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Cartan decomposition of a semisimple complex Lie algebra, this is the auto-
morphism group of the root system, i.e., the so-called extended Weyl group.
A grading is called fine if it cannot be refined. We compute the Weyl groups
of all fine gradings on simple Lie algebras of types A, B, C and D (except
D,) over an algebraically closed field of characteristic different from 2.
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1. Introduction. In [4], we computed the Weyl groups of all fine grad-
ings on matrix algebras, the Cayley algebra € and the Albert algebra A over an
algebraically closed field F (charF # 2 in the case of the Albert algebra). It is
well known that Der(C) is a simple Lie algebra of type Go (charF # 2,3) and
Der(A) is a simple Lie algebra of type Fy (charF # 2). Since the automorphism
group schemes of € and Der(C), respectively A and Der(A), are isomorphic, the
classification of fine gradings on Der(C), respectively Der(A), is the same as that
on G, respectively A [3] and, moreover, the Weyl groups of the corresponding
fine gradings are isomorphic. The situation with fine gradings on the simple Lie
algebras belonging to series A, B, C' and D is more complicated, because the
fine gradings on matrix algebras yield only a part of the fine gradings on the
simple Lie algebras of series A (so-called Type I gradings). In order to obtain the
fine gradings for series B, C' and D and the remaining (Type II) fine gradings
for series A, one has to consider fine p-gradings on matrix algebras, which were
introduced and classified in [2].

The purpose of this paper is to compute the Weyl groups of all fine grad-
ings on the simple Lie algebras of series A, B, C' and D, with the sole exception
of type Dy (which differs from the other types due to the triality phenomenon),
over an algebraically closed field F of characteristic different from 2. To achieve
this, we first determine the automorphisms of each fine p-grading on the matrix
algebra R = M, (F), n > 3, and then use the transfer technique of [1] to ob-
tain the Weyl group of the corresponding fine grading on the simple Lie algebra
L =[R,R/(Z(R)N[R,R]) or K(R, ), where in the second case ¢ is an involu-
tion on R and K (R, ¢) stands for the set of skew-symmetric elements with respect
to .

We adopt the terminology and notation of [4], which is recalled in Section
2 for convenience of the reader. In Section 3, we restate the classification of fine -
gradings on matrix algebras [2] in more explicit terms and determine the relevant
automorphism groups of each fine p-grading (Theorem 3.12). In Section 4, we
deal with the simple Lie algebras of series A (Theorems 4.6 and 4.7) and, in
Section 5, with those of series B, C' and D (Theorems 5.6 and 5.7).

2. Generalities on gradings. Let A be an algebra (not necessarily
associative) over a field F and let G be a group (written multiplicatively).
Definition 2.1. A G-grading on A is a vector space decomposition

r: A=A,

geG
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such that
AgAp CAgp, forall g,h €G.

If such a decomposition is fixed, we will refer to A as a G-graded algebra. The
nonzero elements a € Ay are said to be homogeneous of degree g; we will write
°a = g. The support of I is the set Supp I' := {g € G | A, # 0}.

There are two natural ways to define equivalence relation on graded alge-
bras. We will use the term “isomorphism” for the case when the grading group
is a part of the definition and “equivalence” for the case when the grading group
plays a secondary role. Let

I A=A, andI': B=(P B,
geG heH

be two gradings on algebras, with supports .S and T, respectively.

Definition 2.2. We say that T' and T’ are equivalent if there exists
an isomorphism of algebras ¢: A — B and a bijection a: S — T such that
P(As) = Bys) for all s € S. Any such 1 will be called an equivalence of I' and
I (or of A and B if the gradings are clear from the context).

The algebras graded by a fixed group G form a category where the mor-
phisms are the homomorphisms of G-graded algebras, i.e., algebra homomor-
phisms : A — B such that ¢(Ay) C By for all g € G.

Definition 2.3. In the case G = H, we say that T’ and T are isomorphic
if A and B are isomorphic as G-graded algebras, i.e., there exists an isomorphism
of algebras 1p: A — B such that Y(Ag) = By for all g € G.

It is known that if I' is a grading on a simple Lie algebra, then Supp I’
generates an abelian group (see e.g. [6, Proposition 3.3]). From now on, we will
assume that our grading groups are abelian. Given a group grading I' on an
algebra A, there are many groups G such that I" can be realized as a G-grading,
but there is one distinguished group among them [7].

Definition 2.4. Suppose that I' admits a realization as a Gg-grading for
some group Go. We will say that Go is a universal group of I' if, for any other
realization of I' as a G-grading, there exists a unique homomorphism Gy — G
that restricts to identity on Supp I.

One shows that the universal group, which we denote by U(T"), exists
and depends only on the equivalence class of I'. Indeed, U(I") is generated by
S = Supp I' with defining relations syso = s3 whenever 0 # Ay A;, C A,y
(Si es )
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As in [7], we associate to I' three subgroups of the automorphism group
Aut(A) as follows.

Definition 2.5. The automorphism group of I', denoted Aut(T"), consists
of all automorphisms of A that permute the components of I'. Each 1 € Aut(I)
determines a self-bijection o = () of the support S such that (As) = Aqs) for
all s € S. The stabilizer of I', denoted Stab(I"), is the kernel of the homomorphism
Aut(T") — Sym(S) given by 1 — «(v). Finally, the diagonal group of T', denoted
Diag(I"), is the subgroup of the stabilizer consisting of all automorphisms 1) such
that the restriction of ¢ to any homogeneous component of I' is the multiplication
by a (nonzero) scalar.

Thus Aut(I") is the group of self-equivalences of the graded algebra A and
Stab(I") is the group of automorphisms of the graded algebra A. Also, Diag(T") is
isomorphic to the group of characters of U(I") via the usual action of characters
on A: if T" is a G-grading (in particular, we may take G = U(I")), then any
character x € G acts as an automorphism of A by setting x * a = x(g)a for all
a € Ay and g € G. If dimA < oo, then Diag(I') is a diagonalizable algebraic
group (quasitorus). If, in addition, F is algebraically closed and charF = 0, then
I is the eigenspace decomposition of A relative to Diag(I") (see e.g. [6]), the group
Stab(I') is the centralizer of Diag(I'), in Aut(A) and Aut(I") is its normalizer. If
we want to work over an arbitrary field F, we can define the subgroupscheme
Diag(I") of the automorphism group scheme Aut(A) as follows:

Diag(F)(S) = {f S Autg(.A®8) | f|Ag®g S SXidAg(g)g for all g € G}

for any unital commutative associative algebra 8§ over F. Thus Diag(I") is the
group of F-points of Diag(I'). One checks that Diag(I') = U(I')”, the Cartier
dual of U(I'), also Stab(I') is the centralizer of Diag(I') and Aut(I") is its nor-
malizer with respect to the action of Aut(A) on Aut(A) by conjugation (see e.g.
[3, §2.2]).

Definition 2.6. The quotient group Aut(T')/Stab(T'), which is a sub-
group of Sym(S), will be called the Weyl group of I' and denoted by W (I).

It follows from the universal property of U(I") that, for any ¢ € Aut(T),
the bijection a(1): Supp I' — Supp I' extends to a unique automorphism of
U(T"). This gives an action of Aut(I") by automorphisms of U(T"). Since the kernel
of this action is Stab(I"), we may regard W (I') = Aut(I')/ Stab(I") as a subgroup
of Aut(U(I')). Given a G-grading I' : A = @, Ay and a group homomorphism
a: G — H, we obtain the induced H-grading °T' : A = @,y A), by setting
A = Dyca-1(n)Ag- Clearly, an automorphism o of U(T') belongs to W(I') if
and only if the U(I')-gradings “T" and I" are isomorphic.
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Given gradings I' : A =P oAy and I' 1 A = P,y Aj,, we say that
I is a coarsening of T, or that I is a refinement of TV, if for any g € G there exists
h € H such that Ay C A}. The coarsening (or refinement) is said to be proper if
the inclusion is proper for some g. (In particular, ®T" is a coarsening of I', which is
not necessarily proper.) A grading I is said to be fine if it does not admit a proper
refinement in the class of (abelian) group gradings. Any G-grading on a finite-
dimensional algebra A is induced from some fine grading I' by a homomorphism
a: U(I') — G. The classification of fine gradings on A up to equivalence is the
same as the classification of maximal diagonalizable subgroupschemes of Aut(A)
up to conjugation by Aut(A) (see e.g. [3, §2.2]). Fine gradings on simple Lie
algebras belonging to the series A, B, C' and D (including D,) were classified in
[2] assuming [ algebraically closed of characteristic 0. If we replace automorphism
groups by automorphism group schemes, as was done in [1], then the arguments
of [2] for all cases except D4 (which required a completely different method) work
under the much weaker assumption — which we adopt from now on — that F is
algebraically closed of characteristic different from 2.

3. Fine p-gradings on matrix algebras. The goal of this section is
to determine certain automorphism groups of fine p-gradings on matrix algebras.
These groups will be used in the next two sections to compute the Weyl groups
of fine gradings on simple Lie algebras of series A, B, C and D.

