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Abstract. Let K[X ] be a free associative algebra (without identity) over
a field K of characteristic 0 with free generators X = (X1, X2, . . .), and let
Pn be the set of all multilinear elements of degree n in K[X ]. Then Pn is a
KSn-module, where KSn is the group algebra of the symmetric group Sn.
An ideal ofK[X ] stable under all endomorphisms ofK[X ] is called a T -ideal.
If L is an arbitrary T -ideal of K[X ] then Ln := Pn ∩ L is a KSn-module
too. An important task in the theory of varieties of algebras is to reveal
general regularities in the behavior of the sequence An for various T -ideals
A. In certain cases, given a property P , say, of the sequence, one can find
a T -ideal L(P) such that a T -ideal L′ satisfies P if and only if L′ contains
L(P). The results of this paper have to be regarded from this point of view.
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Let m be a natural number, and let R
(m)
n (respectively, R

(−m)
n ), n > m,

be the set of all irreducible KSn-modules whose restriction to the sub-
group Sn−m contains an irreducible KSn−m-module labeled by the par-
tition [n − m] (respectively, [1n−m]) of n − m. We define the property
Pm (respectively, P−m) by the condition that Ln contains no submod-

ule isomorphic to a module in the set R
(m)
n (respectively, R

(−m)
n ). Set

[a, b] = ab− ba and [a, b, c] = [a, [b, c]] for a, b, c ∈ K[X ]. We proof that the
T -ideal L(Pm) (respectively, L(P−m)) coincides with the T -ideal generated
by the polynomial dm+1(X) := [X1, X2] · · · [X2m+1, X2m+2], (respectively
tm+1(X) = [X1, X2, X3] · · · [X3m+1, X3m+2, X3m+3]. One can interpret the
result as a characterization of the T -ideal generated by dm+1(X) (respec-
tively tm+1(X)) by the property Pm (respectively, P−m).

1. Introduction. Let K be a field of characteristic 0, and let K[X] be
a free associative algebra over K with free generators X = (X1,X2, . . .). An ideal
of K[X] stable under all endomorphisms ofK[X] is called a T -ideal. These ideals
are of certain interest in their own, but the significance of T -ideals is derived from
the fact that they play a key role in the theory of varieties of algebras. Namely,
there is an inverse isomorphism between the lattice of T -ideals and the lattice of
varieties (with respect to inclusion).

An arbitrary T -ideal A ⊂ K[X] is completely determined by the sequence
An of multilinear polynomials of degree n in X1, . . . ,Xn. Reorderings of the
indeterminates X1, . . . ,Xn produce automorphisms of K[X], which endows An

with the structure of a KSn-module. Here Sn stands for the symmetric group
of degree n and KSn for the group algebra of Sn over K. The study of T -ideals
does not reduce to the representation theory of symmetric groups, as the latter
makes no difference between isomorphic modules, whereas in the theory of T -
ideals An are treated individually. Nonetheless the question on how the sequence
An looks like from the viewpoint of the representation theory of Sn seems to
be essential for the theory of T -ideals. Various aspects of this question arise in
the analysis of certain concrete problems (see for instance [1, 7]), but there are
publications completely devoted to this. One can mention a result by Regev [13]
saying that for every T -ideal A there is n and an irreducible KSn-module M
that does not occur as a constituent of Pn/An. Equivalently, the multiplicity of
M in An equals dimM . In this paper we discuss the dual situation (in a sense):
what are the T -ideals A such that An contains no submodule of a certain kind
for every n. For instance, every T -ideal A such that An for every n contains
no copy of the trivial KSn-module En is contained in the T -ideal generated by
[X1,X2] = X1X2 −X2X1.
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Let R be arbitrary sequence {Rn}n=1,2,... of KSn-modules (some Rn may
be empty). As the sum of T -ideals is a T -ideal again, the set of T -ideals A such
that no irreducible constituent of a module from Rn occurs as a constituent of
An has a unique maximal element L(R). (Note that L(R) may be the zero ideal.)
In this paper we take for {Rn} the sets of the following two types. Fix an integer

m ≥ 0. For n > m denote by R
(m)
n (respectively, R

(−m)
n ) the set of all irreducible

KSn-modules whose Young diagrams contain at least m + 1 boxes off the 1-st

row (respectively, off the 1-st column). If m > n we set R
(m)
n and R

(−m)
n to be

empty. For brevity set L(m) = L(R(m)) (respectively, L(−m) = L(R(−m))). (Note
that L(m) (respectively, L(−m)) is the smallest T -ideal A such that the irreducible
constituents of the KSn-module Pn/An are labeled by Young diagrams with at
most m boxes off the first row (respectively, the first column).

