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Abstract. Let K be a field of any characteristic. Let the formal power
series

f(x1, . . . , xd) =
∑

αnxn1

1
· · ·xnd

d
=
∑

m(λ)Sλ(x1, . . . , xd), αn, m(λ) ∈ K,

be a symmetric function decomposed as a series of Schur functions. When
f is a rational function whose denominator is a product of binomials of the
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form 1−xa1

1
· · ·xad

d
, we use a classical combinatorial method of Elliott of 1903

further developed in the Ω-calculus (or Partition Analysis) of MacMahon in
1916 to compute the generating function

M(f ; x1, . . . , xd) =
∑

m(λ)xλ1

1
· · ·xλd

d
, λ = (λ1, . . . , λd).

M is a rational function with denominator of a similar form as f . We
apply the method to several problems on symmetric algebras, as well as
problems in classical invariant theory, algebras with polynomial identities,
and noncommutative invariant theory.

Introduction. Let K be a field of any characteristic and let K[[X]]Sd be
the subalgebra of the symmetric functions in the algebra of formal power series
K[[X]] = K[[x1, . . . , xd]] in the set of variables X = {x1, . . . , xd}. We study
series f(X) ∈ K[[X]]Sd which can be represented as rational functions whose
denominators are products of binomials of the form 1 − Xa = 1 − xa1

1 · · · xad
d .

Following Berele [15], we call such functions nice rational symmetric functions.
Those functions appear in many places in mathematics. In the examples that
have inspired our project, K is of characteristic 0.

If W is a polynomial module of the general linear group GLd = GLd(K),
then its GLd-character is a symmetric polynomial, which in turn gives W the
structure of a graded vector space. Hence the Hilbert (or Poincaré) series of the
symmetric algebra K[W ] is a nice rational symmetric function.

Nice rational symmetric functions appear as Hilbert series in classical
invariant theory. For example, this holds for the Hilbert series of the pure trace
algebra of n×n generic matrices which is the algebra of invariants of GLn acting
by simultaneous conjugation on several n× n matrices. The mixed trace algebra
also has a meaning in classical invariant theory and has a Hilbert series which is
a nice rational symmetric function.

The theorem of Belov [12] gives that for any PI-algebra R the Hilbert
series of the relatively free algebra K〈Y 〉/T (R), Y = {y1, . . . , yd}, where T (R) is
the T-ideal of the polynomial identities in d variables of R, is a rational function.
Berele [15] established that the proof of Belov (as presented in the book by Kanel-
Belov and Rowen [49]) also implies that this Hilbert series is a nice rational
symmetric function.

Every symmetric function f(X) can be presented as a formal series

f(X) =
∑

λ

m(λ)Sλ(X), m(λ) ∈ K,
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where Sλ(X) = Sλ(x1, . . . , xd) is the Schur function indexed with the partition
λ = (λ1, . . . , λd).

Clearly, it is an interesting combinatorial problem to find the multiplicities
m(λ) of an explicitly given symmetric function f(X). This problem is naturally
related to the representation theory of GLd in characteristic 0 because the Schur
functions are the characters of the irreducible polynomial representations of GLd.
Another motivation is that the multiplicities of the Schur functions in the Hilbert
series of the relatively free algebra K〈Y 〉/T (R), charK = 0, are equal to the mul-
tiplicities in the (multilinear) cocharacter sequence of the polynomial identities
of R.

Drensky and Genov [34] introduced the multiplicity series M(f ;X) of
f(X) ∈ K[[X]]Sd . If

f(X) =
∑

ni≥0

α(n)Xn =
∑

λ

m(λ)Sλ(X), m(λ) ∈ K,

then
M(f ;X) =

∑

λ

m(λ)Xλ =
∑

λi≥λi+1

m(λ)xλ1
1 · · · xλd

d ∈ K[[X]]

is the generating function of the multiplicities m(λ). Berele, in [16], (and also
not explicitly stated in [15]) showed that the multiplicity series of a nice rational
symmetric function f(X) is also a nice rational function. This fact was one of
the key moments in the recent theorem about the exact asymptotics

cn(R) ≃ ank/2bn, a ∈ R, k, b ∈ N,

of the codimension sequence cn(R), n = 0, 1, 2, . . ., of a unital PI-algebra R in
characteristic 0 (Berele and Regev [17] for finitely generated algebras and Berele
[16] in the general case). Unfortunately, the proof of Berele does not yield an
algorithm to compute the multiplicity series of f(X). In two variables, Drensky
and Genov [35] developed methods to compute the multiplicity series for nice
rational symmetric functions.

The approach of Berele [15, 16] involves classical results on generating
functions of nonnegative solutions of systems of linear homogeneous equations,
obtained by Elliott [40] and MacMahon [55], as stated in the paper by Stanley
[66]. Going back to the originals [40] and [55], we see that the results there
provide algorithms to compute the multiplicity series for nice rational symmetric
functions in any number of variables. The method of Elliott [40] was further
developed by MacMahon [55] in his “Ω-Calculus” or Partition Analysis. The “Ω-
Calculus” was improved, with computer realizations, see Andrews, Paule, and
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Riese [5, 6], and Xin [76]. The series of twelve papers on MacMahon’s partition
analysis by Andrews, alone or jointly with Paule, Riese, and Strehl (I – [3], . . . ,
XII – [4]) gave a new life of the methods, with numerous applications to different
problems. It seems that for the moment the original approach of [40, 55] and its
further developments have not been used very efficiently in invariant theory and
theory of PI-algebras. The only results in this direction we are aware of are in
the recent paper by Bedratyuk and Xin [11].

Our computations are based on the ideas of Xin [76] and have been per-
formed with standard functions of Maple on a usual personal computer. We
illustrate the methods on several problems on symmetric algebras, in classical
invariant theory, algebras with polynomial identities, and noncommutative in-
variant theory. The results of Section 1 hold for any field K of arbitrary charac-
teristic. In the other sections we assume that K is of characteristic 0.

1. Reduction to MacMahon’s partition analysis. Recall that
one of the ways to define Schur functions (e.g., Macdonald [54]) is as fractions of
Vandermonde type determinants

Sλ(X) =
V (λ + δ,X)

V (δ,X)
,

where λ = (λ1, . . . , λd), δ = (d − 1, d − 2, . . . , 2, 1, 0), and

V (µ,X) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

xµ1
1 xµ1

2 · · · xµ1

d

xµ2
1 xµ2

2 · · · xµ2

d

...
...

. . .
...

xµd
1 xµd

2 · · · xµd
d

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, µ = (µ1, . . . , µd).

If f(X) ∈ K[[X]]Sd is a symmetric function, it can be presented in a unique way
as

f(X) =
∑

λ

m(λ)Sλ(X),

where the “λ-coordinate” m(λ) ∈ K is called the multiplicity of Sλ(X). Our
efforts are concentrated around the problem: Given f(X) ∈ K[[X]]Sd , find the

multiplicity series

M(f ;X) =
∑

λ

m(λ)Xλ =
∑

λi≥λi+1

m(λ)xλ1
1 · · · xλd

d ∈ K[[X]]
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and the multiplicities m(λ). It is convenient to introduce new variables

v1 = x1, v2 = x1x2, . . . , vd = x1 · · · xd

and to consider the algebra of formal power series K[[V ]] = K[[v1, . . . , vd]] as a
subalgebra of K[[X]]. As in [34], we introduce the function M ′(f ;V ) (also called
the multiplicity series of f(X)) by

M ′(f ;V ) = M(f ; v1, v
−1
1 v2, . . . , v

−1
d−1vd) =

∑

λ

m(λ)vλ1−λ2
1 · · · vλd−1−λd

d−1 vλd
d .

The mapping M ′ : K[[X]]Sd → K[[V ]] defined by M ′ : f(X) → M ′(f ;V ) is a
bijection.

The proof of the following easy lemma is given in [15].

Lemma 1.1. Let f(X) ∈ K[[X]]Sd be a symmetric function and let

g(X) = f(X)
∏

i<j

(xi − xj) =
∑

ri≥0

α(r1, . . . , rd)x
r1
1 · · · xrd

d , α(r1, . . . , rd) ∈ K.

Then the multiplicity series of f(X) is given by

M(f ;X) =
1

xd−1
1 xd−2

2 · · · x2
d−2xd−1

∑

ri>ri+1

α(r1, . . . , rd)x
r1
1 · · · xrd

d ,

where the summation is over all r = (r1, . . . , rd) such that r1 > r2 > · · · > rd.

By the previous lemma, given a nice rational function

g(X) =
∑

ri≥0

α(r)Xr = p(X)
∏ 1

(1 − Xa)ba

we start by computing “half” of it, i.e., the infinite sum of α(r)xr1
1 xr2

2 · · · xrd
d for

r1 > r2, and then we continue in the same way with the other variables. To
illustrate the method of Elliott [40], it is sufficient to consider the case of two
variables only. Given the series

g(x1, x2) =
∑

i,j≥0

αijx
i
1x

j
2

we introduce a new variable z and consider the Laurent series

g(x1z,
x2

z
) =

∑

i,j≥0

αijx
i
1x

j
2z

i−j =

∞∑

n=−∞

gn(x1, x2)z
n, gn(x1, x2) ∈ K[[x1, x2]].
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We want to present g(x1z, x2/z) as a sum of two series, one in z and the other
in 1/z:

g(x1z,
x2

z
) =

∑

n≥0

gn(x1, x2)z
n +

∑

n>0

g−n(x1, x2)

(
1

z

)n

,

and then take the first summand and replace z with 1 there. If g(x1, x2) is a nice
rational function, then g(x1, x2) and g(x1z, x2/z) have the form

g(x1, x2) = p(x1, x2)
∏ 1

1 − xa
1x

b
2

, p(x1, x2) ∈ K[x1, x2],

g
(

x1z,
x2

z

)

= p
(

x1z,
x2

z

)∏ 1

1 − xa
1x

b
2z

a−b
.

The expression
∏

1/(1 − xa
1x

b
2z

a−b) is a product of three factors

∏

a0=b0

1

1 − xa0
1 xb0

2

,
∏

a1>b1

1

1 − xa1
1 xb1

2 za1−b1
,

∏

a2<b2

1

1 − xa2
1 xb2

2 /zb2−a2
.

If
∏

1/(1 − xa
1x

b
2z

a−b) contains factors of both the second and the third type,
Elliott [40] suggests to apply the equality

1

(1 − Aza)(1 − B/zb)
=

1

1 − ABza−b

(
1

1 − Aza
+

1

1 − B/zb
− 1

)

to one of the expressions 1/(1−xa1
1 xb1

2 za1−b1)(1−xa2
1 xb2

2 /zb2−a2) and to represent
∏

1/(1 − xa
1x

b
2z

a−b) as a sum of three expressions which are simpler than the
original one. Continuing in this way, one represents

∏
1/(1−xa

1xb
2z

a−b) as a sum
of products of two types:

∏

a≥b

1

1 − xa
1x

b
2z

a−b
and

∏

a0=b0

1

1 − xa0
1 xb0

2

∏

a2<b2

1

1 − xa2
1 xb2

2 /zb2−a2
.

With some additional easy arguments we can represent g(x1z, x2/z) as a linear
combination of monomials A1z

i, i ≥ 0, and quotients of the form

A2

zj
, j > 0, B1z

i
∏

b≥0

1

1 − B2zb
, i ≥ 0,

C1

zj

∏ 1

1 − C2

∏

c>0

1

1 − C3/zc
, j ≥ 0,

with coefficients A1, A2, B1, B2, C1, C2, C3 which are monomials in x1, x2. Com-
paring this form of g(x1z, x2/z) with its expansion as a Laurent series in z

g(x1z, x2/z) =

∞∑

n=−∞

gn(x1, x2)z
n,
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we obtain that the part
∑

n≥0 gn(x1, x2)z
n which we want to compute is the sum

of A1z
i, B1z

i
∏

b≥0 1/(1−Bzb) and the fractions C1/z
j
∏

1/(1−C2) with j = 0.

Generalizing the idea of Elliott, in his famous book [55] MacMahon de-
fined operators Ω

≥
and Ω

=0
. The first operator cuts the negative powers of a Laurent

formal power series and then replaces z with 1:

Ω
≥

:
+∞∑

ni=−∞

α(n)Zn →
+∞∑

ni=0

α(n),

and the second one takes the constant term of series

Ω
=0

:

+∞∑

ni=−∞

α(n)Zn → α(0),

where α(n) = α(n1, . . . , nd) ∈ K[[X]], α(0) = α(0, . . . , 0) and Zn = zn1
1 · · · znd

d .