3.1. Classification of fine p-gradings on matrix algebras. Here we
present the results of [2, §3] in a more explicit form. We also introduce certain
objects that will appear throughout the paper.

Definition 3.1. Let A be an algebra and let ¢ be an anti-automorphism
of A. A G-grading T' : A = ®QEG'A9 is said to be a @-grading if p(Ay) = Ay
for all g € G (i.e., p is an anti-automorphism of the G-graded algebra A) and
©? € Diag(T). The universal group of a -grading is defined disregarding .

We have natural concepts of isomorphism and equivalence for p-gradings.
In addition, we will need another relation, which is weaker than equivalence.

Definition 3.2. IfT'y is a p1-grading on A and 'y is a pa-gradings on B,
we will say that (T'1, ¢1) isisomorphic (respectively, equivalent) to (s, @2) if there
exists an isomorphism (respectively, equivalence) of graded algebras ¢: A — B
such that @9 = o1 ~t. In the special case A = B and p1 = @o, we will
simply say that Ty is isomorphic (respectively, equivalent) to I's. We will say
that (T'1, 1) is weakly equivalent to (I's,p2) if there exists an equivalence of
graded algebras 1¥: A — B such that Eps = P11 for some € € Diag(I's).
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Note that if ¢ is an involution, then the condition ¢? € Diag(T") is satisfied
for any I'. Also, any @-grading I" on A restricts to the space of skew-symmetric
elements K (A, p).

Suppose R is a matrix algebra equipped with a G-grading I'.  Then R
is isomorphic to Endp(V') where D is a matrix algebra with a division grading
(i.e., a grading that makes it a graded division algebra) and V is a graded right
D-module (which is necessarily free of finite rank). Let 7' C G be the support
of D. Then T is a group and D can be identified with a twisted group algebra
FeT for some 2-cocycle o: T x T — F*, i.e., D has a basis X;, t € T, such that
Xu Xy = 0(u,v) Xy, for all u,v € T' (we may assume X, = I, the identity element
of D). Let Blu,v) = L&)

o(v,u)’ 50

Xu Xy = B(u,v) X, Xy

Then 3: T'xT — F* is a nondegenerate alternating bicharacter — see e.g. [1, §2].
A division grading on a matrix algebra with a given support 7" and bicharacter 3
can be constructed as follows. Since 3 is nondegenerate and alternating, T' admits
a “symplectic basis”, i.e., there exists a decomposition of T" into the direct product
of cyclic subgroups:

T = (Hy x HY) x--- x (H,. x H!)

such that H; x H' and H} x H} are (-orthogonal for i # j, and H; and H;’ are
in duality by 3. Denote by ¢; the order of H, and H;'. (We may assume without
loss of generality that ¢; are prime powers.) If we pick generators a; and b; for H
and H!, respectively, then ¢; := ((a;, b;) = B(b;,a;) ™! is a primitive £;-th root of
unity, and all other values of 8 on the elements aq, b1, ..., a,, b, are 1. Define the
following elements of the algebra My, (F)® --- @ M,, (F):

Xai:I®”’I®Xi®I®"’I and Xbi:I®"'I®Yi®I®"'I,

where
"t 0 0 0 0] [0 1 0 0]
0 €2 0 ... 00 0 01 0 0
Xi=| - and Y; =
0 0 0 ... g 0 0 00 ...0°1
0 0 0 ... 0 1 1 00 ... 0 0]

are the generalized Pauli matrices in the i-th factor, My, (F). Finally, set

. . . — i1 1 .. iy e
X(a§17 4 - Xalel Xa, Xbr‘

J J
b1 yeens Ay 7b7‘r)
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Identify My, (F)®--- @ M, (F) with My(F), £ = ¢1--- £, = /|T|, via Kronecker
product. Then

M,(F) = EPFX,

teT

is a division grading with support 7" and bicharacter 3.

Let ¢ be an anti-automorphism of R such that I' is a ¢-grading. It
is shown in [2, §3] that there exists an involution g of the graded algebra D
and a g-sesquilinear form B: V x V — D, which is nondegenerate, homoge-
neous and balanced, such that, for all » € R, ¢(r) is the adjoint of r with
respect to B, i.e., B(x,¢(r)y) = B(rz,y) for all z,y € V and r € R. By ¢g-
sesquilinear we mean that B is F-bilinear and, for all z,y € V and d € D, we have
B(zd,y) = po(d)B(x,y) and B(z,yd) = B(z,y)d; by balanced we mean that, for
all homogeneous z,y € V, B(x,y) = 0 is equivalent to B(y,z) = 0. Moreover,
the existence of ¢g forces T' to be an elementary 2-group. The pair (¢g, B) is
uniquely determined by ¢ up to the following transformations: for any nonzero
homogeneous d € D, we may simultaneously replace g by ©h: a — dyg(a)d™?
and B by B’ = dB. Using Pauli matrices (of order 2) as above to construct a
realization of D, we see that matrix transpose X +— X preserves the grading: for
any u € T', the transpose of X,, equals £X,,. It follows from [1, Proposition 2.3]
that (@0, B) can be adjusted so that ¢ coincides with the matrix transpose. We
will always assume that (g, B) is adjusted in this way, which makes B unique
up to a scalar in F. Also, we may write

eo(Xu) = Bu) Xy

where §(u) € {£1} for all uw € T. If we regard T as a vector space over the field
of two elements, then the function 3: T'— {£1} is a quadratic form whose polar
form is the bicharacter §: T'x T — {£1}.

We will say that a ¢-grading is fine if it is not a proper coarsening of
another p-grading. The following construction of fine p-gradings on matrix alge-
bras was given in [2] starting from D. We start from 7', an elementary 2-group of
even dimension, i.e., T = Z$ ™7 which we continue to write multiplicatively. Let
08 be a nondegenerate alternating bicharacter on T'. Fix a realization, D, of the
matrix algebra endowed with a division grading with support T" and bicharacter
5, and let ¢y be the matrix transpose on D. Let ¢ > 0 and s > 0 be two integers.
Let

(1) T=(t,....ty), teT
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Denote by G = é(T ,q,s,T) the abelian group generated by T and the symbols
g1; - -+ Jg+2s With defining relations

(2) Eﬁtl == ggtq = §q+1£~7q+2 == §q+2s—1£~7q+2s'

Definition 3.3. Let M(D, q, s, T) be the é-gmded algebra Endp (V') where
V' has a D-basis {vi,...,vg42s} with “v; = g;. Let n = (¢ + 28)2%dimT and
R = M, (F). The grading T' on R obtained by identifying R with M(D, q, s, T) will
be denoted by T'ni(D, q, s, 7). In other words, we define this grading by identifying
R = Myy25(D) and setting °(E;; @ Xy) == @ﬁﬁ;l By abuse of notation, we will
also write Ty(T, q, 8,7).

Let GO be the subgroup of G generated by Supp I', which consists of the
elements z; j; := @-tﬁj_l, teT (so z,;¢=tforallteT). Setz := 21, for
i=1,...,q (i #qif s =0), 2445 = Zg42i—1,g4+2i+1,e for i = 1,...,5s — 1, and
Zgts = Zgt1,g+2,e (if s > 0). If s =0, then GO is generated by T' and the elements
21,...,2g—1. If s = 1, then GO is generated by T" and z1,...,2441. If s > 1,

then relations (2) imply that zgi9i¢42it2.e = ij}i fori=1,...,s — 1, hence G°
is generated by T" and z1,. .., zg4+s. Moreover, relations (2) are equivalent to the
following:

2} =titiy1 (1<i<q), 22zq4s =tq (if ¢ >0and s > 0).

Let G! be the subgroup generated by T" and 21, ...,24—1. Let G2 be the subgroup
generated by z1,...,2s if ¢ = 0 and by z4,...,244s—1 if ¢ > 0. Then it is clear
from the above relations that GO = G! x 62, G? ~ 72, while Gl =T if q=20
and G! ZgimT+q_1_2dimT° X ZjimTO if ¢ > 0, where Tj is the subgroup of T
generated by the elements t;t;11, ¢ =1,...,¢9 — 1. To summarize:

~ im T—2 dim T, _1 .
(3) GO ~ Z;hm dim Tp+max(0,q—1) % ZZImTO NAS

Note that relations (2) are also equivalent to the following:

Zijtit = Zjitits 1,7 <gq, teT;
2i,q4+25—1,t;it = Zq4+25,0,ty  Ri,q+25,t;t = 2q+25—1,i,t> 1<q, j<s, telT,;
24 2i—1,g4+2j—1,t = Zq+2§,q+2i,t> i,7<s, teT,
2q4+2i-1,g+2j,t = 2q+2j—1,g+2i,t i,j<s, i#j, teT.