We characterize L(m) and L(−m) as follows.

Theorem 1.1. The T -ideal L(m) (m ≥ 0) is generated by the polynomial

dm+1(X) = [X1,X2] · · · [X2m+1,X2m+2].

Theorem 1.2. The T -ideal L(−m) (m ≥ 0) is generated by the polynomial

tm+1(X) = [X1,X2,X3] · · · [X3m+1,X3m+2,X3m+3].

The T -ideals generated by the polynomials dm and tm were studied in
details, see [3, 4, 8, 9, 10, 12]. Theorems 1.1, 1.2 can be also regarded as new
characterizations of these T -ideals.

Latyshev [9] discussed extremal properties of the T -ideal generated by
dm. Let P be a property of T -ideals. A T -ideal A is said to be P-extremal if A
does not have P but every T -ideal A1 6= A containing A does have P. Studying
exteremality properties of T -ideals turns out to be rather fruitful and one can
find a number of results in this direction in [5].

The T -ideals L(R) are extremal by the very definition. Note that the
corresponding extremal properties of L(m) and L(−m) can be described in terms
of polynomials, namely:

Theorem 1.3. The T -ideal generated by dm+1 is the largest T -ideal that

contains no polynomial f(X) symmetric in (◦f) −m indeterminates.

Theoren 1.4. The T -ideal generated by tm+1 is the largest T -ideal that

contains no polynomial f(X) alternating in (◦f)−m indeterminates.
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If m = 0 then a polynomial f alternating in ◦f indeterminates is called
standard. A special case of Theorem 1.4 for m = 0 states therefore that the
T -ideal generated by t1 = [X1,X2,X3] is the largest T -ideal that contains no
standard polynomial. This is equivalent to [5, Theorem 7.1.2]. (Recall that the
T -ideal generated by t1 coincides with the T -ideal of identities of the Grassmann
algebra [5, Theorem 4.1.8].)

This paper is based on an unpublished preprint (Preprint No. 10, 1979
(in Russian), Institute of Mathematics, National Academy of Sciences of Belarus,
Minsk). The first named author, I. B. Volichenko, passed away in 1988 at age
33. Although some experts owned the preprint, the results obtained remained
unknown to a wider cicle of those working in the area. Since the preprint was
written, the theory devoted to the understanding of T -ideals in terms of their
cocharacters has had huge advances. However, to our knowledge, no part of the
results of the preprint can be deduced from more recent publications. Therefore,
the results deserve to be available to the mathematical community in an English
version. So the second named author edited, polished the original text, and
translated it into English. He is very thankful to the guest-editors of the special
issue of Serdica Mathematical Journal for the willingness to publish the paper
and especially to M. Zaicev and A. Giambruno for their encouragement.

2. Notation and definitions. We denote by N the set of the natural
numbers and by N(n) the set {1, . . . , n}. Fix an arbitrary field K of character-
istic 0; in this paper the term “algebra” always means “an associative algebra
over K”. We denote by K[X] a free algebra (without identity) with generators
(indeterminates) X = {Xi : i ∈ N}. In some cases we add additional indeter-
minates and consider the algebra K[X;Y ]. By K[X] we denote the free algebra
with identity with the same generating set X, so K[X] ⊂ K[X]. The elements
of K[X] are also called polynomials (in the indeterminates Xi (i ∈ N)).

Ideals of K[X] and K[X] stable under all endomorphisms are called T -
ideals. There is a well known natural bijective correspondence between varieties
of algebras (respectively, varieties of algebras with identity) and T -ideals in K[X]
(respectively, in K[X]).

If F is a polynomial or a set of polynomials then we denote by 〈F 〉 (re-
spectively, 〈F 〉) the least T -ideal of K[X] (respectively, K[X]) containing F . If
f(X) ∈ 〈g(X)〉 then g(X) is said to be a consequence of f(X), and in this case
we write g(X) =⇒ f(X).

One can define in a natural way differential operators on K[X]. If M =
{i1, . . . , ik} is a set of distinct natural numbers then we denote by DM the oper-
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ator ∂k/∂Xi1 · · · ∂Xik . A T -ideal A of K[X] is a T -ideal of K[X] if and only if A
is stable under all operators DM .

