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Abstract. Let K be an infinite field and let M2(K) be the matrix algebra of
order two over K. The polynomial identities of M2(K) are known whenever
the characteristic of K is different from 2. The algebra M2(K) admits a
natural grading by the cyclic group of order 2; the graded identities for
this grading are known as well. But M2(K) admits other gradings that
depend on the field and on its characteristic. Here we describe the graded
identities for all nontrivial gradings by the cyclic group of order 2 when the
characteristic of K equals 2. It turns out that there is only one grading to
consider. This grading is not elementary. On the other hand the graded
identities are the same as for the elementary grading.
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Introduction. The polynomial identities satisfied by matrix algebras
have been attracting the attention of algebraists for more than 60 years. One of
the first results in that direction is the well known theorem due to Amitsur and
Levitzki that describes the polynomial identities of least degree for the matrix
algebra Mn(K) of order n over a field K. Nevertheless little is known about the
concrete form of the identities satisfied by Mn(K). In 1973 Razmyslov, see [15]
(or [16]) found a finite generating set of the T-ideal (the ideal of identities) for
M2(K) when char K = 0. Later on Drensky described a minimal generating set
of identities, see [8]. The first named author of this paper found a finite basis of
identities of M2(K) when K is infinite and char K = p 6= 2, see [11]. It turned
out that the basis of identities is exactly the same as in characteristic 0, when
p > 3; one extra identity is needed when p = 3, see [4].

From now on we assume that K is an infinite field. The concrete form
of the identities of Mn(K) is unknown when n > 2. It is a sort of a mystery
whether the T-ideal of M2(K) is finitely generated or not when char K = 2.
The difficulties in describing the polynomial identities of Mn(K), n > 2, are of
technical and theoretical nature, and the solution of this problem seems to be very
distant. This is one of the reasons people study other kinds of identities: weak,
with trace, with involution, graded, and so on. But the weak identities and the
identities with involution are also very hard to describe: these are known only for
M2(K), see [15, 16] for the weak identities of (M2(K), sl2(K)) in characteristic
0, and [10] in characteristic p 6= 2, and [13], [5] for the identities with involution
for M2(K) in characteristic 0 and p > 2, respectively. The trace identities for
Mn(K) were described in characteristic 0 by Procesi [14] and by Razmyslov, see
for example [16]. Later on the trace identities of Mn(K) were described in positive
characteristic, see [7, 18].

During the last decades graded identities became a very important topic
of study. The matrix algebra of order n admits a natural grading by the cyclic
group Zn of order n where the matrix units eij are of degree j − i (mod n). The
identities for this grading were described by Vasilovsky [17] (in characteristic 0),
and by Azevedo [2] in any characteristic. The matrix algebras admit gradings
by various groups. In many occasions the corresponding graded identities are
known.

In this paper we describe the graded identities of M2(K) when K is
an infinite field of characteristic 2. When the grading is the natural one and
char K = 0 these were obtained by Di Vincenzo in [6], and when char K > 0 in [1].
(We mention here that in [1] the authors imposed the restriction char K = p 6= 2
but the proof given there is in fact characteristic-free.) We obtain that the graded



Gradings and graded identities for the 2 × 2 matrix algebra 191

identities are the same as for the natural grading. The methods we use resemble
those of [1].

It should be noted that here we consider non-elementary gradings (i.e.,
gradings where the matrix units are not homogeneous). Our gradings depend on
the properties of the field. As the gradings are not elementary one cannot extend
the scalars to an algebraically closed field nor can one use the results of [12]. In
the latter paper the following theorem was proved. Let G be an abelian group
and K an algebraically closed field such that the orders of all finite subgroups of
G are invertible in K. Then two finite dimensional G-graded simple algebras are
isomorphic if and only if they satisfy the same graded identities. But this result
cannot be applied to our case since the group is of order 2.

1. Preliminaries. Let K be an infinite field. Unless otherwise stated
we assume K is of characteristic 2. All algebras and vector spaces we consider
will be over K. Let G be a group. An algebra A is G-graded if A = ⊕g∈GAg is a
direct sum of the vector subspaces Ag, and AgAh ⊆ Agh for every g, h ∈ G. All
G-gradings on A = M2(K) were described in [3] and in [9].

We recall the corresponding result of [3, 9]. If char K 6= 2 then any
nontrivial G-grading on A is isomorphic to one of the following four gradings.

I. A1 = sp(e11, e22), Ag = sp(e12, e21) for some g ∈ G, |g| = 2, and Ah = 0 for
all h ∈ G, h 6= 1, h 6= g. Call this the natural grading of A.