One verifies that, apart from the above equalities and z; ; ; = t, the elements z; ; ;
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are distinct, so the support of I' = FM(é, D, k,7) is given by

Supp I' ={zi s | i <j < q, t €T} U{zigje |1 <q, j <25, L €T}
U{zgr2i-1,g+2j-1¢ | 1 <J <8, 1 €T U{2g40iq4251 [ 1 <j <5, t €T}
U{zgr2i-1,+2¢ | 4,5 < s, i #j, t €T}

U {2g+2i—1,g12it |1 <5, t € TYU{2g42ig42i-14 |1 < s, t € T}UT,

where the union is disjoint and all homogeneous components except those that
appear in the last line have dimension 2, the components of degrees z442;—1,¢+2i,t
and 2¢42i ¢+2i—1,+ have dimension 1, and the components of degree ¢ have dimen-
sion q + 2s.

Proposition 3.4. Let I' = T'y(D,q,s,7). Then G° = GY(T,q,s,7) is
the universal group of I', and Diag(I") consists of all automorphisms of the form
X +— DXD™ ', X € R, where

(4) D:dla‘g(AhaAquZs)@Xtu )\Z EFX) t€T7
satisfying the relation

(5) AB(tt) = ... = ALB(ttg) = Agr1Agez = - .- = Agr2s—1Ag42s-

Proof. The relations z;¢420 0 = Zijuv, %, v € T, can be rewritten in
terms of the elements of Supp I', producing a set of defining relations for GO. Tt
follows that G° is the universal group of I'.

Since GY is the universal group of I', Diag(I") consists of all automorphisms
of the form X +— x %X where x is a character of GY. Since F* is a divisible group,
we can assume that y is a character of G. Let \; = X(Gi),i=1,...,q+2s. Let t
be the element of T such that x(u) = 5(t,u) for all u € T. Looking at relations
(2), we see that (5) must hold. Conversely, any t € T and a set of \; € F*
satisfying (5) will determine a character y of G. Tt remains to observe that the
action of y on R coincides with the conjugation by D as in (4). O

The following is Proposition 3.3 from [2].
Theorem 3.5. Consider the grading ' = T'y(D, q,s,7) on R = My 25(D)
by G° = G°T,q,s,7) where T is given by (1). Let u = (u1,...,pus) where

w; are scalars in F*. Let ¢ = ¢r, be the anti-automorphism of R defined by
o(X) =@ (' X)®, X € R, where ® is the block-diagonal matriz given by

o el o5 )
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and I is the identity element of D. Then I' is a fine p-grading unless ¢ = 2,
s =0 and t; = tg. In the latter case, I' can be refined to a p-grading that makes
R a graded division algebra.

This result and the discussion preceding Proposition 3.8 in [2] yield

Theorem 3.6. Let I' be a fine p-grading on the matriz algebra R =
M, (F) over an algebraically closed field F, charF # 2. Then (I, ) is equivalent

to some (U'n(T,q,8,7),r,) as in Theorem 3.5 where (q + 23)2%dimT =n.

In [2], in order to obtain the classification of fine gradings on simple Lie
algebras of series A, one classifies, up to weak equivalence, all pairs (I', ¢) where T
is a fine ¢-grading on a matrix algebra. At the same time, for series B, C and D,
one classifies, up to equivalence, such pairs where ¢ is an involution of appropriate
type: orthogonal for series B and D (we write sgn(¢) = 1) and symplectic
for series C' (we write sgn(p) = —1). The classifications involve equivalences
D — D’ satisfying certain conditions, where D and D’ are matrix algebras with
division gradings. If T is the support of D and T” is the support of D’, then
the graded algebras D and D’ are equivalent if and only if the groups T and T’
are isomorphic. Identifying 7' and T’, we may assume that D = D’ and look at
self-equivalences of D, i.e., the elements of Aut(I'g) where T'y is the grading on
D. By [4, Proposition 2.7], the Weyl group W(I'y) is isomorphic to Aut(T', 3),
the group of automorphisms of T' that preserve the bicharacter 8. Explicitly, if
Yo € Aut(lg), then 1o(X;) € FXy (), for all t € T, where a € Aut(T, 3), and
the mapping 1y — « yields an isomorphism Aut(I'y)/Stab(I'g) — Aut(T,S3).
Hence the conditions in [2] can be rewritten in terms of the group 7' rather
than the graded division algebra D. Note that Aut(7,3) can be regarded as
a sort of symplectic group; in particular, if T is an elementary 2-group, then
Aut(T, B) = Sp,,,(2) where m = dim 7.

Definition 3.7. Given 7 as in (1), we will denote by X(7) the multiset
in T determined by T, i.e., the underlying set of X(7) consists of the elements
that occur in (ti,...,tq), and the multiplicity of each element is the number of
times it occurs there.

The group Aut(T, 3) acts naturally on T, so we can form the semidirect
product 7' x Aut(T, 3), which also acts on T": a pair (u,«) sends t € T to a(t)u.
Clearly, if dimT = 2r, then T x Aut(T, 3) is isomorphic to ASp,,.(2), the affine
symplectic group of order 2r over the field of two elements (“rigid motions” of
the symplectic space of dimension 2r).

Using this notation, Theorem 3.17 of [2] can be recast as follows:

Theorem 3.8. Consider two pairs, (I',¢) and (I',¢'), as in Theorem
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3.5, namely, T' = T(T,q,5,7), ¢ = @rp and I' = To(T",¢', 8", '), &' = @7 )
where T = 73" and T' = Z3"'. Then (T, ) and (I',¢) are weakly equivalent if
and only if r =1', g =¢', s =&, and X(7) is conjugate to X(7') by the natural
action of T x Aut(T, 3) = ASp,,(2).

Let 1p: D — D be an equivalence. Then the map v, Yoo is an involu-
tion of the graded algebra D, which has the same type as ¢y (orthogonal). Hence
there exists a nonzero homogeneous element dy € D such that

(7) dopo(d)dy* = (¥ poto)(d) for all d e D.

Note that dg is determined up to a scalar in F. Moreover, dy is symmetric with
respect to ¢g. By a similar argument, 1y(dy) is also symmetric. Let a be the
element of Aut(T, 3) corresponding to ¢y and let ¢y be the degree of dy. Then
(7) is equivalent to the following:

(8) Blto,)B(t) = Bla(t)) forall teT,
so ty depends only on . Moreover, ((tg) = B(a(ty)) = 1.

Definition 3.9. For any o € Aut(T, 3), the map t — B(a~1(t))B(t) is
a character of T, so there erists a unique element to, € T such that B(tq,t) =
B(a~t(t)B(t) for allt € T. We define a new action of the group Aut(T,3) on T
by setting
a-t:=a(t)ty foral ocAut(T,5) and teT.

In other words, Aut(T,[3) acts through the (injective) homomorphism to T x
Auwt(T, B), a v+ (ta, ), and the natural action of T x Aut(T,3) on T.

Comparing this definition with equation (8), which defines the element
associated to «, we see that t, = «a(tg). In particular, 3(t,) = 1. This implies
that B(a-t) = B(t) for all t € T', so the sets

T, ={teT|B(t)=1} and T :={teT|B(t) =—1},

which correspond, respectively, to symmetric and skew-symmetric homogeneous
components of D (relative to g), are invariant under the twisted action of
Aut(T, 3).

Now Proposition 3.8(2) and Theorem 3.22 of [2] can be recast as follows:

Theorem 3.10. Let ¢ = @;, be as in Theorem 3.5. Then ¢ is an
involution with sgn(yp) = § if and only if

§=B(t) =...= Bty = 1 = ... = ps.
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For gradings T' = U(T,q,s,7) with T = Z3" and T" = Ty(T', ¢, s',7') with
T' = 73" and for involutions ¢ = Orp and ¢ = @p ., the pairs (I',¢) and
(T, ¢") are equivalent if and only if r =1, q = ¢, s = &, sgn(p) = sgn(¢’),
and 3() is conjugate to X(7") by the twisted action of Aut(T, ) = Sp,,(2) as in
Definition 3.9.

3.2. Automorphism groups of fine p-gradings on matrix alge-
bras. We are now going to study automorphisms of the fine @-gradings
Tow(T, q,s,7). We begin with some general observations. Let D and D’ be graded
division algebras, with the same grading group G. Let V be a graded right D-
module and V' a graded right D’-module, both of nonzero finite rank. By an
isomorphism from (D, V') to (D', V') we mean a pair (¢g, 1) where ¢g: D — D’
is an isomorphism of graded algebras, ¢1: V — V' is an isomorphism of graded
vector spaces over F, and 91 (vd) = ¥1(v)g(d) for all v € V and d € D.