We denote by Pn the set of all multilinear polynomials in X1, . . . ,Xn

of degree n in K[X]. Let Pn be the subspace of so called commutator polyno-
mials in Pn; by definition, Pn is the K-span of the multilinear products of the
expressions [Xi1 , . . . ,Xik ]. (We use the word “multilinear product” to indicate
that the terms of the product has no common indeterminates, so the result-
ing polynomial is multilinear.) Here and below [Xi1 , . . . ,Xik ] is meant to be
[Xi1 , [Xi2 , [. . . [Xik−1

,Xik ] · · · ]]].

If A is a T -ideal of K[X] (respectively, of K[X]) then we set An = Pn ∩A
(respectively, An = A∩Pn). It is known that the sequence {An}n∈N (respectively,
{An}n∈N) determines A (respectively, A).

The symmetric group Sn acts naturally on Pn: if σ ∈ Sn and f(X1, . . . ,Xn)
∈ Pn then σf(X1, . . . ,Xn) = f(Xσ(1), . . . ,Xσ(n)). So Pn is a KSn-module, as well

as Pn. If A is a T -ideal then An is a submodule of Pn and An is a submodule in
Pn. Obviously, there is a KSn-module isomorphism between Pn and the regular
KSn-module KSn.

3. Preliminaries. We recall some known facts of the representation
theory of Sn, see [2, §28]. Let D be a Young diagram of type (n1, , . . . , ns), where

n1 ≥ · · · ≥ ns > 0 and

s∑

i=1

ni = n. So D may be identified with a partition of

{1, . . . , n}. Let D be a Young tableau obtained from D by filling in the boxes
of D by numbers 1, . . . , n. Denote by R(D) the set of row permutations, that
is, the permutations σ ∈ Sn that preserve the sets of the numbers in each row.
Similarly, one defines the set Q(D) of column permutations. Obviously, R(D)
and Q(D) are subgroups of Sn. Set

r(D) =
∑

σ∈R(D)

σ and q(D) =
∑

σ∈Q(D)

(−1)σσ.

Then the element r(D)q(D) of KSn generates a left ideal of KSn, which is known
to be an irreducible KSn-module. This yields a bijection between the Young
diagrams and the isomorphism classes of irreducibleKSn-modules. Thus, distinct
Young tableaux of the same diagram yield isomorphic irreducible KSn-modules,
whereas distinct Young diagrams D yield non-isomorphic KSn-modules.



216 I. B. Volichenko, A. E. Zalesskii

The Young diagram (n) yields the trivial KSn-module 1Sn , and (1n) :=
(1, . . . , 1) yields a one-dimensional module 1−Sn

called the alternating (or sign)
module.

Lemma 3.1. Let N be an irreducible KSn-module of type (n1, . . . , ns),
and let 1 < m < n.

(1) The restriction N |KSn−m
contains 1Sn−m

if and only if n1 ≥ n−m.

(2) The restriction N |KSn−m
contains the sign module 1−Sn

if and only if

s ≥ n−m.

P r o o f. This is an immediate consequence of the branching rule [6,
9.2]. �

Definition 3.2. Let M be an irreducible KSn-module corresponding to

a Young diagram (n1, . . . , ns). The number h(M) = n2 + · · · + ns = n − n1 is

called the depth of M . For an arbitrary KSn-module N we set

h(N) = minM⊂N{h(M) : M is an irreducible submodule in N}.

Finally, for f ∈ Pn the depth h(f) is the number h(N), where N = 〈f〉n =
KSn · f .

The notion of depth was introduced by Murnahgan [11].
A polynomial f ∈ K[X] is said to be symmetric in Xi1 , . . . ,Xik if f is

invariant under any permutation of Xi1 , . . . ,Xik .

Proposition 3.3. Let f ∈ Pn and let M = KSn · f be a KSn-module

generated by f . Then the following conditions are equivalent:

(1) h(f) ≤ m;

(2) the trivial KSn−m-module 1Sn−m
is a constituent of the restriction

M |Sn−m
of M to KSn−m;

(3) M contains a polynomial f ′ symmetric in n−m indeterminates;

(4) the T -ideal of K[X] generated by f contains a polynomial g(X1, . . . ,
Xm,Xm+1) that is linear in X1, . . . ,Xm and of degree n−m in Xm+1.