II. A1 = sp(I, e12 +be21), Ag = sp(e11−e22, e12−be21) for some g ∈ G, |g| = 2,
and Ah = 0 for all remaining h ∈ G. Here I is the identity matrix in M2(K)
and b ∈ K is not a square in K.

III. A1 = sp(e11, e22), Ag = sp(e12), Ag−1 = sp(e21) where g ∈ G, |g| > 2, and
Ah = 0 for all h /∈ {1, g, g−1}.

IV. A1 = sp(I), Ag = sp(P ), Ah = sp(Q), Agh = sp(PQ), and At = 0 for all
t /∈ {1, g, h, gh}. Here g, h ∈ G, |g| = |h| = 2, and gh = hg. Also P 2 and
Q2 are nonzero scalar multiples of I and PQ = −QP .

If char K = 2 then any nontrivial G-grading on A = M2(K) is isomorphic
to either (1), or (3), or else to the grading

(1) A1 =

{(

x x + y
b(x + y) y

)}

, Ag =

{(

bx + y x
y bx + y

)}

,
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and Ah = 0 for all h 6= 1, h 6= g; |g| = 2. Moreover x, y ∈ K, b ∈ K is not
of the form t2 + t for any t ∈ K. The reader may check that this is indeed a
grading. Moreover, if charK 6= 2 then A1 and Ag as above are vector subspaces
of A = M2(K) but A = A1 ⊕ Ag is not a grading on A.

Now we note that in the latter grading one may consider, without loss of
generality, G = Z2, the cyclic group of order 2. Then it is easier to switch to
additive notation for G: thus we write A0 for A1, and A1 for Ag.

Let X be an infinite countable set and form the free associative algebra
K〈X〉 freely generated over K by the set X. It is convenient to think of K〈X〉
as the algebra of the polynomials in the noncommuting variables X. Assume
now X = Y ∪ Z where Y and Z are disjoint infinite sets. The algebra K〈X〉
is Z2-graded in a natural way, assuming the variables from Y to be of degree 0
(i.e., even variables), and those of Z of degree 1 (i.e., odd variables). If A is a Z2-
graded algebra then the polynomial f(x1, . . . , xn) ∈ K〈X〉 is a graded polynomial

identity (or simply graded identity) for A whenever f(a1, . . . , an) = 0 in A for
every choice of ai ∈ A such that ai ∈ A0 whenever xi ∈ Y , and ai ∈ A1 whenever
xi ∈ Z. In other words f lies in the kernels of all graded homomorphisms from
K〈X〉 to A. Clearly the set TG(A) of all graded identities of A is an ideal in
K〈X〉, and this ideal is invariant under all endomorphisms of K〈X〉 that respect
the grading. Conversely every ideal in K〈X〉 that is invariant under graded
endomorphisms, is the ideal of graded identities for some G-graded algebra. We
call these ideals TG-ideals.

Let f , g ∈ K〈X〉. Then g is a consequence of f (or g follows from f as a
graded identity) if g belongs to the ideal of graded identities in K〈X〉 generated
by f . If in addition f follows from g then f and g are equivalent as graded
identities. Let T be a TG-ideal, then the polynomials {fi | i ∈ I} form a basis of
T if the TG-ideal they generate coincides with T .

It was proved in [6, 1], that for the natural Z2-grading on M2(K), the
polynomials y1y2−y2y1, z1z2z3−z3z2z1 form a basis of the corresponding graded
identities.

Since our field is infinite every TG-ideal has a basis consisting of multiho-
mogeneous elements. Therefore we can and shall work with multihomogeneous
polynomials only. (Here the adjective multihomogeneous refers to the usual multi-
grading on K〈X〉, by the degree in each one of the variables.)

2. Basis of the graded identities. Here we fix G = Z2, char K = 2,
and A = M2(K) with the grading given in (1).
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Lemma 1. The graded polynomials

(2) y1y2 + y2y1, z1z2z3 + z3z2z1

are graded identities for M2(K).

P r o o f. The proof is a straightforward and easy computation and there-
fore will be omitted. One uses the fact that char K = 2 in order to show these
are indeed graded identities. �

Denote by I the TG-ideal generated by the two polynomials from (2).
Then I ⊆ TG(M2(K)). Running ahead we shall prove that I = TG(M2(K)).