Let R = Endp(V) and R’ = Endqy (V'). If ¢: R — R’ is an isomorphism
of graded algebras, then there exist ¢ € G and an isomorphism (v, 1) from
(D, VI9)) to (D', V') such that ¥y (rv) = 1 (r)y (v) forallr € Rand v € V (see e.g.
[2, Proposition 2.5]). Here V19 denotes a shift of grading: the (R,D)-bimodule
structure of V19 is the same as that of V, but we set Vh[g} = Vjg-1 forall h € G.
Conversely, given an isomorphism (¢g, 1) of the above pairs, there exists a unique
isomorphism ¢ : R — R’ of graded algebras such that ¢ (rv) = ¥(r)y1(v) for all
r € R and v € V. Two isomorphisms (¢g,%1) and (¢,v)) determine the same
isomorphism R — R’ if and only if there exists a nonzero homogeneous d € D’
such that ¥} (z) = d~14po(z)d and ] (v) = 11 (v)d for all z € D and v € V.

Lemma 3.11. Let ¢: R — R’ be the isomorphism of graded algebras
determined by an isomorphism (o, 1) from (D, V1)) to (D', V'). Suppose that
the graded algebras R and R’ admit anti-automorphisms ¢ and @', respectively,
determined by a @o-sesquilinear form B: V xV — D and a ¢-sesquilinear form
B:V' xV' — D'. Then ¢ = ¥~ if and only if there exists a nonzero
homogeneous dy € D such that

(9) B'(¢1(v), 91 (w)) = tho(doB(v,w)) for all v,we V.

Moreover, dopo(d)dy* = (g phtho)(d) for all d € D.

Proof. Set ¢” := ¢~ ¢y and B" (v, w) := 1y ' (B’ (¥1(v), 91 (w))) for all
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v,w € V. Then we compute:

B"(v,wd) = 1y 1(B' ¥1(v),

We have shown that B” is a (1 '¢htho)-sesquilinear form corresponding to "
Hence ¢ = ¢ if and only if there exists a nonzero homogeneous element dy € D
such that B"” = dyB, i.e., equation (9) holds. O

Now consider I' = I'(T', ¢, s,7) and ¢ = ¢, as in Theorem 3.5. There
are two kinds of automorphism groups that we will need. Namely, there is

Aut*(T, @) := {v € Aut(T) |y~ ! = € for some ¢ € Diag(I)},

which will be relevant to computing the Weyl group of the corresponding fine
grading on the simple Lie algebra of type A, and there is

Aut(T, ) == {1 € Aut(D) | Py = ¢},

which will be relevant to computing the Weyl groups of fine gradings on the
simple Lie algebras of types B, C' and D. Hence, we are intersted in Aut(T, ¢)
only if ¢ is an involution. Similarly, define

Stab(I', ) := {¢) € Stab(I') | vepr™" = i}

(We could also define Stab* (I, ¢), but we will not need it.)

Recall that I' is the grading on R = Endp (V') where D is a matrix algebra
equipped with a division grading with support T' = Z32" and bicharacter 3, and V'
has a D-basis {v1, ..., v} with ®v; = g; and k = ¢+ 2s. We will use the universal
group GO for the grading I'. If ¢y: R — R is an equivalence, then there exists an
automorphism « of the group GO such that 1 sends “T" to I'. In other words,
1: R’ — R is an isomorphism of graded algebras where R’ is R as an algebra, but
equipped with the grading ®I". Define D’ similarly to R’ usmg the restriction of
o to T C G°. The support of D’ is T' = a(T). Since V[91 Tis GO- graded, we
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can also define V’ so that R’ = Endyy (V') as a graded algebra. Therefore, v is
determined by (¢g, 1) where 1hg: D’ — D is an isomorphism of graded algebras
and 11: V' — V is an isomorphism up to a shift of grading. Hence 7" = T and
Yo € Aut(Tg), so ¥o(Xy) € FXy(y), for all £ € T, and the map a: T'— T belongs
to Aut(T, 5) = Sp,,.(2). Also, if ¥ is the matrix of ¢ relative to {v1,..., v}, we
have

P(X) = Uhp(X)T~L forall X €R.

Since all g; are distinct modulo T, matrix ¥ necessarily has the form ¥ = PD
where P is a permutation matrix and D = diag(dy,...,dy) where d; are nonzero
homogeneous elements of D. Moreover, the permutation 7 € Sym(k) corre-
sponding to P and the coset of 1)y modulo Stab(I'y) are uniquely determined by
1. Hence, we have a well-defined homomorphism

Aut(T) — Sym(k) x Aut(T, 3)

that sends 1 to the corresponding (7, ).

Now we turn to the anti-automorphism ¢: R — R, which is given by
the adjoint with respect to a @g-sesquilinear form B on V where ¢g: D — D
is given by matrix transpose, X; — ((t)X; for all t € T. Recall that such B
is determined up to a scalar in F. We can take for B the ¢g-sesquilinear form
whose matrix with respect to {v1,...,v;} is ® displayed in Theorem 3.5. Pick
¢ € Diag(T") and let B’ be a pp-sesquilinear form on V' corresponding to {¢. By
Lemma 3.11, 1 satisfies ¢p1p~! = £p if and only if condition (9) holds for some
nonzero homogeneous dy € D. Clearly, (9) is equivalent to (7) and

(10) ® = 1)o(do®),

where @ is the matrix of B’ relative to {t1(v1), ..., %1 (vg)}. Recall that (7) is
equivalent to condition (8) on tg :=° dg. To summarize, 1) satisfies Y1 ~! = £
if and only if

(11) ® = doti(®)

for some dy € D of degree t,, as in Definition 3.9 (we have replaced 1 (do) in (10)
by dy to simplify notation).

The matrix of B’ relative to {vy, ..., vg} is ®(D')~! where £(X) = D'X(D')71,
for all X € R, with D’ of the form given by Proposition 3.4: D' = diag(v1 Xy, ...,k Xy)
for some u € T and v; € F* satisfying

(12) viglu,t) = ... = Vgﬂ(u,tq) = Vgp1Vg42 = - .. = Vgy25—1Vg+2s-
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It follows at once that, for v € Aut*(T',¢), the permutation 7 must preserve
the set {1,...,q} and the pairing of ¢ + 2 — 1 with ¢ + 27, for i = 1,...,s.
It is convenient to introduce the group W (s) := Z3 x Sym(s) (i.e., the wreath
product of Sym(s) and Zs), which will be regarded as the group of permutations
on {g+1,...,q+ 2s} that respect the block decomposition {¢+1,¢+2}U...U
{q+2s—1,q+2s}. The reason for the notation W (s) is that Z§ x Symy(s) is the
classical Weyl group of type B or Cy (and also the extended Weyl group of type
D, if s > 4). By the above discussion, we have a homomorphism:

(13) Aut™(T, ¢) — Sym(q) x W(s) x Aut(T, 3).

We need some more notation to state the main result of this section. Let
>} be a multiset of cardinality g and let myq,...,my be the multiplicities of the
elements of ¥, written in some order. Thus, m; are positive integers whose sum
is ¢. We will denote by SymX. the subgroup Sym(mq) x - - - X Sym(my) of Sym(q),
which may be thought of as “interior symmetries” of 3. For a multiset X in T,
let Aut* X be the stabilizer of ¥ under the natural action of T'x Aut(7, 3) on T,
i.e., Aut* X is the set of “rigid motions” of the symplectic space T that permute
the elements of ¥ preserving multiplicity. These are “exterior symmetries” of 3.
Note that each bijection 6: T — T that stabilizes > determines an element of
Sym(q) that permutes the blocks of sizes my,...,my in the same way 6 permutes
the elements of X (thus, only blocks of equal size may be permuted) and preserves
the order within each block; we will call this permutation the restriction of € to 3.
Hence, we obtain a restriction homomorphism Aut* > — Sym(q). In particular,
Aut* ¥ acts naturally on Sym> by permuting factors (of equal order). Finally,
let Aut ¥ be the stabilizer of ¥ under the twisted action of Aut(7,3) on T as in
Definition 3.9. Note that Aut > may be regarded as a subgroup of Aut* X.

Theorem 3.12. Let I' = I'\(T, q,s,7) and let ¢ be as in Theorem 3.5
such that T is a fine p-grading. Let ¥ = (1), so |X| = q.

1) Stab(T",¢) = Diag(T").