The next theorem presents the multiplicity series of an arbitrary symmet-
ric function in terms of the Partition Analysis of MacMahon.

Theorem 1.2. Let f(X) ∈ K[[X]]Sd be a symmetric function in d vari-

ables and let

g(X) = f(X)
∏

i<j

(xi − xj).

Then the multiplicity series of f(X) satisfies

M(f ;X) =
1

xd−1
1 xd−2

2 · · · x2
d−2xd−1

Ω
≥

(
g(x1z1, x2z

−1
1 z2 · · · xd−1z

−1
d−2zd−1, xdz

−1
d−1)

)
.

P r o o f. Let

g(X) =
∑

ri≥0

α(r)Xr , α(r) ∈ K,Xr = xr1
1 · · · xrd

d .

Then

g(x1z1, x2z
−1
1 z2 · · · xd−1z

−1
d−2zd−1, xdz

−1
d−1) =

∑

ri≥0

α(r)Xrzr1−r2
1 zr2−r3

2 · · · zrd−1−rd

d−1 ,

Ω
≥

(
g(x1z1, x2z

−1
1 z2 · · · xd−1z

−1
d−2zd−1, xdz

−1
d−1)

)
=

∑

ri≥ri+1

α(r)Xr .
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The function g(X) is skew-symmetric because f(X) is symmetric. Hence α(r) is
equal to 0, if ri = rj for some i 6= j and the summation in the latter equality
for Ω

≥
runs on r1 > · · · > rd (and not on r1 ≥ · · · ≥ rd). Now the proof follows

immediately from Lemma 1.1. �

The Ω-operators were applied by MacMahon [55] to Elliott rational func-
tions which share many properties with nice rational functions. He used the
Elliott reduction process described above. The computational approach devel-
oped by Andrews, Paule, and Riese [5, 6] is based on improving this reduction
process. There is another algorithm due to Xin [76] which involves partial frac-
tions. In this paper we shall use an algorithm inspired by the algorithm of Xin
[76]. We shall state it in the case of two variables. The case of nice rational
symmetric functions in several variables is obtained in an obvious way by multi-
ple application of the algorithm to the function g(X) = f(X)

∏

i<j(xi − xj) in d
variables instead of to the function g(x1, x2) = f(x1, x2)(x1−x2) in two variables.

Algorithm 1.3. Let g(x1, x2) ∈ K[[x1, x2]] be a nice rational function.
In g(x1z, x2/z) we replace the factors 1/(1 − C/zc), where C is a monomial in
x1, x2, with the factor zc/(zc−C). Then g(x1z, x2/z) becomes a rational function
of the form

g(x1z,
x2

z
) =

p(z)

za

∏ 1

1 − A

∏ 1

1 − Bzb

∏ 1

zc − C
,

where p(z) is a polynomial in z with coefficients which are rational functions in
x1, x2 and A,B,C are monomials in x1, x2. Presenting g(x1z, x2/z) as a sum of
partial fractions with respect to z we obtain that

g(x1z,
x2

z
) = p0(z) +

∑ pi

zi
+
∑ rjk(z)

qj(z)k
,

where p0(z), rjk(z), qj(z) ∈ K(x1, x2)[z], pi ∈ K(x1, x2), qj(z) are the irreducible
factors over K(x1, x2) of the binomials 1 − Bzb and zc − C in the expression
of g(x1z, x2/z), and ◦

zrjk(z) <◦
z qj(z). Clearly p0(z) gives a contribution to the

series
∑

n≥0 gn(x1, x2)z
n in the expansion of g(x1z, x2/z) as a Laurent series.

Similarly, rjk(z)/qj(z)k contributes to the same series for the factors qj(z) of
1 − Bzb. The fraction pi/z

i is a part of the series
∑

n>0 gn(x1, x2)/z
n. When

qj(z) is a factor of zc − C, we obtain that qj(z) = zdq′j(1/z), where d =◦
z qj(z)

and q′j(ζ) ∈ K(x1, x2)[ζ] is a divisor of 1 − Cζc. Since ◦
zrjk(z) <◦

z qj(z) we

derive that rjk(z)/qj(z)k contributes to
∑

n>0 gn(x1, x2)/z
n and does not give
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any contribution to
∑

n≥0 gn(x1, x2)z
n. Hence

∑

n≥0

gn(x1, x2)z
n = p0(z) +

∑ rjk(z)

qj(z)k
,

where the sum in the right side of the equation runs on the irreducible divisors
qj(z) of the factors 1 − Bzb of the denominator of g(x1z, x2/z). Substituting 1
for z we obtain the expression for Ω

≥
(g(x1z, x2/z)).

P r o o f. The process described in the algorithm gives that

Ω
≥

(

g(x1z,
x2

z
)
)

=
P (x1, x2)

Q(x1, x2)
, P (x1, x2), Q(x1, x2) ∈ K[x1, x2].

By the elimination process of Elliott we already know that Ω
≥
(g(x1z, x2/z)) is a

nice rational function. Hence the polynomial Q(x1, x2) is a divisor of a product
of binomials 1 − Xa. Hence the output is in a form that allows, starting with
a nice rational symmetric function f(X) in d variables, to continue the process
with the other variables and to compute the multiplicity series M(f ;X). �

Remark 1.4. If f(X) is a nice rational symmetric function, we can
find the multiplicity series M(f ;X) applying Lemma 1.1 and using the above
algorithm. On the other hand, it is very easy to check whether the formal power
series

h(X) =
∑

β(q)Xq, q1 ≥ · · · ≥ qd,

is equal to the multiplicity series M(f ;X) of f(X). This is because h(X) =
M(f ;X) if and only if

f(X)
∏

i<j

(xi − xj) =
∑

σ∈Sd

sign(σ)xd−1
σ(1)x

d−2
σ(2) · · · xσ(d−1)h(xσ(1), . . . , xσ(d)).

These arguments can be used to verify most of our computational results on
multiplicities.

2. Symmetric algebras. Till the end of the paper we assume that
K is a field of characteristic 0. For a background on the representation theory
of GLd = GLd(K) in the level we need see the book by Macdonald [54] or
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the paper by Almkvist, Dicks and Formanek [2]. We fix is a polynomial GLd-
module W . Then W is a direct sum of its irreducible components W (µ), where
µ = (µ1, . . . , µd) is a partition in not more than d parts,

W =
⊕

µ

k(µ)W (µ),

where the nonnegative integer k(µ) is the multiplicity of W (µ) in the decom-
position of W . The vector space W has a basis of eigenvectors of the diagonal
subgroup Dd of GLd an we fix such a basis {w1, . . . , wp}:

g(wj) = ξ
αj1

1 · · · ξαjd

d wj, g = diag(ξ1, . . . , ξd) ∈ Dd, j = 1, . . . , p,

where αji, i = 1, . . . , d, j = 1, . . . , p, are nonnegative integers. The action of Dd

on W induces a Z
d-grading on W assuming that

◦(wj) = (αj1, . . . , αjd), j = 1, . . . , p.

The polynomial

H(W ;X) =

p
∑

j=1

Xαj =

p
∑

j=1

x
αj1

1 · · · xαjd

d

is the Hilbert series of W and has the form

H(W ;X) =
∑

µ

k(µ)Sµ(X).

It plays the role of the character of the GLd-module W . If the eigenvalues of
g ∈ GLd are equal to ζ1, . . . , ζd, then

χW (g) = trW (g) = H(W ; ζ1, . . . , ζd) =
∑

µ

k(µ)Sµ(ζ1, . . . , ζd).

We identify the symmetric algebra K[W ] of W with the polynomial algebra in the
variables w1, . . . , wp. We extend diagonally the action of GLd to the symmetric
algebra K[W ] of W by

g(f(w)) = f(g(w)), g ∈ GLd, f ∈ K[W ], w ∈ W.

The Z
d-grading of W induces a Z

d-grading of K[W ] and the Hilbert series of
K[W ]

H(K[W ];X) =

p
∏

j=1

1

1 − Xαj
=

p
∏

j=1

1

1 − x
αj1

1 · · · xαjd

d
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is a nice rational symmetric function. Clearly, here we have assumed that k(0) =
0, (i.e., |µ| = µ1 + · · · + µd > 0 in the decomposition of W ). Otherwise the
homogeneous component of zero degree of K[W ] is infinitely dimensional and the
Hilbert series of K[W ] is not well defined. If we present H(K[W ];X) as a series
of Schur functions

H(K[W ];X) =
∑

λ

m(λ)Sλ(X),

then

K[W ] =
⊕

λ

m(λ)W (λ).

Hence the multiplicity series of H(K[W ];X) carries the information about the
decomposition of K[W ] as a sum of irreducible components.

The symmetric function H(K[W ];X) is equal to the plethysm H(K[Y ];X)◦
H(W ;X) of the Hilbert series of K[Y∞], Y∞ = {y1, y2, . . .}, and the Hilbert series
of W . More precisely, H(K[W ];X) is the part of d variables of the plethysm

∏

i≥1

1

1 − xi
◦
∑

µ

k(µ)Sµ(X∞) =
∑

n≥0

S(n)(X∞) ◦
∑

µ

k(µ)Sµ(X∞)

of the symmetric functions
∑

n≥0 S(n) and
∑

µ k(µ)Sµ in the infinite set of vari-
ables X∞ = {x1, x2, . . .}.

Example 2.1. The decomposition of H(K[W ];X) as a series of Schur
functions is known in few cases only. The well known identities (see [54]; the
third is obtained from the second applying the Young rule)

H(K[W (2)];X) =
∏

i≤j

1

1 − xixj

=
∑

λ

S(2λ1,...,2λd)(X),

H(K[W (12)];X) =
∏

i<j

1

1 − xixj
=

∑

(λ2,λ4,...)

S(λ2,λ2,λ4,λ4,...)(X),

H(K[W (1) ⊕ W (12)];X) =
d∏

i=1

1

1 − xi

∏

i<j

1

1 − xixj

=
∑

λ

S(λ1,...,λd)(X)
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give the following expressions for the multiplicity series (⌊r⌋ is the floor function,
i.e., the integer part of r ∈ R)

M(H(K[W (2)]);X) =
∑

ni≥0

x2n1
1 (x1x2)

2n2 · · · (x1 · · · xd)
2nd

=
d∏

i=1

1

1 − (x1 · · · xi)2
,

M(H(K[W (12)]);X) =
∑

ni≥0

(x1x2)
n1(x1x2x3x4)

n2 · · · (x1 · · · x2⌊d/2⌋)
n⌊d/2⌋

=

⌊d/2⌋
∏

i=1

1

1 − x1 · · · x2i
,

M(H(K[W (1) ⊕ W (12)]);X) =
∑

ni≥0

xn1
1 · · · (x1 · · · xd)

nd

=

d∏

i=1

1

1 − x1 · · · xi
.

In the language of the multiplicity series M ′ we have

M ′(H(K[W (2)]);V ) =
d∏

i=1

1

1 − v2
i

,

M ′(H(K[W (12)]);V ) =

⌊d/2⌋
∏

i=1

1

1 − v2i
,

M ′(H(K[W (1) ⊕ W (12)]);V ) =

d∏

i=1

1

1 − vi
.

Example 2.2. The multiplicity series of the Hilbert series of the sym-
metric algebra of the GL2-module W (3) was computed (in a quite elaborate way)
in [34]. The calculations may be simplified using the methods of [35]. Here we
illustrate the advantages of Algorithm 1.3. Since

S(3)(x1, x2) = x3
1 + x2

1x2 + x1x
2
2 + x3

2,

the Hilbert series of K[W (3)] is

H(K[W (3)];x1, x2) =
1

(1 − x3
1)(1 − x2

1x2)(1 − x1x2
2)(1 − x3

2)
.
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We define the function

g(x1, x2) = (x1 − x2)H(K[W (3)];x1, x2)

and decompose g(x1z, x2/z) as a sum of partial fractions with respect to z. The
result is

1

3(1 − x2
1x

2
2)(1 − x3

1x
3
2)(1 − x1z)

− 1 − x1z − x2
1x

2
2 − 2x3

1x
2
2z

3(1 − x3
1x

3
2)(1 + x2

1x
2
2 + x4

1x
4
2)(1 + x1z + x2

1z
2)

− x2
1x

2
2

(1 − x3
1x

3
2)(1 − x6

1x
6
2)(1 − x2

1x2z)
+

x2

3(1 − x2
1x

2
2)(1 − x3

1x
3
2)(x2 − z)

+
x2(−2z − x2 − x2

1x
2
2z + x2

1x
3
2)

3(1 − x3
1x

3
2)(1 + x2

1x
2
2 + x4

1x
4
2)(x

2
2 + x2z + z2)

− x3
1x

4
2

(1 − x3
1x

3
2)(1 − x6

1x
6
2)(x1x

2
2 − z)

.