First we construct a convenient model for the relatively free graded alge-
bra K〈X〉/TG(M2(K)). Let yj

i , zj
i be commuting variables, i ≥ 1, j = 1, 2. Pay

attention that j is an upper index, not an exponent. Denote

Ai =

(

y1
i y1

i + y2
i

b(y1
i + y2

i ) y2
i

)

, Bi =

(

bz1
i + z2

i z1
i

z2
i bz1

i + z2
i

)

∈ M2(K[yj
i , z

j
i ])

the corresponding generic graded matrices. Denote further by F the subalgebra
of M2(K[yj

i , z
j
i ]) generated by the matrices Ai and Bi, i ≥ 1. Then F is graded

by assuming Ai of degree 0, and Bi of degree 1. The following fact is well known.

Lemma 2. The graded algebra F is isomorphic to the relatively free

graded algebra K〈X〉/TG(M2(K)).

The next lemma as well as its proof can be found in [6] and also in [1].

Lemma 3. Let g ∈ K〈X〉0, then for every yi one has yig + gyi ∈ I ⊆
TG(M2(K)).

For the proof of the following proposition, see also [6, 1].

Proposition 4. The graded algebra K〈X〉/I is spanned by the products

of the following three types.

(a) ya1
ya2

· · · yak
;

(b) ya1
ya2

· · · yak
zc1zd1

zc2zd2
· · · zcmzdm

ẑcm+1
;

(c) ya1
ya2

· · · yak
zc1yb1yb2 · · · ybl

zd1
zc2zd2

· · · zcmzdm
ẑcm+1

where a1 ≤ a2 ≤ · · · ≤ ak, b1 ≤ b2 ≤ · · · ≤ bl, c1 ≤ c2 ≤ · · · ≤ cm ≤ cm+1,

d1 ≤ d2 ≤ · · · ≤ dm. Also k ≥ 0, l ≥ 0, m ≥ 0. In the third type when k = l = 0
the total degree is ≥ 2. The hat over a variable means that the corresponding

variable may be missing.
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In the next several statements we shall prove that the elements defined
in Proposition 4 are linearly independent as elements of the algebra F .

Proposition 5. The monomials of type (a) that appear in Proposition 4
are linearly independent as elements of the algebra F .

P r o o f. By using the graded identity y1y2 + y2y1 = 0 one can order the
variables in a monomial. Now the proof follows since K is infinite and we consider
multihomogeneous elements only. �

Proposition 6. The monomials of type (b) from Proposition 4 are lin-

early independent modulo the graded identities of M2(K).

P r o o f. The proof of the proposition consists in substituting the variables
by generic matrices. The computation is quite far from being “nice” and due to
this reason we split it in parts.

Case 1. Suppose no variables y appear in our monomial M , i.e., k = 0
and M = zc1zd1

zc2zd2
· · · zcmzdm

, c1 ≤ · · · ≤ cm and d1 ≤ · · · ≤ dm. Substitute zi

by the generic matrix Bi and form the product B = Bc1Bd1
Bc2Bd2

· · ·BcmBdm
.

Then the (1, 1)-entry of B equals

z2
c1

z2
d1

z2
c2

z2
d2

· · · z2
cm

z2
dm

+ z1
c1

z2
d1

z2
c2

z2
d2
· · · z2

cm
z2
dm

+ z2
c1

z2
d1

z1
c2

z2
d2
· · · z2

cm
z2
dm

+ · · · + z1
c1

z2
d1

z1
c2

z2
d2

· · · z2
cm

z2
dm

+ · · · + z1
c1

z2
d1

z1
c2

z2
d2
· · · z1

cm
z2
dm

+bg(zi
c1

, zi
d1

, zi
c2

, zi
d2

, . . . , zi
cm

, zi
dm

).

Here g is a polynomial whose monomials are with coefficients 0 or 1, the upper
indices i in g may assume values 1 and 2 independently, and moreover none of
its monomials equals the remaining monomials in the above expansion.

Using the above form of the (1, 1)-entry of the product we can recover
uniquely our monomial. We note that the upper index 1 appears for the variables
{zci

} and only for them. (If one suspects that computing the (2, 2)-entry would
yield a similar result but exchanging ci and di one’s guess will be correct.)

In a similar manner we deal with M = zc1zd1
zc2zd2

· · · zcmzdm
zcm+1

. As
above the (1, 1)-entry of the matrix B will be a sum of monomials (with coeffi-
cients 1) where the upper index 1 comes from the variables zdi

, in all possible
ways, plus some polynomial multiplied by b, as above.