2) Aut*(T', )/ Stab(T, ) is isomorphic to an extension of the group
((T7+s=1 x Z5) x (SymY x Sym(s)) x Aut* ¥ by Z%Jrs*l, with the following
actions: TI571 s identified with T97*/T and Zg+s_1 is identified with
ZngS/ZQ, where T and Zo are imbedded diagonally, then

e Sym¥ C Sym(q) acts on T9* )T and Z1"° /7y by permuting the first
g components and trivially on Z5;
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e Sym(s) acts on T /T and Z3°)Zy by permuting the last s compo-
nents and naturally on Z5;

e Aut* X acts on SymX and Zg+S/Zg through the restriction homomor-
phism Auwt*Y — Sym(q), trivially on Sym(s), and as follows on
(T3 )T) x Z§: an element (u,«) € Aut*E C T x Aut(T, 8) sends
a pair ((u1, ..., Ug, Ui, - - Ugrs) T, z) € (T9T5/T) x Z§ to
((a(uﬂ_l(l)), oy Up-1g))s (ugr)u®t L augys)u®e )T, z),
where m is the image of (u,a) under the restriction homomorphism;

o TUTS=L 5 75 acts trivially on Z4T7,

3) If ¢ is an involution, then Aut(T', p)/Stab(I', ) is isomorphic to
((T7+s=1 x Z5) x (SymY x Sym(s)) x Aut X, with the following actions:
Ta+s5=1 s identified with T /T, where T is imbedded diagonally, then

e SymY C Sym(q) acts on T /T by permuting the first ¢ components
and trivially on Z5;

e Sym(s) acts on T9"5/T by permuting the last s components and nat-
urally on Z5;

e Aut X acts on SymY as a subgroup of Aut* X, i.e., through the twisted
action on T (Definition 3.9) and restriction to X, trivially on Sym(s),
and as follows on (T /T) x Z5: an element a« € Aut ¥ C Aut(T, 3)
sends a pair (w1, ..., Uq, Ugs1, - - - Ugts)Tsx) € (T )T) x Z to
((tr=1(1))s -5 @(tg=1(g)), g1 )EEL, . . . uugys)te)T, ),
where m is the image of (ta, ) under the restriction to .

Proof. 1) If ¢ € Stab(I',¢), then ¥ = PD where P corresponds to
m € Sym(q) x W(s), and ¢y € Stab(I'g). Adjusting D if necessary, we may
assume g = id. We claim that 7 is the trivial permutation. Since v does not
permute the homogeneous components of I'; 7 must act trivially on GO /T. So,
we consider the action of Sym(g) x W (s) on G°/T in terms of the generators z;
(i=1,....,q—1lifs=0andi=1,...,qg+ s if s > 0) that were introduced after
Definition 3.3.

Sym(q) acts trivially on the subgroup (zgy1,...,2¢+s) and via the ac-
tion of the classical Weyl group of type A,_1, taken modulo 2, on the subgroup

(21,0, 2g—1) = Z%_l where z; is identified with the element &; — g;41, with
{e1,...,g4} being the standard basis of Z, on which Sym(q) acts naturally.
W (s) acts trivially on the subgroup (z1,...,2,—1) and via the action of

the classical Weyl group of type By or C on the subgroup (zg+1,. .., 2¢4s) = Z°
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where z,4; is identified with the element &; — ¢;41 for i # s and 2z, is identified
with the element 21, with {e1,...,e5} being the standard basis of Z°. The easiest
way to see this is to extend G by adding a new element gy satisfying (go) =2 = 9192
and set g; = g;go. The elements of the subgroup GO are not affected if we replace
gi by gi, but then we have gg42; = %j%'fl for j =1,...,s, so we can map gg4+2j—1
to €5 and gg42; to —¢;.

Note that the action of W (s) on (241, ..., 24+s) is always faithful, while
the action of Sym(q) on (21, ..., 24—1) is faithful unless ¢ = 2. If ¢ > 0 and s > 0,
then we also have the generator z,, on which 7 € Sym(q) x W (s) acts in this way
(note that 7(q) < ¢ and w(qg+ 1) > q):

Zr(q) " ZqRq+l " Rgtj if m(qg+1)=q+2j+1;
Zq —1 —1 . .
Zr(q) """ RqRq+1 " RgrjRats if (g +1)=q+2j+2.

If 7 acts trivially on (zg41,-..,2¢+s), then m(¢ + 1) = ¢+ 1. Hence, if 7 also
acts trivially on z4, then 7(q) = ¢. It follows that the action of Sym(q) x W (s)
on GO /T is faithful unless ¢ = 2 and s = 0. In this remaining case, we have
T = (t1,t2) where t; # to (otherwise I' is not a fine ¢-grading). If v yields
m = (12), then ¢;(v1) = vod; and ¥ (v2) = v1dy for some nonzero homogeneous
dy,ds € D, but then B(¢1(v1),1(v1)) has degree to, while B(v1,v1) has degree
t1. This contradicts (11), because here we have g = id, dy € F* and B’ = B.
The proof of the claim is complete.

Since P = I, we have ¥ = diag(dy, . ..,dy), where the d; must necessarily
have the same degree, say, t, so ¥ = diag(\1, ..., \x) ® X, but then (11) implies
that (5) must hold, hence ¢ € Diag(I'). We have proved that Stab(I',¢) C
Diag(I"). The opposite inclusion is obvious.

2) We can extract more information about an element ¢ € Aut*(I', ¢)
than given by its image under the homomorphism (13) if we look at the action
of 1 on ¢. Write ! = §yp where & is a uniquely determined element
of Diag(I"). Clearly, we have &y = &y(¥E€yp 1), Since &, is the conjugation
by diag(vi,...,vk) ® X, »» for a uniquely determined uy € T', we obtain uyy =
Uy 0y (Uyr ) Where ayy is the element of Aut(T', 3) corresponding to ¢ under (13).
Hence, we can construct a homomorphism

(14) Aut™(T, ¢) — Sym(q) x W(s) x (T x Aut(T, 3)),

where the first two components are as in (13) and the third is 9 — (uy, o).
Theorem 3.8 implies that we may assume without loss of generality that

. o I 0 I
(I):dlag<th,...,th,|:I 0:|>,|:I 0:|>
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(In other words, the scalars p; are all equal to 1.) Then, for ¢ given by ¥ = PD
and 9y € Aut(I'y), with P corresponding to m € Sym(q) x W (s), condition (11)
is equivalent to the following, with u = w,:

(15) SOO(di)XtTr(i) V;é)Xu_ldl = d0¢O(Xti)7 1= ]-7 -4,

and, for each j = 1,...,s, one of the following depending on whether 7(q + 25 —
1) <7m(g+2j5)orm(g+2j—1)>m(qg+2j):

(16) 900(dq+2j—1)V;(2+2j)X171dq+2j = SDO(dq+2j)V;(}1+2j71)X;1dq+2j—1 =dp

in the first case, and

(17) SOO(dq+2j71)V;(;+2j_1)Xu_1dq+2j = 900(dq+2j)V;(}ng)ijlquijfl =dp

in the second case.
If ¢» € Aut*(T', ¢), then, looking at the degrees in (15), we obtain

(18) tr() = ay(ti)ta,ug, i=1,...,q,

which implies that (ta,,uy, ) belongs to Aut™ 3. Composing the third compo-
nent of the homomorphism (14) with the automorphism (u, &) — (t,u, ) of the
group T' x Aut(7, 3), we obtain a homomorphism

(19) Aut*(T', ) — Sym(q) x W(s) x Aut* 3.

For any element (t,u,c) € Aut* ¥, let m, o € Sym(g) be its restriction to X.
Then (18) implies that the permutation 77,1, ~does not move the elements
of the underlying set of X, so it belongs to Sym>. It follows that (19) can be
rearranged as follows:

f Aut™ (T, ) — W(s) x (SymX x Aut® X).

We claim that f is surjective. We will construct representatives in Aut*(I', ) for
the elements of each of the subgroups W(s), Sym¥ and Aut* X.

For any m € W (s), let P be the corresponding permutation matrix and
let 1, be given by ¥ = P and ¢y = id. Let a be the automorphism of G that
restricts to identity on T and sends g; to gr(; (in particular, g; are fixed for
i=1,...,9). Then ¢, sends “T to T, so ¢, € Aut(I'). Also, conditions (15)
through (17) are satisfied with dy = I, u = e and v; = 1, so ¥ € Aut(T, p).

For any m € SymX, let P be the corresponding permutation matrix and
let ¢ be given by ¥ = P and 9 = id. Since we have t,;) =t; foralli =1,...,q,
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we can define the automorphism « of G in the same way as above (this time, g;
are fixed for i = ¢+ 1,...,9 + 2s). Then ¢, sends “T" to I', so ¥, € Aut(I).
Also, conditions (15) and (16) are satisfied with dy = I, w = e and v; = 1, so
Ur € Aut(T, ).

Now, for any (tou, @) € Aut™ %, let m = 7y o. Then t ;) = a(t;)tqu fori =
1,...,q and hence we can extend «: T'— T to an automorphism of G by setting
a(gi) = gr@y for i = 1,...,q, a(ggr2j-1) = Ggr2j—1 and a(ggt25) = Ggr2jtate
for j = 1,...,s. Choose v; € F* such that v? = B(u,t;)B(u), i = 1,...,4q,
and set vg49; = 1 and vg425—1 = B(u), j = 1,...,s. Then (12) holds, so the
conjugation by diag(v1 Xy, ...,k Xy) is an element ¢ € Diag(I'). Choose vy such
that 1 (X;) € FXq@- Let P be the permutation matrix corresponding to 7 and
let

D = diag(\MI, ... AT, Xy Xy, ... 1, X, Xy,),

where \; € F* are selected in such a way that condition (15) holds with dy = X,
(the degrees of both sides match, so it is indeed possible to find such \;). Since
B(ta) = 1, condition (16) also holds. Finally, let v, o be given by ¥ = PD
and 1. Then 1, o sends “I" to I' and ¢ to {p, with a and ¢ indicated above.
Therefore, 1y, belongs to Aut™(T', ¢).