The factors containing z in the denominators of the first three summands are
(1−x1z), (1+x1z+x2

1z
2), and (1−x2

1x2z). Hence these summands contribute to

Ω
≥
(g(x1z, x2/z)). We omit the other three summands because the corresponding

factors are (x2 − z), (x2
2 + x2z + z2), and (x1x

2
2 − z). Replacing z by 1 we obtain

Ω
≥

(g(x1z, x2/z)) =
1

3(1 − x2
1x

2
2)(1 − x3

1x
3
2)(1 − x1)

− 1 − x1z − x2
1x

2
2 − 2x3

1x
2
2z

3(1 − x3
1x

3
2)(1 + x2

1x
2
2 + x4

1x
4
2)(1 + x1 + x2

1)

− x2
1x

2
2

(1 − x3
1x

3
2)(1 − x6

1x
6
2)(1 − x2

1x2)

=
x1(1 − x2

1x2 + x4
1x

2
2)

(1 − x3
1)(1 − x2

1x2)(1 − x6
1x

6
2)

.

Hence

M(H(K[W (3)]);x1, x2) =
1 − x2

1x2 + x4
1x

2
2

(1 − x3
1)(1 − x2

1x2)(1 − x6
1x

6
2)

,

M ′(H(K[W (3)]); v1, v2) =
1 − v1v2 + v2

1v
2
2

(1 − v3
1)(1 − v1v2)(1 − v6

2)
.

We can rewrite the expression for M ′ in the form

M ′(H(K[W (3)]); v1, v2) =
1

2

((
1 − v1v2 + v2

1v
2
2

1 − v6
2

+
1 + v1v2 + v2

1v
2
2

(1 − v3
2)

2

)
1

1 − v3
1

+

(
1

1 − v6
2

− 1

(1 − v3
2)

2

)
1

1 − v1v2

)
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and to expand it as a power series in v1 and v2. The coefficient of va1
1 va2

2 is equal
to the multiplicity m(a1 + a2, a2) of the partition λ = (a1 + a2, a2).

Example 2.3. In the same way we have computed the multiplicity series
for the Hilbert series of all symmetric algebras K[W ] for dim(W ) ≤ 7 and several
cases for dim(W ) = 8. For example

M ′(H(K[W (4)])) = M ′

(
1

(1 − x4
1)(1 − x3

1x2)(1 − x2
1x

2
2)(1 − x1x

3
2)(1 − x4

2)

)

=
1 − v2

1v2 + v4
1v

2
2

(1 − v4
1)(1 − v2

1v2)(1 − v4
2)(1 − v6

2)
;

M ′(H(K[W (2) ⊕ W (2)])) = M ′

(
1

(1 − x2
1)

2(1 − x1x2)2(1 − x2
2)

2

)

=
1 + v2

1v2

(1 − v2
1)

2(1 − v2
2)

3
;

M ′(H(K[W (3) ⊕ W (3)])) =
p(v1, v2)

(1 − v3
1)

2(1 − v1v2)2(1 − v3
2)

2(1 − v6
2)

3
,

where

p(v1, v2) = (1 − v3
2 + v6

2)((1 + v6
1v

3
2)(1 + v6

2) − 2v3
1v

3
2(1 + v3

2))

−v1v2(1−v3
2)(2(1−v3

2−v9
2)−v1v2(4−v3

2−v9
2)−v3

1(1+v6
2−4v9

2)+2v4
1v2(1+v6

2−v9
2)).

The obtained decompositions can be easily verified using the equation

f(x1, x2) =
x1M

′(f ;x1, x1x2) − x2M
′(f ;x2, x1x2)

x1 − x2

which for d = 2 is an M ′-version of the equation in Remark 1.4.

Applying our Algorithm 1.3 we have obtained the following decompo-
sitions of the Hilbert series of the symmetric algebras of the irreducible GL3-
modules W (λ), where λ = (λ1, λ2, λ3) is a partition of 3. Again, for the proof
one can use Remark 1.4.

Theorem 2.4. Let d = 3 and let v1 = x1, v2 = x1x2, v3 = x1x2x3. The
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Hilbert series

H(K[W (3)];x1, x2, x3) =
∏

i≤j≤k

1

1 − xixjxk
,

H(K[W (2, 1)];x1, x2, x3) =
1

(1 − x1x2x3)2

∏

i6=j

1

1 − x2
i xj

,

H(K[W (1, 1, 1)];x1, x2, x3) =
1

1 − x1x2x3

have the following multiplicity series

M ′(H(K[W (3)]); v1, v2, v3) =
1

q(v1, v2, v3)

8∑

i=0

vi
1pi(v2, v3),

M ′(H(K[W (2, 1)]); v1 , v2, v3) =
1 + v1v2v3 + (v1v2v3)

2

(1−v1v2)(1−v3
1v

2
3)(1−v3

2v3)(1−v2
3)(1−v3

3)
,

M ′(H(K[W (1, 1, 1)]); v1 , v2, v3) =
1

1 − v3
,

where

q = (1 − v3
1)(1 − v1v2)(1 − v3

1v
2
3)(1 − v3

1v
3
3)(1 − v6

2)(1 − v3
2v3)(1 − v3

2v
3
3)

× (1 − v4
3)(1 − v6

3),

p0 = 1 + v9
2v

6
3 ,

p1 = −v2(1 − v3
2v

2
3(1 + v2

3 + v3
3) − v6

2v
2
3(1 + v2

3) + v9
2v

5
3(1 + v3)),

p2 = v2
2((1 + v2

3 + v4
3) − v3

2v
5
3(1 − v3) − v6

2v
2
3(1 + v2

3) + v9
2v

5
3),

p3 = −((1 − v3
2v

3
3)v3 + v6

2 + v9
2v

4
3(1 + v2

3 + v3
3))v

2
3 ,

p4 = v2v
2
3((1 + 2v3 + v3

3) − v3
2v3(v3 + v3

2)(1 + v2
3)(1 + v3 + v2

3)

+ v9
2v

4
3(1 + 2v2

3 + v3
3)),

p5 = −v2
2v

2
3(1 + v3 + v3

3 + v3
2v

7
3 − v6

2v
3
3 + v9

2v
6
3),

p6 = (v3 − v3
2v

2
3(1 + v2

3) + v6
2(1 − v3) + v9

2v
2
3(1 + v2

3 + v4
3))v

5
3 ,

p7 = −v2v
5
3(1 + v3 − v3

2v
2
3(1 + v2

3) − v6
2v3(1 + v3 + v3

3) + v9
2v

6
3),

p8 = v2
2v

5
3(1 + v9

2v
6
3).

For a polynomial GLd-module W =
∑

k(µ)W (µ), the symmetric algebra
K[W ] has also another natural Z-grading induced by the assumption that the
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elements of W are of first degree. Then the homogeneous component K[W ](n) of
degree n is the symmetric tensor power W⊗sn and

K[W ] =
⊕

n≥0

⊕

λ

mn(λ)W (λ), mn(λ) ∈ Z.

In order to take into account both the Z
d-grading induced by the GLd-action

and the natural Z-grading of K[W ], we introduce an additional variable in the
Hilbert series of K[W ]:

H(K[W ];X, t) =
∑

n≥0

H(K[W ](n);X)tn.

If, as above, the Hilbert series of W is

H(W ;X) =
∑

µ

k(µ)Sµ(X) =

p
∑

j=1

Xαj ,

then

H(K[W ];X, t) =

p
∏

j=1

1

1 − Xαj t
=
∑

n≥0

(
∑

λ

mn(λ)Sλ(X)

)

tn.

Hence the multiplicity series

M(H(K[W ]);X, t) =
∑

n≥0

(
∑

λ

mn(λ)Xλ

)

tn

carries the information about the multiplicities of the irreducible GLd-submodules
in the homogeneous components K[W ](n) of K[W ]. A minor difference with
the nongraded case is that we allow |µ| = 0 in the decomposition of W : Since
W is finite dimensional, the homogeneous components of K[W ] are also finite
dimensional and the Hilbert series H(K[W ];X, t) is well defined even if |µ| = 0
for some of the summands W (µ) of W . In the next section we shall see the role
of this multiplicity series in invariant theory.

Example 2.5. Let d = 2 and let W = W (3) ⊕ W (2). Then the Hilbert
series of W is

H(W ;x1, x2) = S(3)(x1, x2) + S(2)(x1, x2)

= x3
1 + x2

1x2 + x1x
2
2 + x3

2 + x2
1 + x1x2 + x2

2
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and the Hilbert series of K[W ] which takes into account also the Z-grading is

H(K[W ];x1, x2, t) =
∏

a+b=3

1

1 − xa
1x

b
2t

∏

a+b=2

1

1 − xa
1x

b
2t

.

Applying Algorithm 1.3 we obtain that M ′(H(K[W ]);x1, x2, t) is equal to

∑10
k=0 pk(v1, v2)t

k

(1 − v2
1t)(1 − v3

1t)(1 − v1v2t)(1 − v2
2t

2)(1 − v4
2t

3)(1 − v6
2t

4)(1 − v6
2t

5)
,

where

p0 = 1, p1 = −v1v2, p2 = v1v2(v2 + v1v2 + v2
1), p3 = v1v

2
2(v2 − v3

1),

p4 = v1v
5
2 , p5 = v1v

5
2(1 − v1)(v2 + v1), p6 = −v3

1v
6
2 ,

p7 = v8
2(v2 − v3

1), p8 = −v1v
9
2(v2 + v1 + v2

1), p9 = v3
1v

10
2 , p10 = −v4

1v
11
2 .

Again, we can check directly, without Algorithm 1.3 that the obtained rational
function is the multiplicity series of H(K[W ];x1, x2, t) using Remark 1.4.

We complete this section with the Z-graded version for the multiplicities
of the symmetric algebra of W = W (1) ⊕ W (12) for arbitrary positive integer d.

Proposition 2.6. Let d be any positive integer. The homogeneous com-

ponent of degree n of the symmetric algebra K[W (1)⊕W (12)] of the GLd-module

W = W (1) ⊕ W (12) decomposes as

K[W (1) ⊕ W (12)](n) =
⊕

W (λ),

where the summation runs on all λ = (λ1, . . . , λd) such that λ1 + λ3 + · · · +
λ2⌊(d−1)/2⌋+1 = n. Equivalently, the multiplicity series of H(K[W (1) ⊕ W (12)]);
X, t) is

M ′(H(K[W (1) ⊕ W (12)]);V, t) =
∏

2i≤d

1

(1 − v2i−1ti)(1 − v2iti)
,

when d is even and

M ′(H(K[W (1) ⊕ W (12)]);V, t) =
1

1 − vdt(d+1)/2

∏

2i<d

1

(1 − v2i−1ti)(1 − v2iti)

when d is odd.
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P r o o f. Since, as GLd-module,

K[W (1) ⊕ W (12)] = K[W (1)] ⊗ K[W (12)],

we obtain that

H(K[W (1) ⊕ W (12)];X, t) = H(K[W (1)];X, t)H(K[W (12)];X, t)

=

d∏

i=1

1

1 − xit

∏

i<j

1

1 − xixjt

because the elements of W (1),W (12) ⊂ W are of first degree. The decompositions

d∏

i=1

1

1 − xi
=

∑

k≥0

S(k)(X),

∏

i<j

1

1 − xixj
=

∑

(λ2,λ4,...)

S(λ2,λ2,λ4,λ4,...)(X)

give

d∏

i=1

1

1 − xit
=

∑

m≥0

S(m)(X)tm,

∏

i<j

1

1 − xixjt
=

∑

(λ2,λ4,...)

S(λ2,λ2,λ4,λ4,...)(X)tλ2+λ4+···

and hence

H(K[W (1)⊕W (12)];X, t) =
∑

m≥0

∑

(λ2,λ4,...)

S(m)(X)S(λ2,λ2,λ4,λ4,...)(X)tm+λ2+λ4+···.

The product of the Schur functions S(m)(X) and Sµ(X) can be decomposed by
the Young rule which is a partial case of the Littlewood–Richardson rule:

S(m)(X)Sµ(X) =
∑

Sν(X),

where the summation runs on all partitions ν ⊢ m + |µ| such that

ν1 ≥ µ1 ≥ ν2 ≥ µ2 ≥ · · · ≥ νd ≥ µd.

