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Abstract. Let Cay(G; S) denote the Cayley graph on a finite group G
with connection set S. We extend two results about the existence of cycles
in Cay(G; S) from cyclic groups to arbitrary finite Abelian groups when S
is a “natural” set of generators for G.

1. Introduction. Let G be a finite group with identity 1 and let S
be a subset of G satisfying 1 /∈ S and S = S−1. The Cayley graph on G with
connection set S, denoted Cay(G;S), is defined as follows:

(i) the vertices of Cay(G;S) are the elements of G
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(ii) there is an edge joining vertices g, h if and only if h = sg for some s ∈ S.

Properties of Cayley graphs have been well studied and an excellent survey
can be found in Alspach [2].

The following easily proved lemma will be needed throughout this note.

Lemma 1.1. Cay(G;S) is connected if and only if S is a generating set

for G.

A much deeper result which is central to our work is the following. Recall
that a graph is Hamiltonian if it contains a cycle passing through all of its vertices.

Theorem 1.2. If A is a finite Abelian group of order ≥ 3 then Cay(A;S)
is Hamiltonian if and only if S is a generating set for A.

Alspach [2] obtains Theorem 1.2 as a corollary of a theorem of Chen and
Quimpo, while an alternative direct argument given by Marušič [5] seems to be
missing essential details. It would be very interesting to see a reasonably short
self-contained proof of Theorem 1.2.

It is an open question (see [2]) as to whether Theorem 1.2 can be extended
to arbitrary finite groups.

Recall that a graph with n vertices is pancyclic if it contains cycles of all
possible lengths i, 3 ≤ i ≤ n. While pancyclic is clearly a much stronger property
than Hamiltonian, in practice it seems that conditions which are sufficient to
conclude that a graph is Hamiltonian are also sufficient to conclude that a graph
is pancyclic (except for a few easily listed exceptions). For example Bondy [4]

proved that if a Hamiltonian graph with n vertices has at least
n2

4
edges then

either the graph is pancyclic or it is complete bipartite of type Kn

2
, n

2

, so it follows
that well known Hamiltonian results like Dirac’s Theorem or Ore’s Theorem
extend to the pancyclic case. Because of this, and keeping in mind Theorem 1.2,
it is very natural to investigate the pancyclic property for Cayley graphs of finite
Abelian groups.

Since Cayley graphs of finite cyclic groups form precisely the same class as
circulant graphs, this investigation has already been carried out for cyclic groups
by Bogdanowicz [3]. His results are as follows.

Theorem 1.3. Assume A is finite cyclic of order ≥ 3 and S is a gen-

erating set for A. If |A| ≥ 5 assume in addition that Cay(A;S) is not a single

cycle. Then
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(i) Cay(A;S) contains cycles of all possible even lengths i, 4 ≤ i ≤ |A|.

(ii) Cay(A;S) is pancyclic if and only if Cay(A;S) contains a 3-cycle.

The assumption that Cay(A;S) is not a single cycle is a condition on the
connection set S which is clearly required (just as S being a generating set is
required for Theorems 1.2 and 1.3 to hold). It is equivalent to saying that if x is
any generator of A and x ∈ S then there exists s ∈ S such that s 6= x, x−1.

Note that Cay(A;S) contains a 3-cycle if and only if there exist a, b ∈ S
such that ab ∈ S.

We are interested in the following.

Question. Does Theorem 1.3 extend to arbitrary finite Abelian groups?

Note that if A is noncyclic Abelian and S is a generating set for A then
Cay(A;S) cannot be a cycle, so this particular assumption no longer concerns
us. Also note that if Cay(A;S) satisfies one of the properties we are interested
in and S ⊆ S′ then Cay(A;S′) will satisfy the same property. It follows from the
last two sentences that if we can prove a property holds for Cay(A;S) when S is
a minimal generating set satisfying S = S−1, then we will have proved the result
in general.

Any decomposition of a finite Abelian group into a direct product of cyclic
groups gives a very natural generating set. In the next section we will show that
Theorem 1.3 does extend to this case.

2. Results. Our first main result is the following.

Theorem 2.1. Let A = A1 ⊕ A2 ⊕ · · · ⊕ An be a finite Abelian group,

where n > 1 and each Ai = 〈ai〉 is cyclic. If S = {a1, a
−1
1

, a2, a
−1
2

, · · · an, a−1
n }

then Cay(A;S) contains even cycles of all possible lengths ≤ |A|.

P r o o f. If n = 2 and |A1| = |A2| = 2 then Cay(A;S) is a 4-cycle and
the result is clear. So, setting B = A2 ⊕ · · · ⊕ An, we may assume (relabelling
if necessary) that |B| ≥ 3. Setting S′ = {a2, a

−1
2

, · · · an, a−1
n }, it follows from

Theorem 1.2 that Cay(B;S′) has a Hamiltonian cycle 1, b1, b2, · · · bk−1(k = |B|).



40 M. M. Parmenter

Observe that 1, a1, a1b1, b1 is a 4-cycle in Cay(A;S). This can be expanded
to the 6-cycle 1, a, a1b1, a1b2, b2, b1 (since b1 and b2 are joined in Cay(B,S′), b2b

−1
1

∈
S′ ⊆ S) and more generally, to the (2s + 2)-cycle.

1, a1, a1b1, a1b2, · · · a1bs, bs, bs−1, · · · b2, b1

for all s, 2 ≤ s ≤ k − 1 (recall k ≥ 3).

So we have constructed cycles of all possible even lengths up to and in-
cluding 2k, the longest being

1, a1, a1b1, · · · a1bk−1, bk−1, bk−2, · · · b2, b1.