We have proved that the homomorphism f is surjective. Let K be
the kernel of f. It consists of the conjugations by matrices of the form D =
diag(dy,...,dg) such that (15) and (16) are satisfied with = = id, ¢y = id,
do € F* and u = e. Hence °dy12j—1 =° dgqo; for all j = 1,...,s. Conversely,
given (u1,...,u) € TF with Ugt2j—1 = Ugy2j for j = 1,...,s, we can find ele-
ments d; with °d; = u; such that the conjugation by D belongs to Aut(T', ¢).

According to 1), the subgroup

N={yeK | = =°d}

contains Stab(I',p). Clearly, N is normal in Aut*(T',¢). From the previous
paragraph it follows that K/N = T9"% /T where T is imbedded into T9"% diag-
onally. The representatives 1, that we constructed above for = € W (s) and for
m € SymY. form subgroups of Aut(T',¢) that commute with one another. But
observe also that the representatives 1, o for (tqu,a) € Aut* 3 form a subgroup
modulo N. Moreover, for 7 € Sym(s) C W(s) the elements v, o and 1), commute
modulo N, while for 7 € Sym3 we have ¢y, oz, Ley -1 N. Finally, for

Tu, oMy,
the transposition 7 = (¢ +2j — 1,¢ + 2j), we have lf)ﬂ—l/)u,al/)ﬂ—l/);’é € YN where 9
is the conjugation by diag(dy,...,dy) with dgy2j—1 = dg+2; = Xy, and all other
d; = 1. 1t follows that Aut*(I, p)/N is isomorphic to (797! x Z§) x (SymX x
Sym(s)) x Aut* X, with the stated actions.
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It remains to compute the quotient N/ Stab(T', ). Since any element 1) €
N belongs to Stab(I'), the mapping ¢ +— &, is a homomorphism N — Diag(T")
whose kernel is exactly Stab(T, ¢). Hence, it suffices to compute the image. Since
here u = e and Odq+2j,1 =° dq+2j7 condition (16) implies that Vg+2j—1 = Vg+2j
for j =1,...,s. But then (12) implies that all v? are equal to each other. Since
multiplying all ; by the same scalar in F* does not change £, we may assume that
v; € {£1}. In fact, for D = diag(Ail,...,\xI), conditions (15) and (16) reduce
to the following: up to a common scalar multiple, v; = )\22 fori=1,...,q, and
Vg4+2j—1 = Vg425 = /\q+2jfl/\q+2j for j = 1, c.o., S Hence every (1/1, . ,l/k) with
v; € {£1} and vg42j—1 = V442, indeed appears in &, for some 1) € N. Therefore,
the quotient N/ Stab(T, o) is isomorphic to Z3"®/Zy where Zy is imbedded into
Zg+5 diagonally.

3) The proof is similar to 2), so we will merely point out the differences.
According to Theorem 3.10, here we have

. o I 0 I
@:dl&g(th,...,th,[él O:|7,|:5[ 0:|>7

where § = sgn(y) and (t;) = fori =1,...,q. Also, B’ equals B and hence, for
¥ given by ¥ = PD and ¢y € Aut(['y), with P corresponding to m € Sym(q) x
W (s), condition (11) is equivalent to the following:

(20) SOO(di)XtTr(i) dl = d0¢O(Xti)7 1= 17 <4,

and, for each j = 1,...,s, one of the following depending on whether 7(q + 25 —
1) <7m(g+2j5)orm(g+2j—1)>m(qg+2j):

(21) ¢0(dgt2j—1)dg+2; = do
in the first case, and
(22) ©0(dg2j—1)dgi25 = ddo

in the second case. Here we took into account that, since ¢o(dy) = dp, either (21)

or (22) implies po(dg+2j-1)dg+25 = Po(dg+25)dg+2-1-
If ¢p € Aut(T', ), then, looking at the degrees in (20), we obtain

(23) tﬂ'(’i) = aw(ti)taw, 1= 1, e q,

which implies that (fa,,, ) stabilizes X, i.e., ay belongs to AutX. Hence we
obtain a homomorphism

(24) Aut(T, ¢) — Sym(q) x W(s) x Aut X.
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For any element o € Aut ¥, let m, € Sym(q) be the restriction of its twisted
action to X. Then (23) implies that the permutation 77, does not move the
elements of the underlying set of ¥, so it belongs to Sym¥. It follows that (24)
can be rearranged as follows:

[+ Aut(T, ) — W (s) x (SymX x Aut X).

To prove that f is surjective, we construct representatives in Aut(I', ) for the
elements of each of the subgroups W (s), SymX and Aut X.

For 7 in SymY. or in Sym(s) C W (s), we take the same representatives
as in the proof of 2). For 7 = (¢ +2j — 1,9 + 2j) € W(s), a slight modification
is needed: we take U = PD rather than just P, where dy12; = 4/ and all
other d; = I. For any a € Aut¥, let 7 = m,. Then t,4) = a(t;)t, for i =
1,...,q and hence we can extend a: T' — T to an automorphism of G by setting
(gi) = Gry for i = 1,...,q, a(gg+2j-1) = Jg+2j—1 and a(gg+2;) = gg425ta for
Jj=1,...,s Choose g such that ¢o(X;) € FX, ). Let P be the permutation
matrix corresponding to m and let

D =diag(MI,... AL Xe, .. 1, X)),

where \; € F* are selected in such a way that condition (20) holds with dy = X3, .
Clearly, condition (21) also holds. Finally, let ¥, be given by ¥ = PD and 1.
Then v, sends T to I' and fixes ¢, so ¥, belongs to Aut(T, ¢).

Let K be the kernel of f and let

N={peK|% = =°dg}.

The same arguments as in 2) show that K/N = T95/T and Aut(T',p)/N is
isomorphic to (797571 x Z5) x (SymX x Sym(s)) x Aut ¥, with the stated actions.
But here we have N = Stab(I', ), which completes the proof. O

4. Series A. In this section we describe the Weyl groups of fine gradings
on the simple Lie algebras of series A. Thus, we take R = M, (F), n > 2, and
L =psl,(F) = [R,R]/(Z(R) N [R,R]). First we review the classification of fine
gradings on L from [2] (extended to positive characteristic using automorphism
group schemes) and then derive the Weyl groups for L from what we already
know about automorphisms of fine gradings ([4]) and fine p-gradings (Section 3)
on R.

4.1. Classification of fine gradings. The case n = 2 is easy, because
the restriction from R to L yields an isomorphism Aut(R) — Aut(L). It follows
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that the classification of fine gradings on L is the same as that on R. Namely,
there are two fine gradings on sla(IF), up to equivalence: the Cartan grading,
whose universal group is Z, and the Pauli grading, whose universal group is Z3.

Now assume n > 3. Then the restriction and passing modulo the center
yields a closed imbedding Aut(R) — Aut(L), which is not an isomorphism. To
rectify this, one introduces the affine group scheme Aut(R) corresponding to
the algebraic group of automorphisms and anti-automorphisms of R (see [1, §3]).
Unless n = charF = 3, we obtain an isomorphism Aut(R) — Aut(L). It is
convenient to divide gradings on L into two types: for Type I the corresponding
diagonalizable subgroupscheme of Aut(L) is contained in the image of the closed
imbedding Aut(R) — Aut(L), while for Type II it is not. In other words, a
grading on L is of Type I if and only if it is induced from a (unique) grading on
R by restriction and passing modulo the center.

In [1], the distinguished element of a Type II grading I" is introduced. It
can be characterized as the unique element h of order 2 in the grading group G
such that the coarsening I induced from I' by the quotient map G — G := G/(h)
is a Type I grading. The original grading I can be recovered from T if we know
the action of some character x of G with x(h) = —1. Indeed, we just have to split
each component of T' into eigenspaces with respect to the action of y. We can
transfer this procedure to R in the following way. The action of x on L is induced
by —¢ where ¢ 1s an anti-automorphism of R. The Type I grading ' on £ comes
from a grading T on R. Slnce —¢ is an automorphism of R(-) (the Lie algebra
R under commutator) and ¢? acts as a scalar on each component of f/, we can
refine the G-grading T’ : R = @D, Ry to a G-grading I: RO = Dyec Ry by
splitting each component Rz into eigenspaces of ¢. In detail, ©? acts on Rg as
multiplication by x?(g) (where we regard x? as a character of G, since x2(h) = 1),
so we set

(25) Ry ={X € Rg | p(X) = =x(9)X} = {p(X) = x(9)X | X € Rg}.

Then I induces the original Type II grading I' on £ by restriction and passing
modulo the center.