Applied to our case this gives

S(m)(X)S(λ2,λ2,λ4,λ4,...)(X) =
∑

S(λ1,λ2,...,λd)(X),
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where the sum is on all partitions with

(λ1 − λ2) + (λ3 − λ4) + · · · + (−1)d−1λd = m.

Hence the GLd-module W (λ) ⊂ K[W ] is a submodule of the homogeneous com-
ponent of degree

m + λ2 + λ4 + · · · = λ1 + λ3 + · · · + λ2⌊(d−1)/2⌋+1 .

For the statement for the multiplicity series, first let d = 2k + 1. Then

M(H(K[W ]);X, t) =
∑

λ1≥···≥λ2k+1

xλ1
1 · · · xλ2k+1

2d+1 tλ1+λ3+···+λ2k+1

=
∑

λ1≥···≥λ2k+1

(x1t)
λ1xλ2

2 (x3t)
λ3 · · · xλ2k+1

2d (x2d+1t)
λ2k+1

=
∑

λ1≥···≥λ2k+1

(x1t)
λ1−λ2(x1x2t)

λ2−λ3(x1x2x3t
2)λ3−λ4

× (x1x2x3x4t
2)λ4−λ5 · · · (x1 · · · x2k−1t

k)λ2k−1−λ2k

× (x1 · · · x2kt
k)λ2k−λ2k+1(x1 · · · x2k+1t

k+1)λ2k+1 ,

M ′(H(K[W ]);X, t) =
∑

ni≥0

(v1t)
n1(v2t)

n2(v3t
2)n3(v4t

2)n4 · · ·

× (v2k−1t
k)n2k−1(v2ktk)n2k(v2k+1t

k+1)n2k+1

=
1

1 − v2k+1tk+1

k∏

i=1

1

(1 − v2i−1ti)(1 − v2iti)
.

The case d = 2k follows immediately from the case d = 2k + 1 by substituting
v2k+1 = 0 in the expression of M ′(H(K[W ]);X, t). �

3. Invariant theory. Without being comprehensive, we shall survey
few results related with our topic. One of the main objects in invariant theory
in the 19th century is the algebra of SL2-invariants of binary forms. Let Wm =
Wm,2 be the vector space of all homogeneous polynomials of degree m in two
variables with the natural action of SL2. The computation of the Hilbert series
(often also called the Poincaré series) of the algebra of invariants K[Wm]SL2

was a favorite problem actively also studied nowadays. It was computed by
Sylvester and Franklin [68, 69] for m ≤ 10 and m = 12. In 1980 Springer
[65] found an explicit formula for the Hilbert series of K[Wm]SL2 . Applying it,
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Brouwer and Cohen [19] calculated the Hilbert series of K[Wm]SL2 of degree
≤ 17. Littelmann and Procesi [53] suggested an algorithm based on a variation
of the result of Springer and computed the Hilbert series for m = 4k ≤ 36. More
recently, Djoković [26] proposed a heuristic algorithm for fast computation of the
Hilbert series of the invariants of binary forms, viewed as rational functions, and
computed the series for m ≤ 30.

Not too much is known about the explicit form of the invariants and their
Hilbert series when SLd(C), d ≥ 3, acts on the vector space of forms of degree
m ≥ 3. Most of the known results are for ternary forms. The generators of
the algebra of invariants in the case of forms of degree 3 were found by Gordan
[48], see also Clebsch and Gordan [22]; the case of forms of degree 4 has handled
by Emmy Noether [58]. The Hilbert series of the algebra of SL3(C)-invariants
for forms of degree 4 was calculated by Shioda [64]. Recently Bedratyuk [7, 8]
found analogues of Sylvester–Cayley and Springer formulas for invariants also of
ternary forms. This allowed him to compute the first coefficients (of the terms of
degree ≤ 30) of the Hilbert series of the algebras of SL3(C)-invariants of forms
of degree m ≤ 7.

Computing the Hilbert series of the algebra of SLd-invariants C[W ]SLd ,
where W is a direct sum of several vector spaces Wmi,d of forms of degree mi in
d variables, one may use the Molien–Weyl integral formula, evaluating multiple
integrals. This type of integrals can be evaluated using the Residue Theorem, see
the book by Derksen and Kemper [24] for details. For concrete decompositions
of W , the algebra of invariants K[W ]SLd was studied already by Sylvester. Its
Hilbert series is also known in some cases. For example, recently Bedratyuk [9] has
found a formula for the Hilbert series of the SL2-invariants K[Wm1,2⊕Wm2,2]

SL2

and has computed these series for m1,m2 ≤ 20. (The results for m1,m2 ≤ 5
are given explicitly in [9].) Very recently, Bedratyuk and Xin [11] applied the
MacMahon partition analysis to the Molien–Weyl integral formula and computed
the Hilbert series of the algebras of invariants of some ternary and quaternary
forms.

Our approach to the Hilbert series of the algebra of invariants K[W ]SLd

of the SLd-module W is based on a theorem of De Concini, Eisenbud and Procesi
[23]. This theorem implies that the multiplicities of Sλ(X) in the Hilbert series
of symmetric algebras K[W ] of a GLd-module W appear in invariant theory of
SLd and of the unitriangular group UTd = UTd(K) as subgroups of GLd, and
in invariant theory of a single unitriangular matrix. It is combined with an idea
used by Drensky and Genov [35] to compute the Hilbert series of the algebra
of invariants of UT2. We extend the SLd-action on W to a polynomial action
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of GLd. This is possible in the cases that we consider because the SLd-module
Wm,d of the forms of degree m can be viewed as a GLd-module isomorphic to
W (m). Then we compute the Hilbert series of the GLd-module K[W ] and its
multiplicity series M ′(H(K[W ]);V, t). The Hilbert series of K[W ]SLd is equal to
M ′(H(K[W ]); 0, . . . , 0, 1, t). Similarly, if W is a polynomial GLd-module, then
the Hilbert series of K[W ]UTd is equal to M ′(H(K[W ]); 1, . . . , 1, t). The difference
with [35] is that there we use for the evaluation of M(H(K[W ]);x1, x2, t) the
methods developed in [35] and here we use the MacMahon partition analysis for
the same purpose and for any number of variables. We shall consider the following
problem. Let W be an arbitrary polynomial GLd-module. How can one calculate

the Hilbert series of the algebras of invariants K[W ]SLd and K[W ]UTd? Clearly,
here we assume that SLd and UTd are canonically embedded into GLd. We need
the following easy argument. We state it as a lemma and omit the obvious proof.

Lemma 3.1. Let H be a subgroup of the group G and let W1,W2 be

G-modules. Then the vector space of invariants W H ⊂ W in W = W1 ⊕ W2

satisfy

W H = W H
1 ⊕ W H

2 .

Theorem 3.2. Let W be a polynomial GLd-module with Hilbert series

with respect to the grading induced by the GLd-action on W

H(W ;X) =
∑

aix
i1
1 · · · xid

d , ai ≥ 0, ai ∈ Z,

and let

H(K[W ];X, t) =
∏ 1

(1 − Xit)ai

be the Hilbert series of K[W ] which counts also the natural Z-grading. Then the

Hilbert series of the algebras of invariants K[W ]SLd and K[W ]UTd are given by

H(K[W ]SLd , t) = M ′(H(K[W ]); 0, . . . , 0, 1, t),

H(K[W ]UTd , t) = M(H(K[W ]); 1, . . . , 1, t)

= M ′(H(K[W ]); 1, . . . , 1, t).

P r o o f. Let

K[W ] =
⊕

n≥0

⊕

λ

mn(λ)W (λ)
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be the decomposition of the Z-graded GLd-module K[W ]. Its Hilbert series is

H(K[W ];X, t) =
∑

n≥0

(
∑

λ

mn(λ)Sλ(X)

)

tn

and the multiplicity series of H(K[W ];X, t) are

M(H(K[W ]);X, t) =
∑

n≥0

(
∑

λ

mn(λ)Xλ

)

tn,

M ′(H(K[W ]);V, t) =
∑

n≥0

(
∑

λ

mn(λ)vλ1−λ2
1 · · · vλd−1−λd

d−1 vλd
d

)

tn.

It is a well known fact that the irreducible GLd-module W (λ) = W (λ1, . . . , λd)
contains a one-dimensional SLd-invariant subspace if λ1 = · · · = λd (when
dim(W (λ) = 1 and W (λ)SLd = W (λ)) and contains no invariants if λj 6= λj+1

for some j. Applying Lemma 3.1 we immediately obtain

K[W ]SLd =
⊕

n≥0

⊕

λ1=···=λd

mn(λ)W (λ),

H(K[W ]SLd ; t) =
∑

n≥0




∑

λ1=···=λd

mn(λ)



 tn.

Evaluating the monomials in the expansion of M ′(H(K[W ]);V, t) for v1 = · · · =
vd−1 = 0, vd = 1 we obtain

vλ1−λ2
1 · · · vλd−1−λd

d−1 vλd
d |V =(0,...,0,1) =

{

1, if λ1 = · · · = λd,

0, if λj 6= λj+1 for some j

which completes the case of SLd-invariants.

It is also well known that every irreducible GLd-module W (λ) has a one-
dimensional UTd-invariant subspace which is spanned on the only (up to a mul-
tiplicative constant) element w ∈ W (λ) with the property that the diagonal
subgroup Dd of GLd acts by

g(w) = ξλ1
1 · · · ξλd

d w, g = diag(ξ1, . . . , ξd).
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Hence

K[W ]UTd =
⊕

n≥0

⊕

λ

mn(λ)W (λ)UTd ,

H(K[W ]UTd ; t) =
∑

n≥0

(
∑

λ

mn(λ)

)

tn

= M(H(K[W ]); 1, . . . , 1, t) = M ′(H(K[W ]); 1, . . . , 1, t). 2

Below we shall illustrate Theorem 3.2 on the Hilbert series of the SL2-
invariants for the GL2-modules considered in the examples of Section 2.

Example 3.3. If the polynomial GLd-module W is homogeneous of
degree m, i.e., g(w) = ξmw for w ∈ W and g = diag(ξ, . . . , ξ) ∈ GLd, then

H(K[W ];x1, . . . , xd, t) = H(K[W ];X, t)

= H(K[W ];X
m
√

t) = H(K[W ];x1
m
√

t, . . . , xd
m
√

t)

because the elements of W are of degree 1 with respect to the Z-grading and of
degree m with respect to the Z

d-grading. The results of Example 2.1 give

M ′(H(K[W (2)]);V ) =

d∏

i=1

1

1 − v2
i

,

M ′(H(K[W (2)]);V, t) =

d∏

i=1

1

1 − v2
i t

i
,

H(K[W (2)]SLd ; t) = M ′(H(K[W (2)]); 0, . . . , 0, 1, t) =
1

1 − td
,

H(K[W (2)]UTd ; t) = M ′(H(K[W (2)]); 1, . . . , 1, t) =
d∏

i=1

1

1 − ti
;

M ′(H(K[W (12)]);V ) =

⌊d/2⌋
∏

i=1

1

1 − v2i
,

M ′(H(K[W (12)]);V, t) =

⌊d/2⌋
∏

i=1

1

1 − v2iti
,
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H(K[W (12)]SLd ; t) =







1

1 − td/2
, if d is even,

1, if d is odd,

H(K[W (12)]UTd ; t) =

⌊d/2⌋
∏

i=1

1

1 − ti
.