Case 2. Suppose k ≥ 1 and M = ya1
ya2

· · · yak
zc1zd1

zc2zd2
· · · zcmzdm

.

Consider first the part ya1
ya2

· · · yak
. Substituting yi by Ai we get at

position (1, 1) of the resulting matrix the element y1
a1

y1
a2

· · · y1
ak

+ bqk where qk is

a sum of monomials in the yj
i and qk does not contain the monomial y1

a1
· · · y1

ak
.
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Now substitute yi by Ai and zi by Bi for all variables that appear in M ,
and compute once again the (1, 1)-entry. It will be, according to Case 1 and to
the above considerations, y1

a1
y1

a2
· · · y1

ak
multiplied by the sum

z2
c1

z2
d1

z2
c2

z2
d2

· · · z2
cm

z2
dm

+ z1
c1

z2
d1

z2
c2

z2
d2
· · · z2

cm
z2
dm

+ z2
c1

z2
d1

z1
c2

z2
d2
· · · z2

cm
z2
dm

+ · · · + z1
c1

z2
d1

z1
c2

z2
d2

· · · z2
cm

z2
dm

+ · · · + z1
c1

z2
d1

z1
c2

z2
d2
· · · z1

cm
z2
dm

plus some polynomial of the type bh(yi
aj

, zi
cn

, zi
dn

). The polynomial h does not
contain any of the above monomials.

The monomials M = ya1
ya2

· · · yak
zc1zd1

zc2zd2
· · · zcmzdm

zcm+1
are dealt

with in the same manner. (The upper index 1 will appear for the variables zdi

and not for zci
.)

Thus we finish the proof of Proposition 6. �

Proposition 7. The monomials of the type (c) from Proposition 4 are

linearly independent modulo the graded identities of M2(K).

P r o o f. As in the previous proposition we shall consider separately two
cases.

Case 1. There are no leading y in the monomial. In other words we
consider M = zc1yb1yb2 · · · ybl

zd1
zc2zd2

· · · zcmzdm
. As above we substitute yi by

Ai and zi by Bi and then compute the (1, 1)-entry of the matrix thus obtained.
We split the resulting polynomial into three parts. The first part is obtained
as the product of z2

c1
y2

b1
· · · y2

bl
z2
d1
· · · z2

dm
and of the sum of all monomials (with

coefficient 1) of the type z∗c2 · · · z
∗

cm
where the upper indices assume all possible

values of 1 and 2. The second part consists of z1
c1

y2
b1
· · · y2

bl
z2
d1
· · · z2

dm
multiplied

by the same sum as in the first part. The third part is of the kind bh(y∗bj
, z∗cj

, z∗dj
)

where the coefficients of the monomials in h are also 1 and 0, and no monomial
of the above listed appears in h.

Case 2. M = ya1
ya2

· · · yak
zc1yb1yb2 · · · ybl

zd1
zc2zd2

· · · zcmzdm
. Once

again we substitute yi by Ai and zi by Bi, and compute the (1, 1)-entry of the
resulting matrix. The only difference with Case 1 will be the multiple y1

a1
· · · y1

ak
.

Now observe that one can recover uniquely the monomial M knowing the
(1, 1)-entry of the matrix.

In order to finish the proof we have to consider the monomials with zcm+1
.

The computation is quite similar to that of Proposition 6, and is done using the
above part of the proof of this proposition. That is why we leave it to the
reader. �
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Theorem 8. The graded identities from (2) form a basis of the graded

identities of M2(K) when K is an infinite field of characteristic 2, and the grading

is the one given in (1).

P r o o f. Propositions 5, 6, 7, together with the fact I ⊆ TG(M2(K))
imply that the only thing we have to prove is that the monomials of type 2 and
of type 3 are independent. We draw the reader’s attention to the fact that we
work with multihomogeneous elements only. Therefore the monomials of type 1
(that is no variables z) are independent from the remaining types.

But this is easily seen since the monomials of type 2 yield only a multiple
y1

a1
· · · y1

ak
, i.e., all upper indices are equal to 1 in the part without the multiple

b, if the resulting monomial is even in the grading. (This corresponds to the case
where there is no cm+1). If on the other hand we have an even monomial of type
3 (that is even number of variables z) then the leading block of variables y will
contribute with y1

a1
· · · y1

ak
and the second block of variables y will yield y2

b1
· · · y2

bl

(that is upper index 2).
Analogously for the monomials that are odd in the grading one applies

the above reasoning exchanging the upper indices 1 and 2 for the variables y.
All this finishes the proof of the theorem. �
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