Now we apply the above to fine gradings on L. The fine gradings of Type
I come from the fine gradings on R that do not admit an anti-automorphism ¢
making them ¢-gradings. All fine gradings on R are obtained as follows. We
start from T, a finite abelian group that admits a nondegenerate alternating
bicharacter [ (hence |T'| is a square). Fix a realization, D, of the matrix algebra
endowed with a division grading with support 7" and bicharacter 3. Let k > 1
be an integer. Denote by G = G(T k) the abelian group freely generated by T



Weyl groups of fine gradings on simple Lie algebras 29

and the symbols g1, ..., gk-

Definition 4.1. Let M(D, k) be the G-graded algebra Endo(V) where
V has a D-basis {vi,...,vp} with °v; = G;. Let n = k+/|T| and R = M, (F).
The grading on R obtained by identifying R with M(D, k) will be denoted by
Iy(D, k). In other words, we define this grading by identifying R = My (D) and
setting °(Eij; @ Xy) = Z]Ztﬁj_l By abuse of notation, we will also write Ty (T, k).

The universal group of T'y(T,k) is the subgroup GO = é(T, k)? of G
generated by the support, i.e., by the elements z; ;; := ﬁi@’;l, t € T. Clearly,
GO =~ T x 7Z+1. By [2, Proposition 3.24], T'y (7T, k) is a p-grading for some ¢ if
and only if T is an elementary 2-group and k < 2. Two gradings, I'y¢(7’, k) and
Do (T, k'), are equivalent if and only if 7= 7" and k = k’.

Definition 4.2. Consider the grading Dng(T, k) on R by the group G(T, k)°

where k > 3 if T is an elementary 2-group. The G(T,k)°-grading on L obtained
by restriction and passing modulo the center will be denoted by Fg) (T, k).

The grading I’g) (T, k) is fine, and G(T, k) is its universal group. To deal
with fine gradings of Type II, we will need the following general observation:

Lemma 4.3. Let T be a p-grading on an algebra A and let G be its
universal group. Then there exist an abelian group G, an element h € G of order
2, a character x of G with x(h) = —1 such that G = G/{h) and the action of x>
on the G-graded algebra A (regarding x* as a character of the group G) coincides
with p?. The pair (G, h) is determined uniquely up to isomorphism over G (i.e.,
(hy — G — G is unique up to equivalence of extensions).

Proof. For each § € G, ¢? acts on Ag as multiplication by some \(g) €
F*. Since G is the universal group of I', \: G — F* is a homomorphism. For
each g € G, we select u(g) € F* such that u(g)? = A\(g) (there are two choices).
It will be convenient to choose p(e) = 1. It follows that

(26) wz@y) =@ yu@)uy) foral T.7€C

where £(Z,7) € {£1}. One immediately verifies that ¢ is a symmetric 2-cocycle
on G with &(g,e) = 1 for all g € G and, moreover, the class of ¢ in H?(G,Zs)
(where we identified {£1} with Z2) does not depend on the choices of p(g). Let
G be the central extension of G by Zj determined by ¢, i.e., G consists of the
pairs (g,6), g € G, § € {£1}, with multiplication given by

(27)  (Z,61)(W,62) = (TT, (T,7)0162) forall T,7€ G and 61,55 € {£1}.
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Define x: G — F* by (g,0) — u(g)d. Comparing (26) and (27), we see that x is
a homomorphism. Set h = (€,—1) € G. Then h has order 2 and x(h) = —1. By
construction, the action of x? on A determined by I' coincides with ¢?. [

B Let T be an elementary 2-group of even dimension. Recall the group
G(T,q,s,7), which was introduced before Definition 3.3, and its subgroup

é(T,q,s,T)O.
_Definition 4.4. Consider the grading I = I'n(T,q,871) on R by the
group G = G(T,q,s,7)° where t; # ty if ¢ =2 and s = 0. Let ® be the matriz

given by
' 0 I 0 I
(I):dlag<th,...,th,|:I 0:|>,|:I 0:|>

Define p(X) = &~ 1(!X)®. Let G, h and x be as in Lemma 4.3, so we obtain a
G-grading on R) defined by (25). The G-grading on L obtained by restriction
and passing modulo the center will be denoted by I‘SI) (T,q,s,7).

The grading FgI) (T, q,s,7) is fine, and G is its universal group. Note that

¢* =id. Tt can be shown (cf. [2, Example 3.21]) that the extension (h) — G — G
is split if and only if there exists ¢ € T" such that ¢;¢ are in 7' for all 7 or in 7
for all 4. Taking into account (3), we see that G is isomorphic to

g TRAmTortmexQaml Ly gginTo s 75 if SteT Btat) = ... = Bltr);
ZdlmT72 dim Tp+max(0,q—1) % ZzhmTo—f—l < 78

9 otherwise,

where Tp is the subgroup of T" generated by the elements ¢;t;41,¢1=1,...,q — 1.
Now Theorem 4.2 of [2] can be extended to positive characteristic and
recast as follows:

Theorem 4.5. Let F be an algebraically closed field, charF # 2. Let
n >3 if charF # 3 and n > 4 if charF = 3. Then any fine grading on psl, (F) is
equivalent to one of the following:

o FS) (T, k) as in Definition 4.2 with k+/|T| = n,
. FgI) (T, q,s,7) as in Definition 4.4 with (¢ + 2s)\/|T| = n.

Gradings belonging to different types listed above are not equivalent. Within each
type, we have the following:

o FS) (Ty, k1) and Fg) (T, k2) are equivalent if and only if
Ty 2Ty and ki = ko;
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° Fgl) (Th, q1,81,71) and I‘SI) (T, q2, 82, T2) are equivalent if and only if
T 2Ty, q1 = q2, 81 = s2 and, identifying Ty = Ty = 73", ¥(11) is conjugate
to X(72) by the natural action of ASp,,.(2).

The missing case n = charF = 3 can be treated using octonions, because
in characteristic 3 the algebra of traceless octonions under commutator is a Lie
algebra isomorphic to psl3(F) (cf. [1, Remark 4.11]).

4.2. Weyl groups of fine gradings. By [4, Theorem 2.8], the Weyl
group of I'y(T, k) is isomorphic to T%~1 x (Sym (k) x Aut(T, 8)), with Sym(k) and
Aut(T, 3) acting on T*~! through their natural action on 7% and identification
of TF=1 with T*/T where T is imbedded into T* diagonally. Thanks to the
isomorphism Aut(Ms(F)) — Aut(sly(F)), it follows that the Weyl group of the
Cartan grading on sly(F) is Sym(2) (the classical Weyl group of type A;) and the
Weyl group of the Pauli grading on sly(F) is Spy(2) = GL2(2) (this is known in
the case char F = 0 — see [5]).

To state our result for psl, (F), n > 3, it is convenient to introduce the
following notation:

Aut(T, B) := Aut(T', ) x (o),

where ¢ is an element of order 2 acting as the automorphism of 7" that sends a;
to ai_l and b; to b;, where a; and b; are the generators of T used for the chosen
realization of D (a “symplectic basis” of T' with respect to ). We observe that
B(o-u,o-v) = B(u,v)", for all u,v € T, and hence we obtain an induced action
of o on Aut(T,3) by setting (o - @)(t) := o - (o - t) for all &« € Aut(7T, ) and
t € T. The elements of Aut(7, 3) act as automorphisms of T that send 3 to 5.
However, this action is not faithful if 7" is an elementary 2-group.

Theorem 4.6. Let F be an algebraically closed field, charF # 2. Let n >
3 if charF # 3 and n > 4 if charF = 3. Consider the fine grading T' = Fg) (T, k)
on psl,, (F) as in Definition 4.2, k\/|T| =n. Then

W(T) = 75" 5 (Sym(k) x Aut(T, 3)),

with Sym(k) and Aut(T, ) acting on T*~! through their natural action on T*
and identification of T*~1 with Tk/T where T is imbedded into T* diagonally.
Proof. The grading " on £ = psl,(F) is induced by the grading I" =
(T, k) on R = M, (F). The universal group of both gradings is G = G(T, k)°.
Since restriction is a bijection between gradings on R and Type I gradings on
L, an automorphism v’ of R sends *I" to I, for some automorphism « of G, if
and only if the induced automorphism 1 of £ sends “I" to I". The automorphism
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group of L is the semidirect product of Aut(R), in its induced action on L, and
(o), where o is given by the negative of matrix transpose. To compute the action
of o, recall that (u1,...,u;)T € T*¥/T can be represented by the automorphism
X +— DXD7! where D = diag(Xy,,...,Xu,), ™ € Sym(k) can be represented
by X — PXP~! where P is the permutation matrix corresponding to m, and
a € Aut(T, 3) can be represented by X — 1o(X) where 1y is an automorphism
of D such that ¢o(X;) € FX,) for all ¢ € T. The conjugation by o sends
the automorphism X +— WXW~! to the automorphism X — (‘U= X(*W), ie.,
replaces ¥ by ‘U~ Hence, ¢ commutes with Sym(k), while the conjugation by

o sends (uy,...,ur)T to (o -uy,...,0 - uE)T, where the action of o on T is as
indicated above. Also, the action of o on G sends z; ;; = @}tﬁ;l to z;jla.t, so o

belongs to Aut(I"). Hence we obtain Aut(I') = Aut(I”) x (o). On the other hand,
Stab(I") does not contain outer automorphisms because I'' does not admit an anti-
automorphism ¢ that would make it a ¢-grading. Hence Stab(I') = Stab(I'"). The
result follows. O

Theorem 4.7. Let F be an algebraically closed field, char[F # 2. Let
n > 3 if charF # 3 and n > 4 if charF = 3. Consider the fine grading I' =
FgI) (T,q,s,7) on psl,(F) as in Definition 4.4, (¢ +2s)\/|T| =n. Let ¥ = ().
Then W(I') contains a normal subgroup N isomorphic to Z%Jrs*l such that

W(D)/N = ((T77! x Z§) x (SymX x Sym(s)) x Aut* %,

where the actions are described naturally if we identify T975=1 with T975 /T and
Z%+S_1 with 23%° )7y (diagonal imbeddings). Moreover, W (T') contains a sub-
group isomorphic to ((T‘H'S_1 X Z3) X (SymX x Sym(s)) X Aut X that is disjoint
from N.