Similarly, for d = 2 Examples 2.2 and 2.3 give

M ′(H(K[W (3)]); v1, v2) =
1 − v1v2 + v2

1v
2
2

(1 − v3
1)(1 − v1v2)(1 − v6

2)
,

M ′(H(K[W (3)]); v1, v2, t) = M ′(H(K[W (3)]; v1
3
√

t, v2
3
√

t2)

=
1 − v1v2t + v2

1v
2
2t

2

(1 − v3
1t)(1 − v1v2t)(1 − v6

2t
4)

,

H(K[W (3)]SL2 ; t) = M ′(H(K[W (3)]); 0, 1, t) =
1

1 − t4
,

H(K[W (3)]UT2 ; t) = M ′(H(K[W (3)]); 1, 1, t) =
1 − t + t2

(1 − t)2(1 − t4)
;

M ′(H(K[W (4)]); v1, v2, t) = M ′(H(K[W (4)]); v1
4
√

t, v2

√
t),

H(K[W (4)]SL2 ; t) = M ′(H(K[W (4)]); 0, 1, t) =
1

(1 − t2)(1 − t4)
,

H(K[W (4)]UT2 ; t) = M ′(H(K[W (4)]); 1, 1, t)

=
1 − t + t2

(1 − t)2(1 − t2)(1 − t4)
;

M ′(H(K[W (2) ⊕ W (2)]); v1, v2, t) = M ′(H(K[W (2) ⊕ W (2)]); v1

√
t, v2t),

H(K[W (2) ⊕ W (2)]SL2 ; t) =
1

(1 − t2)3
,

H(K[W (2) ⊕ W (2)]UT2 ; t) =
1 + t2

(1 − t)2(1 − t2)3
;

M ′(H(K[W (3) ⊕ W (3)]) :, v1, v2, t) = M ′(H(K[W (3) ⊕ W (3)]) :, v1
3
√

t, v2
3
√

t2),

H(K[W (3) ⊕ W (3)]SL2 ; t) =
(1 − t2 + t4)(1 + t4)

(1 − t2)5(1 + t2)3
,

H(K[W (3) ⊕ W (3)]UT2 ; t) =
1 + t10 + 3t2(1 + t6) + 6t3(1 + t + t2 + t3 + t4)

(1 − t)2(1 − t2)5(1 + t2)3
.
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Finally, for d = 3 Theorem 2.4 gives that

M ′(H(K[W (3)]); v1, v2, v3, t) = M ′(H(K[W (3)]); v1
3
√

t, v2
3
√

t2, v3t),

(H(K[W (3)]SL3 ; t) =
1

(1 − t4)(1 − t6)
,

(H(K[W (3)]UT3 ; t) =
(1 + t3)(1 + t9) + 2t4(1 + t4) + 3t5(1 + t + t2)

(1 − t)(1 − t2)(1 − t3)2(1 − t4)2(1 − t5)

and similarly

H(K[W (2, 1)]SL3 ; t) =
1

(1 − t2)(1 − t3)
,

H(K[W (2, 1)]UT3 ; t) =
1 − t + t2

(1 − t)2(1 − t2)(1 − t3)2
;

H(K[W (13)]SL3 ; t) = H(K[W (13)]UT3 ; t) =
1

1 − t
.

Example 3.4. The translation of Example 2.5 to the language of SL2-
and UT2-invariants gives

H(K[W (3) ⊕ W (2)]SL2 ; t) =
1 + t9

(1 − t2)(1 − t3)(1 − t4)(1 − t5)
,

H(K[W (3) ⊕ W (2)]UT2 ; t) =
(1 − t)(1 − t7) + 4t2(1 + t4) − t3(1 + t2) + 5t4

(1 − t)3(1 − t3)(1 − t4)(1 − t5)
.

For an arbitrary d Proposition 2.6 gives

H(K[W (1) ⊕ W (12)]SLd ; t) =







1

1 − tk
, if d = 2k,

1

1 − tk+1
, if d = 2k + 1,

H(K[W (1) ⊕ W (12)]UTd ; t) =







k∏

i=1

1

(1 − ti)2
, if d = 2k,

1

1 − tk+1

k∏

i=1

1

(1 − ti)2
, if d = 2k + 1.
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In the above examples our results coincide with the known ones, see e.g.,
[68, 25, 26, 9, 7].

The invariant theory of UT2 may be restated in the language of linear
locally nilpotent derivations. Recall that a derivation of a (not necessarily com-
mutative or associative) algebra R is a linear operator δ with the property that

δ(u1u2) = δ(u1)u2 + u1δ(u2), u1, u2 ∈ R.

The derivation δ is locally nilpotent if for any u ∈ R there exists a p such that
δp(u) = 0. Locally nilpotent derivations are interesting objects with relations to
invariant theory, the 14th Hilbert problem, automorphisms of polynomial alge-
bras, the Jacobian conjecture, etc., see the monographs by Nowicki [59], van den
Essen [41], and Freudenburg [46]. Linear locally nilpotent derivations δ of the
polynomial algebra K[Y ] (acting as linear operators on the vector space KY with
basis Y = {y1, . . . , yd}) were studied by Weitzenböck [75] who proved that the
algebra of constants K[Y ]δ, i.e., the kernel of δ, is finitely generated. Nowadays
linear locally nilpotent derivations of K[Y ] are known as Weitzenböck derivations

and are subjects of intensive study.
The algebra K[Y ]δ coincides with the algebra K[Y ]G of invariants of the

cyclic group G generated by

exp(δ) = 1 +
δ

1!
+

δ2

2!
+ · · ·

and with the algebra of invariants of the additive group Ka of the field K with
its d-dimensional representation

α → exp(αδ), α ∈ Ka,

which allows to involve invariant theory. Historically, it seems that this rela-
tion was used quite rarely and some of the results on Weitzenböck derivations
rediscover classical results in invariant theory. For example, the modern proof of
the theorem of Weitzenböck given by Seshadri [63] is equivalent to the results of
Roberts [62] that for an SL2-module W the algebra K[W ]UT2 is isomorphic to
the algebra of covariants. There is an elementary version of the proof by Seshadri
given by Tyc [72] which is in the language of representations of the Lie algebra
sl2(K) and can be followed without serious algebraic knowledge. Let δ be a
Weitzenböck derivation. All eigenvalues of δ (acting on KY ) are equal to 0 and,
up to a linear change of the coordinates of K[Y ], δ is determined by its Jordan
normal form. Hence, for each fixed dimension d there is only a finite number
of Weitzenböck derivations. The only derivation which corresponds to a single
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Jordan cell is called basic. Onoda [60] presented an algorithm which calculates
the Hilbert series in the case of a basic Weitzenböck derivation. He calculated
the Hilbert series for the basic derivation δ and d = 6 and, as a consequence
showed that the algebra of constants C[Y ]δ is not a complete intersection. (By
the same paper [60], C[Y ]δ is Gorenstein for any Weitzenböck derivation δ which
agrees with a general fact in invariant theory of classical groups.) Other methods
to compute the Hilbert series of K[W ]δ for any Weitzenböck derivation δ are
developed by Bedratyuk; see [10] and the references there. Below we show how
the MacMahon partition analysis can be used to compute the Hilbert series of
K[W ]δ. The following theorem and its corollary were announced in [35].

Theorem 3.5. Let δ be a Weitzenböck derivation of K[Y ] with Jordan

normal form consisting of k cells of sizes d1 + 1, . . . , dk + 1, respectively. Let

fδ(x1, x2, t) =
1

qd1(x1, x2, t) · · · qdk
(x1, x2, t)

,

where

qd(x1, x2, t) = (1 − xd
1t)(1 − xd−1

1 x2t) · · · (1 − x1x
d−1
2 t)(1 − xd

2t).

Then the Hilbert series of the algebra of constants K[Y ]δ is given by

H(K[Y ]δ; t) = M(fδ; 1, 1),

where M(fδ;x1, x2) is the multiplicity series of the symmetric with respect to

x1, x2 function fδ(x1, x2, t) ∈ K(t)[[x1, x2]]
S2 .

P r o o f. If δ has k Jordan cells and the ith cell is of size di+1, i = 1, . . . , k,
we identify the vector space KY with the GL2-module

W = W (d1) ⊕ · · · ⊕ W (dk)

and the algebra K[Y ] with the symmetric algebra K[W ]. Then the algebra of
constants K[Y ]δ coincides with the algebra K[W ]UT2 of UT2-invariants. Ob-
viously, the function fδ(x1, x2, t) is equal to the Hilbert series of the Z-graded
GL2-module K[W ]. Hence Theorem 3.2 completes the proof. �

Example 3.6. Let δ = δ(d1, . . . , dk) be the Weitzenböck derivation with
k Jordan cells of size di + 1, i = 1, . . . , k, respectively. If the matrix of δ contains
a Jordan cell of size 1 corresponding to xd, then

K[x1, . . . , xd−1, xd]
δ = K[x1, . . . , xd−1]

δ[xd]
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and the Hilbert series of the algebras of constants K[x1, . . . , xd]
δ and

K[x1, . . . , xd−1]
δ are related by

H(K[x1, . . . , xd]
δ; t) =

1

1 − t
H(K[x1, . . . , xd−1]

δ; t).

Hence it is sufficient to consider only δ with Jordan matrices without 1-cells.
Below we extend the results in Examples 3.3 and 3.4 and give the Hilbert series of
K[Y ]δ for all possible δ with d ≤ 7. Originally the computations were performed
in [35] illustrating the methods developed there for symmetric functions in two
variables. Here we repeated the computations with the methods of the MacMahon
partition analysis. Clearly, the results coincide with those from [10].

d = 2:

H(K[Y ]δ(1); t) =
1

1 − t
;

d = 3:

H(K[Y ]δ(2); t) =
1

(1 − t)(1 − t2)
;

d = 4:

H(K[Y ]δ(3); t) =
1 − t + t2

(1 − t)2(1 − t4)
=

1 + t3

(1 − t)(1 − t2)(1 − t4)
,

H(K[Y ]δ(1,1); t) =
1

(1 − z)2(1 − z2)
;

d = 5:

H(K[Y ]δ(4); t) =
1 − t + t2

(1 − t)2(1 − t2)(1 − t3)
=

1 + t3

(1 − t)(1 − t2)2(1 − t3)
,

H(K[Y ]δ(2,1); t) =
1

(1 − z)2(1 − z2)(1 − z3)
;

d = 6:

H(K[Y ]δ(5); t) =
p(z)

(1 − z)(1 − z2)(1 − z4)(1 − z6)(1 − z8)
,

p(z) = 1+z2+3z3+3z4+5z5+4z6+6z7+6z8+4z9+5z10+3z11+3z12+z13+z15,

H(K[Y ]δ(3,1); t) =
1 + z2 + 3z3 + z4 + z6

(1 − z)2(1 − z2)(1 − z4)2
,

H(K[Y ]δ(2,2); t) =
1 + z2

(1 − z)2(1 − z2)3
,



Computing with rational symmetric functions 165

H(K[Y ]δ(1,1,1); t) =
1 − z3

(1 − z)3(1 − z2)3
=

1 + z + z2

(1 − z)2(1 − z2)3
;

d = 7:

H(K[Y ]δ(6); t) =
1 + z2 + 3z3 + 4z4 + 4z5 + 4z6 + 3z7 + z8 + z10

(1 − z)(1 − z2)2(1 − z3)(1 − z4)(1 − z5)
,

H(K[Y ]δ(4,1); t) =
1 + 2z2 + 2z3 + 4z4 + 2z5 + 2z6 + z8

(1 − z)2(1 − z2)(1 − z3)2(1 − z5)
,

H(K[Y ]δ(3,2); t) =
1 − z + 4z2 − z3 + 5z4 − z5 + 4z6 − z7 + z8

(1 − z)3(1 − z3)(1 − z4)(1 − z5)

=
1 + 3z2 + 3z3 + 4z4 + 4z5 + 3z6 + 3z7 + z9

(1 − z)2(1 − z2)(1 − z3)(1 − z4)(1 − z5)
,

H(K[Y ]δ(2,1,1); t) =
1 + 3z2 + z4

(1 − z)3(1 − z2)(1 − z3)2
.

Corollary 3.7. For d ≤ 7 the algebra of constants K[Y ]δ of the Weitzen-

böck derivation δ = δ(d1, . . . , dk) is not a complete intersection for

(d1, . . . , dk) = (5), (3, 1), (6), (4, 1), (3, 2), (2, 1, 1).

