists a
permutation σ ∈ Sn on the set {1, . . . , n} such that

µ(xi) = a
σ(i)
i xσ(i) for i = 1, . . . , n.
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Thus we obtain µ = δ(σ, t) with t1 = a
σ(1)
1 , . . . , tn = a

σ(n)
n , hence µ ∈ Pn, as

claimed. The converse statement being obvious, our proof is complete. �

Corollary 1. If k is an infinite field, then Dn is a maximal torus in
AutFn.

P r o o f. We consider the subspace V =
⊕

|α|=1 F
α
n . Every non-singular

linear transformation of V uniquely extends to an automorphism of Fn. All such
automorphisms form a subgroup H of AutFn isomorphic GL(V ). Choosing X as
a basis of V allows us to assume the existence of an isomorphism ι : H → GLn(k)
such that ι(Dn) is the group of all non-singular diagonal matrices and ι(Pn)
the subgroup of “monomial” matrices, that is, all matrices with exactly one
nonsingular entry in each row and in each column. It is well known that the
group of all diagonal matrices is a maximal torus in GLn(k). It follows that the
centralizer of ι(Dn) in GLn(k) is itself. But then also the centralizer of ι(Dn) in
ι(Pn) is itself. Since ι is an isomorphism, the centralizer of Dn in Pn is itself,
proving that Dn is indeed a maximal torus in AutFn. �

The next corollary deals with quasitori. Given an algebraic group, a qua-
sitorus is a subgroup consisting of semisimple elements, which is isomorphic to the
direct product of a torus and a finite abelian group. A typical example of impor-
tance to us is the following. Let G be an abelian group and Γ : F =

⊕
g∈G(Fn)g

a grading of Fn by G. Let us consider the “diagonal” subgroup D(Γ) ⊂ AutFn.
This subgroup consists of the automorphisms of Fn whose restriction to any com-
ponent (Fn)g of the grading Γ is a scalar linear transformation. Clearly, D(Γ) is
a quasitorus in AutFn.

Corollary 2. If k is an algebraically closed field, any quasitorus in
AutFn is conjugate to a subgroup of Dn.

P r o o f. Let Q be the quasitorus in question. According to [3] (see also
[4]), any quasitorus is a subgroup in the normalizer of a maximal torus. Since
in an algebraic group any two maximal tori are conjugate, the same is true for
their normalizers and thus using Proposition 1, we may assume that there exists
π ∈ AutFn such πQπ−1 ⊂ Pn. Denote Q′ = πQπ−1.

Next we use the isomorphism ι from the proof of Corollary 1. We ob-
serve that ι(Q′) is a quasitorus in GLn(k). Since k is algebraically closed, there
exists ψ ∈ GLn(k) such that ψι(Q′)ψ−1 ⊂ ι(Dn). Set ρ = ι−1(ψ) ∈ H. Then
ι(ρQρ−1) ⊂ ι(Dn) and thus ρQρ−1 ⊂ Dn. Setting τ = ρπ ∈ AutFn, we obtain
that τQτ−1 ⊂ Dn, as claimed. �
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4. Gradings of Fn. From now on we assume that k is an algebraically
closed field and finally turn our attention to the gradings on Fn by arbitrary
abelian groups. Consider one of such gradings, Γ : F =

⊕
g∈G(Fn)g, by an

abelian group G. Since Fn is finite-dimensional, only finitely many elements of G
are used for the grading. This allows us, without loss of generality, to assume that
G is a finitely generated group. We consider Ĝ, the group of characters of G with
values in k×. This group is a quasitorus. As is well known, Ĝ acts by semisimple
automorphisms on Fn, according to the rule χ ∗ w = χ(g)w, for any χ ∈ Ĝ and
w ∈ (Fn)g. As a result, we have a homomorphism ϕ : Ĝ→ AutFn, which maps Ĝ
into the quasitorus D(Γ). By Corollary 2, there is an automorphism τ : Fn → Fn

such that τD(Γ)τ−1 ⊂ Dn. We can also write that D(Γ) ⊂ τ−1Dnτ .

Now let us consider the decomposition of Fn as the sum of subspaces
τ−1(Fα). This is a grading of Fn by Z

n isomorphic to our standard Z
n-grading.

At the same time, this is the eigenspace decomposition of Fn under the action of
the maximal torus τ−1Dnτ . Since D(Γ) ⊂ τ−1Dnτ , we have that each eigenspace
of the decomposition of Fn with respect to the action of the quasitorus D(Γ) is
the sum of several subspaces τ−1(Fα).

The eigenspace decomposition of Fn with respect to ϕ(Ĝ) is Γ if k is of
characteristic 0. If k has characteristic p then this is still Γ provided that G has
no elements of order p. Otherwise, this is the coarsening of Γ induced by the
quotient map G → G/Sp where Sp is the Sylow p-subgroup of G and p is the
characteristic of k.

Now given α ∈ Z
n, there is a character ω(α) : τ−1Dnτ → k× such that

τ−1(Fα) is the eigenspace of the action of τ−1Dnτ corresponding to ω(α). The
restriction of ω(α) to ϕ(Ĝ) is a character of this quasitorus, which can be identified
with an element g = gH, g ∈ G, of G/H where H is either trivial or Sp, as
explained above. Since the restriction map is a homomorphism, it follows that
ν : α → g is a homomorphism of Z

n to G/H. A simple calculation shows that
(Fn)g =

∑
ν(α)=g F

α where (Fn)g =
∑

h∈H(Fn)gh.

The above discussion brings us to the following main result of this note.

Theorem 1. Let k be an algebraically closed field, Fn a (nonzero) finite-
dimensional algebra which is free of rank n in a variety of algebras over k. Let
Γ : F =

⊕
g∈G(Fn)g be a grading of Fn by an abelian group G. If k is of

characteristic zero or if G has no elements of order p where p is the characteristic
of k then Γ is isomorphic to a G-grading induced from the standard Z

n-grading
(1) by a homomorphism Z

n → G. Otherwise, the same is true for the coarsening
of Γ obtained by taking the quotient of G with respect to its Sylow p-subgroup.

To obtain all gradings, up to isomorphism, of Fn by an abelian group
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G (assuming char k = 0 or char k = p and G has no elements of order p) we
simply have to choose n elements g1, . . . , gn from G and assign to each w ∈ Fα

the degree d(w) = gd1

1 · · · gdn
n where α = (d1, . . . , dn) ∈ Z

n. In particular, d(x1) =
g1, . . . , d(xn) = gn. The isomorphism class of such grading is determined by the
elements of G that occur in the n-tuple (g1, . . . , gn), counting multiplicity.

Our last result deals with the fine gradings on Fn by abelian groups.
We note that, in characteristic zero, Theorem 1 implies that any such grading is
isomorphic to a coarsening of the standard grading, hence we obtain the following:

Corollary 3. Let k be an algebraically closed field of characteristic zero,
Fn a (nonzero) finite-dimensional algebra which is free of rank n in a variety of
algebras over k. Then, up to equivalence, the standard grading (1) is the only
fine abelian group grading of Fn.
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