Proof. The grading I' = Fgl) (T,q,s,7) on L = psl, (F) is induced by
the grading IV on R(-), where R = M, (F), obtained from T = Iw(T,q,s,7) and
@ as in Definition 4.4. The universal group of TisG = G(T, q,5,7)%, while the
universal group of I is the extension G of G as in Lemma 4.3.

Similarly to Type I, an automorphism v’ of R sends “I” to I/, for some
automorphism « of G, if and only if the induced automorphism 1 of £ sends T’
to I'. Note that « fixes the distinguished element A = (€, —1) and hence yields
an automorphism @ of G. It follows that ¢’ sends T to T'. For any g € G and
X € Ry, we have p(X) = —x(g9)X. Since (¢/)"1(X) € Ry-1(y), we also have
() ™)(X) = =x(a 1(9)) (@)1 (X). It follows that ¢'¢(4') " = £ where &
is the action of the character (y o @ !)x~! on R determined by the G-grading
I'". Since a(h) = h, (x o a~)x~! can be regarded as a character of G, hence &
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belongs to Diag(T'). Conversely, if 1/ sends T to T and ¢/o(¢/)~! = & for
some £ € Diag(f,), then for any g € G and X € Rg, we have ¢/(X) € Rg()
and (¢ (X)) = v/ (X) where v € F* depends only on g. It follows that 1
permutes the components of IV and hence sends *I” to IV where « is a lifting
of @. We have proved that an automorphism 1’ of R belongs to Aut*(f/,go),
respectively Stab(f/, ¢), if and only if the induced automorphism v of £ belongs
to Aut(I"), respectively Stab(I'). Finally, note that —¢ induces an automorphism
of L that belongs to Stab(I"). It follows that the Weyl group of T' is isomorphic
to Aut*(T", ¢) / Stab(T", ). The latter group was described in Theorem 3.12. O

If char F = 3, there are two fine gradings on psl;3(F): the Cartan grading,
whose universal group is Z2, and the grading induced by the Cayley-Dickson
doubling process for octonions, whose universal group is Z3. The Weyl groups of
these gradings are, respectively, the classical Weyl group of type G2 [4, Theorem
3.3] and GL3(2) [4, Theorem 3.5].

5. Series B, C and D. In this section we describe the Weyl groups
of fine gradings on the simple Lie algebras of series B, C' and D with exception
of type Dy. Thus, we take R = M, (F), n > 4, and L = K(R, ¢) where ¢ is an
involution on R. If ¢ is symplectic, then, of course, n has to be even. If ¢ is
orthogonal, we assume n > 5 and n # 8. First we review the classification of fine
gradings on L from [2] (extended to positive characteristic using automorphism
group schemes) and then derive the Weyl groups for L from what we already
know about automorphisms of fine ¢-gradings (Section 3) on R.

5.1. Classification of fine gradings. Under the stated assumptions on
n, the restriction from R to L yields an isomorphism Aut(R,p) — Aut(L) (see
[1, §3]). It follows that the classification of fine gradings on L is the same as the
classification of fine p-gradings on R (here ¢ is fixed).

The case of series B is quite easy, because n is odd and hence the elemen-
tary 2-group T must be trivial. Let G = G({e},q,s,7)° where 7 = (e, ..., €), so
G=7i" <78

Definition 5.1. Consider the grading I' = I'y({e},q,s,7) on R by G.
Let ® be the matrixz given by

. 0 1 0 1
P = diag 1,...,1,[1 0],...,[1 0}

q

Then T is a fine p-grading for ¢(X) = @ 1(!X)® and hence its restriction is a
fine grading on L = s0,(F). We will denote this grading by I'p(q, s).
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Now we turn to series C' and D, where n is even and hence T may be
nontrivial. So, let T' be an elementary 2-group of even dimension. Choose 7 as
in (1) with all ¢; € T_ in case of series C' and all ¢; € T} in case of series D. Let

~ 0 ~ rpdim T—2dim Tp+max(0,g—1) dim Tp s .
G=G(T,q,s,7)°, 50 G=1Z, X Ly x 72 where Tp is the
subgroup of T' generated by the elements ¢;t;41,¢=1,...,q— 1.

Definition 5.2. Consider the grading I' = T'y(D,q,s,7) on R by G
where t1 # to if ¢ =2 and s = 0. Let ® be the matriz given by

‘ 0 I 0 I
@:dl&g(th,...,th,[él O:|7,|:5[ 0:|>7

where § = —1 for series C' and § = 1 for series D. Then I' is a fine p-grading for
©(X) = @ 1(*X)® and hence its restriction is a fine grading on L = sp,(F) or
$0,(F). We will denote this grading by U'c(T, q,s,7) orT'p(T,q, s, T), respectively.

The following three results are Theorem 5.2 of [2], stated separately for
series B, C and D (and extended to positive characteristic).

Theorem 5.3. Let F be an algebraically closed field, charF # 2. Let
n > 5 be odd. Then any fine grading on s0,(F) is equivalent to I'g(q,s) where
q+ 2s =n. Also, T'p(q1,s1) and T'p(qe, s2) are equivalent if and only if ¢1 = qo
and s1 = $o.

Theorem 5.4. Let F be an algebraically closed field, charF # 2. Let
n > 4 be even. Then any fine grading on sp, (F) is equivalent to U'c(T, q,s,T)
where (q + 28)\/m = n. Moreover, T'c(T1,q1,51,71) and Tc(Ts, qo, S2,72) are
equivalent if and only if Ty = Ty, q1 = qa, $1 = s and, identifying T} = Ty = 73",
Y (11) is conjugate to X(19) by the twisted action of Sp,y,.(2) as in Definition 3.9.

Theorem 5.5. Let F be an algebraically closed field, charF # 2. Let
n > 6 be even. Assume n # 8. Then any fine grading on $0,(F) is equiva-
lent to T'p(T,q,s,7) where (q + 28)\/\T| = n. Moreover, T'p(T1,q,$1,71) and
I'p(Ty, g2, 82, 72) are equivalent if and only if Ty = Ty, q1 = q2, $1 = s2 and,
identifying Ty = Ty = 73", %(m1) is conjugate to X(13) by the twisted action of
Sps,(2) as in Definition 3.9.

5.2. Weyl groups of fine gradings. Let I' =T'g(q, s), I'c(T, q,s,7) or
I'p(T,q,s,7), so I is the restriction of the grading IV = I'y(T, ¢, s,7) on R to
L =X(R,¢). By arguments similar to the proof of Theorem 4.7, one shows that
the Weyl group of I is isomorphic to Aut(I"”, ¢)/ Stab(I”, ¢), which was described
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in Theorem 3.12. For I = T'g(q, s), T is trivial and X is a singleton of multiplicity
q, so we obtain:

Theorem 5.6. Let F be an algebraically closed field, charF # 2. Let
n > 5 be odd. Consider the fine grading I' = T'g(q,s) on $0,(F) as in Definition
5.1, where ¢ +2s = n. Let ¥ = X(7). Then W(I') = Sym(q) x W(s) where
W (s) = Z3 »x Sym(s) (wreath product of Sym(s) and Zsz).

For I'c(T,q,s,7) and I'p(T,q,s,7), T may be nontrivial, so the answer
is more complicated:

Theorem 5.7. Let F be an algebraically closed field, charF # 2. Let
n > 4 be even. Consider the fine grading T' = T'c(T,q,s,7) on sp,(F) or T' =
T'p(T,q,s,7) on 50, (F) as in Definition 5.2, where (q+2s)\/|T| = n andn # 4,8
in the case of s0,(F). Let ¥ = X(1). Then

W(D) = (79771 x Z5) » (SymX x Sym(s)) x AutX,

where the actions on TI =1 are wia the identification with TS/T (diagonal
imbedding of T into T+ ).
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