P r o o f. Using, as in [60], that the zeros of the nominator of the Hilbert
series of a complete intersection are roots of unity (see [67]), the proof follows
immediately from Example 3.6. (The case (d1, . . . , dk) = (5) was established in
[60].) �

4. PI-algebras and noncommutative invariant theory. In this
section we assume that all algebras are unital (and char(K) = 0). For a back-
ground on PI-algebras we refer, e.g., to [31]. Let Y∞ = {y1, y2, . . .} and let
K〈Y∞〉 be the free associative algebra of countable rank freely generated by
Y∞. This is the algebra of polynomials in infinitely many noncommutative
variables. Let K〈Y 〉 = K〈y1, . . . , yd〉 be its subalgebra of rank d. Recall that
f(y1, . . . , ym) ∈ K〈Y∞〉 is called a polynomial identity for the associative algebra
R if f(r1, . . . , rm) = 0 for all r1, . . . , rm ∈ R. If R satisfies a nonzero polynomial
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identity, it is called a PI-algebra. We denote by T∞(R) the ideal of all polynomial
identities of R (called the T-ideal of R) and

T (R) = K〈Y 〉 ∩ T∞(R)

is the T-ideal of the polynomial identities in d variables for R. Since we work
over a field of characteristic 0, all polynomial identities of R follow from the
multilinear ones. The vector space of the multilinear polynomials of degree n

Pn = span{yσ(1) · · · yσ(n) | σ ∈ Sn} ⊂ K〈Y∞〉

has a natural structure of a left Sn-module and the factor space

Pn(R) = Pn/(Pn ∩ T∞(R))

is its Sn-factor module. One of the main problems in the quantitative study of
PI-algebras is to compute the cocharacter sequence of R

χn(R) = χSn(Pn(R)) =
∑

λ⊢n

mλ(R)χλ,

where χλ, λ ⊢ n, is the irreducible Sn-character indexed by the partition λ. A
possible way to compute the multiplicities mλ(R) is the following. One considers
the diagonal GLd-action on K〈Y 〉 extending the natural action of GLd on the
d-dimensional vector space KY with basis Y . Then the factor algebra

F (R) = K〈Y 〉/T (R)

called the relatively free algebra of rank d in the variety of associative algebras

generated by R, inherits the GLd-action of K〈Y 〉. Its Hilbert series as a GLd-
module coincides with its Hilbert series as a Z

d-graded vector space with grading
defined by

◦(yi) = (0, . . . , 0
︸ ︷︷ ︸

i−1 times

, 1, 0, . . . , 0
︸ ︷︷ ︸

d−i times

).

It is a symmetric function in d variables and

H(F (R);X) =
∑

mλ(R)Sλ(X),

where the sum is on all (λ1, . . . , λd) and the multiplicities mλ(R) are exactly
the same as in the cocharacter sequence of R. Hence, if we know the Hilbert
series of F (R), we can compute the multiplicities mλ(R) for partitions λ in ≤ d



Computing with rational symmetric functions 167

parts. The theorem of Belov [12] gives that for any PI-algebra R the Hilbert
series of F (R) is a rational function. Berele [15] found that the proof of Belov
also implies that this Hilbert series is a nice rational symmetric function. Hence
we can apply our methods to calculate the multiplicity series of H(F (R);X) and
to find the multiplicities of R. See the introduction of Boumova and Drensky [20]
for a survey of results on the multiplicities of concrete algebras.

The most important algebras in PI-theory are the so called T-prime al-

gebras whose T-ideals are the building blocks of the structure theory of T-ideals
developed by Kemer, see his book [50] for the account. There are few cases only
when the Hilbert series of the relatively free algebras F (R) are explicitly known.
For T-prime algebras these are the base filed K, the Grassmann (or exterior) al-
gebra E, the 2× 2 matrix algebra M2(K), and the algebra M1,1 ⊂ M2(E) which
has the same polynomial identities as the tensor square E⊗K E of the Grassmann
algebra. In all these cases the multiplicities are also known. The case R = K is
trivial because F (K) = K[Y ]:

mλ(K) =

{

1, if λ = (n),

0, otherwise.

The multiplicities for M2(K) were obtained by Formanek [42] and Drensky [29],
see also [31]:

mλ(M2(K)) =







0, if λ5 > 0,

1, if λ = (n),

(λ1 − λ2 + 1)λ2, if λ = (λ1, λ2), λ2 > 0,

λ1(2 − λ4) − 1, if λ = (λ1, 1, 1, λ4),

(λ1 − λ2 + 1)(λ2 − λ3 + 1)(λ3 − λ4 + 1) in all other cases.

Hence the multiplicity series are

M(H(F (K));X) =
1

1 − x1
,

M ′(H(F (K));V ) =
1

1 − v1
;

M ′(H(F (M2(K)));V ) =
1

(1 − v1)2(1 − v2)2(1 − v3)2(1 − v4)

− v2 + v1(1 − v2)

(1 − v1)2(1 − v2)
− v3 + v4

1 − v1
.
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For any d, there are partitions λ = (λ1, . . . , λd) with λd > 0 and nonzero multi-
plicities mλ(E) and mλ(E ⊗K E). Hence for these cases the multiplicity series
M(H(E);X) and M(H(E ⊗K E);X) do not carry all the information about the
cocharacter sequences of E and E ⊗K E. For this purpose Berele [16] suggested
to use hook Schur functions instead of ordinary ones.

Another case when the Hilbert series of the relatively free algebras may
be computed and used to find the multiplicities is for algebras R with T-ideals
which are products of two T-ideals, T (R) = T (R1)T (R2). See again [20] for
details. Formanek [43] found the following simple formula for the Hilbert series
of T (R) in terms of the Hilbert series of T (R1) and T (R2):

H(T (R)) =
H(T (R1))H(T (R2))

H(K〈Y 〉) = (1 − (x1 + · · · + xd))H(T (R1))H(T (R2)).

Translated for the corresponding relatively free algebras this gives

H(F (R)) = H(F (R1)) + H(F (R2)) + ((x1 + · · · + xd) − 1)H(F (R1))H(F (R2)).

It is known that T (Um(K)) = Tm(K) (Maltsev [56]) and T (Um(E)) = Tm(E)
(this follows from the results of Abakarov [1]), where Uk(K) and Uk(E) are the
algebras of k × k upper triangular matrices with entries from K and E, re-
spectively. The multiplicities of Uk(K) were studied by Boumova and Dren-
sky [20], with explicit results for “large” partitions λ = (λ1, . . . , λn) (such that
λk+1+· · ·+λn = k−1). The multiplicities of U2(E) were determined by Centrone
[21]. In both cases the results were obtained using the Young rule only, without
the MacMahon partition analysis. Here we shall illustrate once again Algorithm
1.3.

Example 4.1. Let C be the commutator ideal of the free associative
algebra K〈Y 〉. Then by Maltsev [56] the T-ideal Ck coincides with the T-ideal
of Uk(K). Since K〈Y 〉/C is the polynomial algebra in d variables and

H(K[Y ];X) =

d∏

i=1

1

1 − xi
=
∑

n≥0

S(n)(X),

the formula

H(F (R)) = H(F (R1)) + H(F (R2)) + ((x1 + · · · + xd) − 1)H(F (R1))H(F (R2)).

for the Hilbert series of relatively free algebras corresponding to products of T-
ideals gives

H(F (U2(K));X) = 2
d∏

i=1

1

1 − xi
+ ((x1 + · · · + xd) − 1)

d∏

i=1

1

(1 − xi)2
.
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The decomposition of the product Sµ(X)S(n)(X) =
∑

Sλ(X) is given by the
Young rule. If µ is a partition in k parts, then λ is a partition in k or k +1 parts.
Hence H(F (U2(K));X) decomposes into a series of Schur functions Sλ(X), where
λ is a partition in no more than three parts. Therefore, it is sufficient to consider
the multiplicity series of H(F (U2(K));X) for d = 3 only. Clearly,

M ′(H(K[Y ]);V ) = M ′

(
d∏

i=1

1

1 − xi
;V

)

=
1

1 − v1
.

Algorithm 1.3 gives

g1(x1, x2, x3) =
(x1 − x2)(x1 − x3)(x2 − x3)((x1 + x2 + x3) − 1)

(1 − x1)2(1 − x2)2(1 − x3)2
,

g1(x1z1, x2/z1, x3) =
−x3 + x1x2 − 2x1x2x3 − x1x3z1

(1 − x3)2

+
x3 + x2

3 − x3
3 − x1x2 + x1x2x3 − x2

1x
2
2x3

(1 − x1x2)(1 − x3)2(1 − x1z1)
+

−x2
3 + x2

1x
2
2

(1 − x1x2)(1 − x3)(1 − x1z1)2

+
x2x3

(1 − x3)2z1
+

(x3 − x2
3 + x3

3 − x1x2 + x1x2x3 + 2x2
1x

2
2 − 3x2

1x
2
2x3)x2

(1 − x1x2)(1 − x3)2(x2 − z1)

+
(x2

3 − x2
1x

2
2)x

2
2

(1 − x1x2)(1 − x3)(x2 − z1)2
.

We omit the last three summands which give negative degrees of z1 in the ex-
pansion of g1(x1z1, x2/z1, x3) as a Laurent series and, substituting z1 = 1, we
obtain

g2(x1, x2, x3) =
−x3 + x1x2 − 2x1x2x3 − x1x3

(1 − x3)2

+
x3 + x2

3 − x3
3 − x1x2 + x1x2x3 − x2

1x
2
2x3

(1 − x1)(1 − x1x2)(1 − x3)2
+

−x2
3 + x2

1x
2
2

(1 − x1)2(1 − x1x2)(1 − x3)
.

Repeating the procedure with g2(x1, x2z2, x3/z2) we obtain

Ω
≥

(g1(x1z1, x2z2/z1, x3/z2)) =
x2

1x2(−1 + x1 + 2x1x2 − x2
1x2 + x1x2x3)

(1 − x1)2(1 − x1x2)
,

M ′

(
(x1 + x2 + x3) − 1

(1 − x1)2(1 − x2)2(1 − x3)2
;V

)

=
−1 + v1 + 2v2 − v1v2 + v3

(1 − v1)2(1 − v2)

= − 1

1 − v1
+

v2 + v3

(1 − v1)(1 − v2)
,
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M ′(H(F (U2(K));V ) =
1

1 − v1
+

v2 + v3

(1 − v1)(1 − v2)

=
∑

n≥0

vn
1 +

∑

p≥0

∑

q≥1

(p + 1)vp
1vq

2 +
∑

p≥0

∑

q≥0

(p + 1)vp
1v

q
2v3.

Hence the multiplicities in the cocharacter sequence of U2(K) are

mλ(U2(K)) =







1, if λ = (λ1),

λ1 − λ2 + 1, if λ = (λ1, λ2), λ2 > 0,

λ1 − λ2 + 1, if λ = (λ1, λ2, 1),

0 in all other cases.

Compare our approach with the approach on the multiplicities of U2(K) given
by Mishchenko, Regev, and Zaicev [57] and in [20].

A case of products of T-ideals when we do need the MacMahon partition
analysis is of block triangular matrices with entries from the field. Let d1, . . . , dm

be positive integers and let U(d1, . . . , dm) be the algebra of matrices of the form










Md1(K) ∗ . . . ∗ ∗
0 Md2(K) . . . ∗ ∗
...

...
. . .

...
...

0 0 . . . Mdm−1(K) ∗
0 0 . . . 0 Mdm(K)










.

It is known, see Giambruno and Zaicev [47], that

T (U(d1, . . . , dm)) = T (Md1(K)) · · · T (Mdm(K)).

The only cases when we know the Hilbert series of T (Mk(K)) are k = 1, 2, and
we can compute the Hilbert series of F (U(d1, . . . , dm)). The multiplicities of
U(d1, . . . , dm) when all di are equal to 1 and 2 were studied in the master thesis
of Kostadinov [52], see also his paper with Drensky [39]. If d1 = · · · = dm = 1, the
algebra U(d1, . . . , dm) is equal to Uk(K), handled in [20]. If only one di is equal to
2 and the others are equal to 1, we still can use the Young rule. The MacMahon
partition analysis was applied in [52] in the case when several di are equal to 2.
In particular exact formulas for the multiplicity series and the multiplicities as
well as the asymptotics of the multiplicities were found for a small number of
blocks.
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Studying the polynomial identities of the matrix algebra Mk(K), there
is another object which behaves much better than the relatively free algebra
F (Mk(K)). Let

K[Z] = K[z(i)
pq | p, q = 1, . . . , k, i = 1, . . . , d]

be the polynomial algebra in k2d commuting variables and let Rkd be the generic

matrix algebra generated by the d generic k × k matrices

zi =






z
(i)
11 · · · z

(i)
1k

...
. . .

...

z
(i)
k1 · · · z

(i)
kk




 , i = 1, . . . , d.