Let |a1| = ℓ. If ℓ = 2 we’re done, so assume ℓ > 2. Since k − 1 ≥ 2 the
above chain can be extended to

1, a1, a1b1, · · · a1bk−2, a
2
1bk−2, · · · a

r
1bk−2, a

r
1bk−1,

ar−1bk−1, · · · a1bk−1, bk−1, bk−2, · · · b1

for all r, 2 ≤ r ≤ ℓ − 1.

This gives cycles of all possible even lengths up to and including 2k +
2(ℓ − 2) = 2k + 2ℓ − 4, the longest being

1, a1, a1b1, · · · a1bk−2, a
2
1bk−2, · · · a

ℓ−1
1

bk−2, a
ℓ−1
1

bk−1,

aℓ−2
1

bk−1, · · · a1bk−1, bk−1, bk−2, · · · b1

We can continue extending the above chain by changing the edge a1bk−4, a1bk−3

to a1bk−4, · · · a
t
1bk−4, a

t
1bk−3, a

t−1
1

bk−3, · · · a1bk−3 for any t, 2 ≤ t ≤ ℓ−1, and then
repeat with a1bk−6, a1bk−5 etc. (assuming k is large enough).

Two cases need to be considered.

Case I. k is even.

In this case the last edge to which the above process applies is a1b2, a1b3.
But it can also be applied to the edge a1, a1b1. The longest cycle obtained in this
way is

1, a1, a
2
1, · · · a

ℓ−1
1

, aℓ−1
1

b1, a
ℓ−2
1

b1, · · · a1b1, a1b2, a
2
1b2, · · ·

aℓ−1
1

b2, a
ℓ−1
1

b3, · · · a1b3, a1b4, · · · , a1bk−2, a
2
1bk−2, · · ·

aℓ−1
1

bk−2, a
ℓ−1
1

bk−1, · · · a1bk−1, bk−1, · · · b1

Since this cycle is Hamiltonian our result is proved.
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Case II. k is odd.

Observe first that if ℓ is even and ℓ > 2 then a suitable relabelling of
A1, A2, · · ·An would put us in the case where k is even. So we may assume from
now on that both ℓ and k are odd.

Since k is odd the last edge to which the previously described process
applies is a1b1, a1b2. This gives cycles of all possible even lengths up to and
including ℓk − (ℓ − 2). The longest cycle constructed so far is

1, a1, a1b1, a
2
1b1, · · · a

ℓ−1

1
b1, a

ℓ−1

1
b2, · · · a1b2, a1b3, · · ·

aℓ−1
1

b3, a
ℓ−1
1

b4, · · · a1b4, a1b5, · · · a1bk−2, · · · a
ℓ−1
1

bk−2, a
ℓ−1
1

bk−1, · · ·

a1bk−1, bk−1, bk−2, · · · 1.

If ℓ = 3 this cycle is of maximal even length and we are again done.

So we may assume ℓ is odd and ℓ > 3. Note now that if q is any odd inte-
ger, 1 < q < ℓ, the above cycle can be extended by changing 1, a1, a1b1, · · · a

ℓ−1
1

b1

to
1, a1, a1b1, · · · a

q
1
b1, a

q
1
, aq+1

1
, aq+1

1
b1, a

q+2

1
b1, a

q+2

1
, aq+3

1
, aq+3

1
b1, · · ·

aℓ−2
1

b1, a
ℓ−2
1

, aℓ−1
1

, aℓ−1
1

b1

This new cycle is of length ℓk− (q−2), so we have now constructed cycles
of all possible even lengths up to and including ℓk − 1.

The proof is complete. �

Our second main result shows, as in Theorem 1.3, that the existence of
a 3-cycle guarantees that Cay(A;S) is pancyclic. We remark that this result is
also obtained (in more generality) in [1], but we include the proof here because
reference [1] may be somewhat difficult for readers to obtain.

Theorem 2.2. Let A = A1 ⊕ A2 ⊕ · · · ⊕ An be a finite Abelian group of

order ≥ 3, where each Ai = 〈ai〉 is cyclic. If S = {a1, a
−1
1

, a2, a
−1
2

, · · · an, a−1
n }

then Cay(A;S) is pancyclic if and only if |Ai| = 3 for some i.

P r o o f. First assume Cay(A;S) is pancyclic, so in particular it must
contain a 3-cycle. As noted earlier, this means there must exist a, b ∈ S such
that ab ∈ S. Because of the nature of S, this forces b = a and a2 = a−1, and the
result follows.

Conversely assume |Ai| = 3 for some i. We may assume i = 1. If |A| = 3
we’re done – otherwise, we have A = 〈a〉⊕B where |a| = 3 and B = A2⊕· · ·⊕An.
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It is easy to check directly that the result holds if |B| = 2, so assume |B| > 2. As
in the proof of Theorem 2.1, we set S′ = {a2, a

−1
2

, · · · an, a−1
n } and observe, using

Theorem 1.2, that Cay(B;S′) has a Hamiltonian cycle 1, b1, b2, · · · bk−1.

We will now give a direct method for constructing cycles of all possible
lengths.

Start with the 3-cycle 1, a, a−1(= a2). We add on to get a 6-cycle 1, a, a−1,
a−1b1, ab1, b1. A 9-cycle can now be obtained by inserting ab2, a

−1b2, b2 between
ab1 and b1, and then a 12-cycle can be obtained by inserting a−1b3, ab3, b3 between
a−1b2 and b2. This process continues – to get from one cycle to the next insert
a±1bi+1, a

∓1bi+1, bi+1 between a±1bi and bi. In this way we obtain cycles of all
possible lengths 3x.

To get the remaining cycles, we carry out exactly the same procedure
starting with the 4-cycle 1, a, ab1, b1 and the 5-cycle 1, a, a−1, a−1b1, b1. This
gives all cycles of length 3x + 1 and 3x + 2, completing the proof. sq
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