It is well known that Rkd
∼= F (Mk(K)). Let Ckd be the pure (or commuta-

tive) trace algebra generated by all traces of products tr(zi1 · · · zin), i1, . . . , in =
1, . . . , d. It coincides with the algebra of invariants K[Z]GLk where the action of
GLk on K[Z] is induced by the action of GLk on the generic matrices z1, . . . , zd by
simultaneous conjugation. Hence one may study Ckd with methods of the classi-
cal invariant theory. The mixed (or noncommutative) trace algebra Tkd = CkdRkd

also has a meaning in invariant theory. See the books by Formanek [45], and also
with Drensky [33], for a background on trace algebras. The mixed trace algebra
approximates quite well the algebra F (Mk(K)). In particular, one may consider
the multilinear components of the pure and mixed trace algebras Ck = Ck,∞ and
Tk = Tk,∞ of infinitely many generic k × k matrices and the related sequences

χn(Ck) =
∑

λ⊢n

mλ(Ck)χλ, χn(Tk) =
∑

λ⊢n

mλ(Tk)χλ, n = 0, 1, 2, . . . ,

of Sn-characters called the pure and mixed cocharacter sequences, respectively.
Formanek [44] showed that the multiplicities mλ(Tk) in the mixed cocharacter
sequence and mλ(Mk(K)) in the ordinary cocharacter sequence for Mk(K) coin-
cide for all partitions λ = (λ1, . . . , λk2) with λk2 ≥ 2. The only case when the
pure and mixed cocharacter sequences are known is for n = 2 due to Procesi [61]
and Formanek [42] (besides the trivial case of k = 1). We state the result for T2

only.

mλ(T2) =

{

(λ1 − λ2 + 1)(λ2 − λ3 + 1)(λ3 − λ4 + 1), if λ = (λ1, λ2, λ3, λ4),

0 otherwise,
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The situation with the Hilbert series of Ckd and Tkd is better. The case k = 2
was handled by Procesi [61] and Formanek [42]:

H(C2d;X) =
d∏

i=1

1

1 − xi

∑

p,q,r≥0

S(2p+2q+r,2q+r,r)(X),

H(T2d;X) =

d∏

i=1

1

1 − xi

∑

(λ1,λ2,λ3)

S(λ1,λ2,λ3)(X)

=

d∏

i=1

1

(1 − xi)2

∑

n≥0

S(n,n)(X).

The Molien–Weyl formula gives that the Hilbert series of Ckd and Tkd can be
expressed as multiple integrals but for k ≥ 3 their direct evaluation is quite
difficult and was performed by Teranishi [70, 71] for C32 and C42 only. Van den
Bergh [73] found a graph-theoretical approach for the calculation of H(Ckd) and
H(Tkd). Berele and Stembridge [18] calculated the Hilbert series of Ckd and Tkd

for k = 3, d ≤ 3 and of T42, correcting also some typographical errors in the
expression of H(C42) in [71]. Recently Djoković [27] computed the Hilbert series
of Ck2 and Tk2 for k = 5 and 6.

Using the Hilbert series of C32, Berele [14] found an asymptotic expression
of m(λ1,λ2)(C3). The explicit form of multiplicity series of the Hilbert series of
C32 was found by Drensky and Genov [34] correcting also a minor technical error
(a missing summand) in [14]. The quite technical method of [34] was improved in
[35] and applied by Drensky, Genov and Valenti [37] to compute the multiplicity
series of H(T32) and by Drensky and Genov [36] for the multiplicity series of
H(C42) and H(T42). In principle, the same methods work for the multiplicities
of the Hilbert series of H(Ck2) and H(Tk2), k = 5, 6.

Example 4.2. We shall apply the MacMahon partition analysis to find
the multiplicities of H(T32). By Berele and Stembridge [18]

H(T32, x1, x2) =
1

(1−x1)2(1−x2)2(1−x2
1)(1−x2

2)(1−x1x2)2(1−x2
1x2)(1−x1x

2
2)

.

As in Example 2.2 we define the function

g(x1, x2) = (x1 − x2)H(T32;x1, x2)

and decompose g(x1z, x2/z) as a sum of partial fractions with respect to z. The
result is

1

2(1 − x1x2)6(1 + x1x2)2(1 − x1z)3
+

1 + 2x1x2 − 5x2
1x

2
2

4(1 − x1x2)7(1 + x1x2)3(1 − x1z)2



Computing with rational symmetric functions 173

−1 + 2x1x2 − 10x2
1x

2
2 + 10x3

1x
3
2 − 7x4

1x
4
2

8(1 − x1x2)8(1 + x1x2)4(1 − x1z)

− 1

8(1 − x1x2)2(1 + x1x2)4(1 + x2
1x

2
2)(1 + x1z)

− x3
1x

3
2

(1 − x1x2)8(1 + x1x2)4(1 + x2
1x

2
2)(1 − x2

1x2z)
+

x3
2

2(1 − x1x2)6(1 + x1x2)2(x2 − z)3

+
x2

2(−5 + 2x1x2 + x2
1x

2
2)

4(1 − x1x2)7(1 + x1x2)3(x2 − z)2
+

x2(7 − 10x1x2 + 10x2
1x

2
2 − 2x3

1x
3
2 − x4

1x
4
2)

8(1 − x1x2)8(1 + x1x2)4(x2 − z)

− x2

8(1 − x1x2)2(1 + x2
1x

2
2)(1 + x1x2)4(x2 + z)

− x4
1x

5
2

(1 − x1x2)8(1 + x1x2)4(1 + x2
1x

2
2)(x1x2

2 − z)
.

We remove the last five summands because their expansions as Laurent series
contain negative degrees of z only. Then we replace z by 1 and obtain

Ω
≥
(g(x1z, x2/z)) =

1

2(1 − x1x2)6(1 + x1x2)2(1 − x1)3

+
1 + 2x1x2 − 5x2

1x
2
2

4(1 − x1x2)7(1 + x1x2)3(1 − x1)2
− 1 + 2x1x2 − 10x2

1x
2
2 + 10x3

1x
3
2 − 7x4

1x
4
2

8(1 − x1x2)8(1 + x1x2)4(1 − x1)

− 1

8(1 − x1x2)2(1 + x1x2)4(1 + x2
1x

2
2)(1 + x1)

− x3
1x

3
2

(1 − x1x2)8(1 + x1x2)4(1 + x2
1x

2
2)(1 − x2

1x2)
.

Dividing Ω
≥

(g(x1z, x2/z)) by x1 and after the substitution v1 = x1, v2 = x1x2 we

obtain

M ′(H(T32); v1, v2) =
v3
1h3(v2) + v2

1h2(v2) + v1h1(v2) + h0(v2)

(1 − v1)3(1 + v1)(1 − v1v2)(1 − v2)7(1 + v2)4(1 + v2
2)

,

h3(v2) = v2
2(v

4
2 − v3

2 + 3v2
2 − v2 + 1), h2(v2) = v2(2v

4
2 − 4v3

2 + v2
2 − v2 − 1),

h1(v2) = v2(−v4
2 − v3

2 + v2
2 − 4v2 + 2), h0(v2) = v4

2 − v3
2 + 3v2

2 − v2 + 1,

which coincides with the result of [37]. The multiplicity series has also the form

M ′(H(T32); v1, v2) =
a3(v2)

(1 − v1)3
+

a2(v2)

(1 − v1)2
+

a1(v2)

(1 − v1)
+

b(v2)

1 + v1
+

c(v2)

1 − v1v2
,
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where

a3(v2) =
1

2(1 − v2)6(1 + v2)2
, a2(v2) =

(3v2
2 − 2v2 + 1)

22(1 − v2)7(1 + v2)3
,

a1(v2) =
(v4

2 − 6v3
2 + 14v2

2 − 6v2 + 1)

23(1 − v2)8(1 + v2)4
,

b(v2) =
1

23(1 − v2)2(1 + v2)4(1 + v2
2)

, c(v2) =
−v4

2

(1 − v2)8(1 + v2)4(1 + v2
2)

.

In a forthcoming paper by Benanti, Boumova and Drensky [13] we shall
apply our methods to find the multiplicities in the pure and mixed cocharacter
sequence of three generic 3 × 3 matrices.

One of the directions of noncommutative invariant theory is to study sub-
algebras of invariants of linear groups acting on free and relatively free algebras.
For a background see the surveys by Formanek [43] and Drensky [30]. Recall that
we consider the action of GLd on the vector space KY with basis Y = {y1, . . . , yd}
and extend this action diagonally on the free algebra K〈Y 〉 and the relatively free
algebras F (R), where R is a PI-algebra. Let G be a subgroup of GLd. Then G
acts on F (R) and the algebra of G-invariants is

F (R)G = {f(Y ) ∈ F (R) | g(f) = f for all g ∈ G}.

Comparing with commutative invariant theory, when K[Y ]G is finitely generated
for all “nice” groups (e.g., finite and reductive), the main difference in the non-
commutative case is that F (R)G is finitely generated quite rarely. For a survey
on invariants of finite groups G see [30, 43] and the survey by Kharlampovich
and Sapir [51]. For a fixed PI-algebra R there are many conditions which are
equivalent to the fact that the algebra F (R)G is finitely generated for all finite
groups G. Maybe the simplest one is that this happens if and only if F (R)G is
finitely generated for d = 2 and the cyclic group G = 〈g〉 of order 2 generated by
the matrix

g =

(
−1 0
0 1

)

.

Clearly, in this case F (R)〈g〉 is spanned on all monomials in y1, y2 which are of
even degree with respect to y1. For the algebras of invariants F (R)G of reductive
groups G see Vonessen [74] and Domokos and Drensky [28].
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Concerning the Hilbert series of F (R)G, for G finite there is an analogue
of the Molien formula, see Formanek [43]: If ξ1(g), . . . , ξd(g) are the eigenvalues
of g ∈ G, then the Hilbert series of the algebra of invariants F (R)G is

H(F (R)G; t) =
1

|G|
∑

g∈G

H(F (R); ξ1(g)t, . . . , ξd(g)t).

Combined with the theorem of Belov [12] for the rationality of H(F (R);X) (as
specified by Berele [15]) this gives that the Hilbert series of F (R)G is a nice
rational function for every finite group G. By a result of Domokos and Drensky
[28] the Hilbert series of F (R)G for a reductive group G is a nice rational function
if R satisfies a nonmatrix polynomial identity (i.e., an identity which does not hold
for the algebra M2(K) of 2×2 matrices). The proof uses that for algebras R with
nonmatrix identity the relatively free algebra has a finite series of graded ideals
with factors which are finitely generated modules of polynomial algebras. This
allows to reduce the considerations to the commutative case when the rationality
of the Hilbert series is well known. We believe that the careful study of the proof
of Belov [12] would give that H(F (R)G; t) is a nice rational function for every
reductive group G and an arbitrary PI-algebra R.

Let W be a p-dimensional GLd-module with basis Yp = {y1, . . . , yp}.
Consider the related representation ρ : GLd → GLp of GLd in the p-dimensional
vector space with this basis. If Fp(R) is a relatively free algebra of rank p freely
generated by Yp, then the representation ρ induces an action of GLd on Fp(R).
The following theorem is a noncommutative analogue of Theorem 3.2.

Theorem 4.3. Let W be a p-dimensional polynomial GLd-module with

Hilbert series with respect to the grading induced by the GLd-action on W

H(W ;X) =
∑

aix
i1
1 · · · xid

d , ai ≥ 0, ai ∈ Z,
∑

ai = p.

Let R be a PI-algebra with the corresponding relatively free algebra Fp(R) of rank

p freely generated by Yp, with the natural structure of a GLd-module induced by

the GLd-action on W . Let

f(X, t) = H(Fp(R);Xi(1) t, . . . ,Xi(p)
t)

be the formal power series obtained from the Hilbert series H(Fp(R);x1, . . . , xp)

of Fp(R) by substitution of the variables xj with xi1
1 · · · xid

d t in such a way that

each xi1
1 · · · xid

d t appears exactly ai times. Then the Hilbert series of the algebras

Fp(R)SLd and Fp(R)UTd of SLd- and UTd-invariants are, respectively,

H(Fp(R)SLd ; t) = M ′(f ; 0, . . . , 0, 1, t),
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H(Fp(R)UTd ; t) = M(f ; 1, . . . , 1, t) = M ′(f ; 1, . . . , 1, t),

where M(f ;X, t) and M ′(f ;V, t) are the multiplicity series of the symmetric in

X function f(X, t).

P r o o f. We may choose the basis Yp of W to consist of eigenvectors of
the diagonal group Dd. Then for a fixed d-tuple i = (i1, . . . , id) exactly ai of the
elements yj satisfy

g(yj) = ξi1
1 · · · ξid

d yj, g = diag(ξ1, . . . , ξd) ∈ Dd.

The monomials in y1, . . . , yp are eigenvectors of Dd and H(Fp(R);Xi(1) t, . . . ,

Xi(p)
t) is the Hilbert series of the GLd-module Fp(R) which counts also the

Z-grading of Fp(R). Now the proof is completed as the proof of Theorem 3.2
because the irreducible GLd-submodule W (λ) contains a one-dimensional SLd-
invariant if λ1 = · · · = λd and does not contain any GLd-invariants otherwise.
Similarly, W (λ) contains a one-dimensional UTd-invariant for every λ. �

Combined with the nice rationality of the Hilbert series of relatively free
algebras Theorem 4.3 immediately gives:

Corollary 4.4. Let W be a p-dimensional polynomial GLd-module with

basis Yp = {y1, . . . , yp} and let Fp(R) be the relatively free algebra freely generated

by Yp and related to the PI-algebra R. Then the Hilbert series of the algebras of

invariants H(Fp(R)SLd ; t) and H(Fp(R)UTd ; t) are nice rational functions.

Example 4.5. We shall apply Theorem 4.3 to Example 4.1. Let d ≥ 2
and let SLd and UTd act as subgroups of GLd on the relatively free algebra
F (U2(K)) with d generators. Then the generators yi ∈ Y of F (U2(K)) are of
first degree with respect to the GLd-action. Hence

H(F (U2(K));X, t) = H(F (U2(K));Xt) = H(F (U2(K));x1t, . . . , xdt),

M ′(H(F (U2(K));X, t);V, t) = M ′(H(F (U2(K));X, t); v1t, v2t
2, . . . , vdt

d)

=
1

1 − v1t
+

v2t
2 + v3t

3

(1 − v1t)2(1 − v2)
.
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And therefore

H(F (U2(K))SLd ; t) = M ′(H(F (U2(K));X, t); 0, . . . , 0, td)

=







1

1 − t2
, if d = 2,

1 + t3, if d = 3,

1, if d > 3;

H(F (U2(K))UTd ; t) = M ′(H(F (U2(K));X, t); t, t2, . . . , td)

=







1 − t + t3

(1 − t)2(1 − t2)
, if d = 2,

1 − 2t + 2t2

(1 − t)3
, if d ≥ 3.

Example 4.6. Again, let R = U2(K) and let W = W (12) be the irre-
ducible GL3-module indexed by the partition (12) = (1, 1, 0). We consider the
relatively free algebra F3(U2(K)) with the GL3-action induced by the action on
W . The Hilbert series of F3(U2(K)) which counts both the action of GL3 and
the Z-grading is

f(X, t) = H(F3(U2(K));x1x2t, x2x3t, x2x3t)

=
1

(1 − x1x2t)(1 − x1x3t)(1 − x2x3t)

+
x1x2 + x1x3 + x2x3 − 1

(1 − x1x2t)2(1 − x1x3t)2(1 − x2x3t)2
.

Applying Theorem 4.3 and Algorithm 1.3 we obtain

M ′(f ;V, t) =
1 − v2t + (v1v2 + v3)v3t

3

(1 − v2t)2(1 − v1v3t2)
.

Hence

H(F3(U2(K))SL3 ; t) = M ′(f ; 0, 0, 1, t) = 1 + t3,

H(F3(U2(K))UT3 ; t) = M ′(f ; 1, 1, 1, t) =
1 − 2t + 2t2

(1 − t)3
.

Similarly, if we consider the GL3-module W = W (2), then GL3 acts on F6(U2(K))
extending the action on W ,

f(X, t) = H(F6(U2(K));x2
1t, x

2
2t, x

2
3t, x1x2t, x2x3t, x2x3t)
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and, applying again Theorem 4.3 and Algorithm 1.3, we obtain

H(F6(U2(K))ST3 ; t) =
1 − 3t3 + 6t6 − 2t9

(1 − t3)4
,

H(F6(U2(K))UT3 ; t) =
p(t)

((1 − t)(1 − t2)(1 − t3))3
,

where

p(t) = 1 − 2t + 7t3 + 11t4 + 6t5 − 10t6 + t7 + 6t8 + 4t9 − 2t10 − 4t11 + 2t12.

Example 4.7. Let R2p be the algebra generated by p generic 2 × 2
matrices z1, . . . , zp with the canonical GLp-action. We extend the action of the
pure and mixed trace algebras by

g(tr(zi1 · · · zin)zj1 · · · zjm) = tr(g(zi1 · · · zin))g(zj1 · · · zjm),

zi1 · · · zin , zj1 · · · zjm ∈ R2p, g ∈ GLp. For a p-dimensional GLd-module W , we
consider the induced GLd-action on R2p, C2p and T2p. Let d = 2. Then W =
W (2) ⊕ W (0) is a 4-dimensional GL2-module with Hilbert series

H(W ;x1, x2) = x2
1 + x1x2 + x2

2 + 1.

The Hilbert series of T24 is

H(T24;x1, x2, x3, x4) =

4∏

i=1

1

(1 − xi)2

∑

n≥0

S(n,n)(X)

= (1 − x1x2x3x4)

4∏

i=1

1

(1 − xi)2

∏

1≤i<j≤4

1

1 − xixj
.

Hence the Hilbert series of the Z-graded GL2-module T24 is

f(x1, x2, t) = H(T24;x
2
1t, x1x2t, x

2
2t, t)

=
1 − x3

1x
3
2t

4

((1 − t)(1 − x2
1t)(1 − x1x2t)(1 − x2

2t))
2

× 1

(1 − x2
1t

2)(1 − x1x2t2)(1 − x2
2t

2)(1 − x3
1x2t2)(1 − x2

1x
2
2t

2)(1 − x1x3
2t

2)
.



Computing with rational symmetric functions 179

Computing the multiplicity series M ′(f ; v1, v2, t) and replacing (v1, v2) with (0, 1)
and (1, 1) we obtain, respectively, the Hilbert series of T SL2

24 and TUT2
24 :

H(T SL2
24 ; t) =

1 − t + t2 + 2t4 + t6 − t7 + t8

(1 − t)3(1 − t2)2(1 − t3)3(1 − t4)2
,

H(TUT2
24 ; t) =

(1 − t + t2)(1 + 3t2 + 4t3 + 6t4 + 4t5 + 3t6 + t8)

(1 − t)5(1 − t2)2(1 − t3)3(1 − t4)2
.

By considering the three-dimensional GL2-module W (2) and the induced GL2-
action on T23, we obtain

H(T23;x1, x2, x3) =
1

(1 − x1)2(1 − x2)2(1 − x3)2(1 − x1x2)(1 − x1x3)(1 − x2x3)
,

f(x1, x2, t) = H(T23;x
2
1t, x1x2t, x

2
2t)

=
1

((1 − x2
1t)(1 − x1x2t)(1 − x2

2t))
2(1 − x3

1x2t2)(1 − x2
1x

2
2t

2)(1 − x1x3
2t

2)
,

H(T SL2
23 ; t) =

1 + t4

(1 − t2)3(1 − t3)2(1 − t4)
,

H(TUT2
23 ; t) =

1 + 2t2 + 2t3 + 2t4 + t6

(1 − t)2(1 − t2)3(1 − t3)2(1 − t4)
.

As in the commutative case K[Y ] one may consider linear locally nilpo-
tent derivations of the free algebra K〈Y 〉 and of any relatively free algebra F (R).
Again, we call such derivations Weitzenböck derivations. There is a very simple
condition when the algebra of constants F (R)δ of a nonzero Weitzenböck deriva-
tion δ is finitely generated. By a result of Drensky and Gupta [38] if the T-ideal
T (R) of the polynomial identities of R is contained in the T-ideal T (U2(K)), then
F (R)δ is not finitely generated. The main result of Drensky [32] states that if
T (R) is not contained in T (U2(K)), then F (R)δ is finitely generated. For var-
ious properties and applications of Weitzenböck derivations acting on free and
relatively free algebras see [38]. The following theorem and its corollary combine
Theorems 3.5 and 4.3. We omit the proofs which repeat the main steps of the
proofs of these two theorems.

Theorem 4.8. Let δ be a Weitzenböck derivation of the relatively free

algebra F (R) with Jordan normal form consisting of k cells of size d1+1, . . . , dk +
1, respectively. Let

fδ(x1, x2, t) = H(F (R);xd1
1 t, xd1−1

1 x2t, . . . , x
d1
2 t, . . . , xdk

1 t, . . . , x1x
dk−1
2 t, xdk

2 t)
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be the function obtained from the Hilbert series of F (R) by substitution of the first

group of d1+1 variables x1, x2, . . . , xd1+1 with xd1
1 t, xd1−1

1 x2t, . . . , x
dk
2 t, the second

group of d2 + 1 variables xd1+2, xd1+3, . . . , xd1+d2+2 with xd2
1 t, xd2−1

1 x2t, . . . , x
d2
2 t,

. . ., the k-th group of dk+1 variables xd−dk
, . . . , xd−1, xd with xdk

1 t, . . . , x1x
dk−1
2 t, xdk

2 t.
Then the Hilbert series of the algebra of constants F (R)δ is given by

H(F (R)δ ; t) = M(fδ; 1, 1),

where M(fδ;x1, x2) is the multiplicity series of the symmetric with respect to

x1, x2 function fδ(x1, x2, t) ∈ K(t)[[x1, x2]]
S2 . Hence the Hilbert series H(F (R)δ; t)

is a nice rational function.

Corollary 4.9. Let δ be a Weitzenböck derivation of the relatively free

algebra F (R) with Jordan normal form consisting of k cells of size d1+1, . . . , dk +
1, respectively. Let us identify the vector space KY spanned by the free generators

of F (R) with the GL2-module

W = W (d1) ⊕ · · · ⊕ W (dk).

Then the Hilbert series H(F (R)δ ; t) and H(F (R)UT2 ; t) of the algebras of con-

stants F (R)δ and of UT2-invariants coincide.

Example 4.10. By Example 4.1 the Hilbert series of the relatively free
algebra F (U2(K)) is

H(F (U2(K));X) = 2

d∏

i=1

1

1 − xi
+ ((x1 + · · · + xd) − 1)

d∏

i=1

1

(1 − xi)2
.

Let d = 3 and let δ be the Weitzenböck derivation with one three-dimensional
cell acting on F (U2(K)). Following the procedure of Theorem 4.8, we define the
function

f(x1, x2, t) =
2

(1 − x2
1t)(1 − x1x2t)(1 − x2

2t)
+

(x2
1 + x1x2 + x2

2)t − 1

(1 − x2
1t)

2(1 − x1x2t)2(1 − x2
2t)

2
.

As in Example 4.6 we compute

M ′(f ; v1, v2) =
1 − (v2

1 + v2)t + (2v2
1 − v2)v2t

2 + 2(v2
1 + v2)v

2
2t

3 − 2v2
1v

3
2t

4

(1 − v2
1t)

2(1 − v2t)(1 − v2
2t

2)2
,

H(F3(U2(K))δ ; t) = M ′(f ; 1, 1) =
1 − 2t + t2 + 4t3 − 2t4

(1 − t)3(1 − t2)2
.
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If d = 4 and δ is a Weitzenböck derivation with two 2 × 2 cells, then

f(x1, x2, t) =
2

(1 − x1t)2(1 − x2t)2
+

2(x1 + x2)t − 1

(1 − x1t)4(1 − x2t)4
,

H(F4(U2(K))δ; t) =
1 + 10t3 + 23t4 + 2t5 − 8t6 + 2t8

(1 − t)2(1 − t2)5
.

Example 4.11. As in the case of invariants we can extend the derivations
of the generic trace algebra Rkp to the pure and mixed trace algebras Ckp and
Tkp. Let δ20 be the Weitzenböck derivation with a three-dimensional and a one-
dimensional Jordan cell acting on the mixed trace algebra T23. Then Corollary
4.9 and Example 4.7 give that

H(T δ
24; t) = H(TUT2

24 ; t) =
(1 − t + t2)(1 + 3t2 + 4t3 + 6t4 + 4t5 + 3t6 + t8)

(1 − t)5(1 − t2)2(1 − t3)3(1 − t4)2
.

If δ has one three-dimensional cell only, then again Example 4.7 gives

H(T δ
23; t) = H(TUT2

23 ; t) =
1 + 2t2 + 2t3 + 2t4 + t6

(1 − t)2(1 − t2)3(1 − t3)2(1 − t4)
.
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Università di Palermo

Via Archirafi 34

90123 Palermo, Italy

e-mail: fbenanti@math.unipa.it



188 F. Benanti, S. Boumova, V. Drensky, G. Genov, P. Koev

Silvia Boumova

Higher School of Civil Engineering “Lyuben Karavelov”

175 Suhodolska Str.

1373 Sofia, Bulgaria

and

Institute of Mathematics and Informatics

Bulgarian Academy of Sciences

1113 Sofia, Bulgaria

e-mail: silvi@math.bas.bg

Vesselin Drensky, Georgi K. Genov

Institute of Mathematics and Informatics

Bulgarian Academy of Sciences

1113 Sofia, Bulgaria

e-mail: drensky@math.bas.bg, guenovg@mail.bg

Plamen Koev

Department of Mathematics
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