P r o o f. It is obvious that (2) and (3) are equivalent. It is easy to ob-
serve that (3) and (4) are equivalent. Indeed, by reordering X1, . . . ,Xn we can
assume that f ′ is symmetric on Xm+1, . . . ,Xn. Then the endomorphism of K[X]
defined by Xi =⇒ Xm+1 for i > m, Xi =⇒ Xi for i ≤ m yields g(X), and the
linearization of g(X1, . . . ,Xm,Xm+1) is f ′. So it remains to prove that (1) and
(2) are equivalent.
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(1) =⇒ (2) Suppose that h(f) ≤ m. By definition, this means that M
contains an irreducible submodule N which corresponds to a Young diagram
(n1, . . . , ns), where n1 ≥ n−m. So the claim follows from Lemma 3.1.

(2) =⇒ (1) Here M contains an irreducible submodule N such that 1Sn−m

is a constituent of the restriction M |Sn−m
. By Lemma 3.1, if N corresponds to a

diagram of type (n1, . . . , ns) then n1 ≥ n−m, as desired. �

Let M be an irreducible KSn-module of type (n1, . . . , ns). We call the
number h′(M) := n−s the skew depth of M . If N is an arbitrary KSn-module,
we set h′(N) = minM⊂N h′(M), where M runs over all irreducible submodules of
N . If f ∈ Pn then we set h′(f) = h′(KSn · f).

A polynomial f ∈ Pn is called alternating in Xi1 , . . . ,Xin if σf =
(−1)σf for every σ ∈ S(I), where S(I) is the symmetric group of the set I =
{i1, . . . , ik}, see [5, 1.5.1]. For instance f = X1X2X3 −X3X2X1 is alternating in
X1,X3.

Proposition 3.4. Let f ∈ Pn and M = KSn · f . Then the following

assertions are equivalent:

(1) h′(f) ≤ m;

(2) The sign KSn−m-module 1−Sn−m
is a constituent of the restriction

M |Sn−m
of M to Sn−m.

(3) f has a consequences in Pn that is alternating in some n −m inde-

terminates.

The proof is similar to that of Proposition 3.3.

4. Proof of Theorem 1.1. Let D(m) be the T -ideal in K[X,Y ] gen-
erated by the polynomial dm, and denote by A(m) the T -ideal of all polynomials
having no consequences g(X1, . . . ,Xm−1, Y ) that are linear inX1, . . . ,Xm−1 (here
Y is a single indeterminate). By Proposition 3.3, A(m) coincides with L(m), and
hence Theorem 1.1 is equivalent to Theorem1.3.

It is rather obvious that

dm(X) = [X1,X2] · · · [X2m−1,X2m] ∈ A(m),

and hence D(m) is contained in A(m). Indeed, substitute fi for Xi for i ≤ 2m,
where fi is a monomial in X1, . . . ,Xm−1, Y such that the product f1 · · · f2m is
a linear polynomial in X1, . . . ,Xm−1. The latter condition implies that at most
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m−1 polynomials fi differ from Y j for some j (where j depends on i). Then none
of X1, . . . ,Xm−1 occurs in [f2i−1, f2i] for some i with 1 ≤ i ≤ m− 1, and hence
dm(f1, . . . , f2m) = 0. It follows that no polynomial g as above is a consequence
of dm, and the claim follows.

To prove the equality D(m) = A(m), we argue by induction on m in order
to show that A(m) = D(m). The case m = 1 is trivial, as f has no consequences
of the form Y n (n ∈ N) if and only if f follows from [X1,X2].

Suppose that our claim is true for m = ℓ−1. Let m = ℓ and f ∈ A
(ℓ)
n (n ∈

N). Observe that A(ℓ) ⊂ A(ℓ−1); it follows from the induction assumption that
f ∈ D(ℓ−1). Every polynomial from D(ℓ−1) is a linear combination of polynomials
of the form

(1) v1[Xi1 ,Xj1 ]v2 · · · [Xiℓ−1
,Xjℓ−1

]vℓ,

where v1, . . . , vℓ are monomials, some of them can be equal to 1. We write vi < Xj

if k < j for all indeterminates Xk occurring in the monomial vi. The following
equality holds for every triple i, j, k ∈ N:

Xi[Xj ,Xk] = [Xj ,Xk]Xi + [Xi,Xj ]Xk −Xk[Xi,Xj ] +Xj [Xi,Xk] − [Xi,Xk]Xj .

Using this formula, one can write every element (1) as a linear combination of
polynomials of the form (1) with the additional property:

(2) vν < Xiν for ν = 1, 2, . . . , ℓ− 1.

Denote by M(n1, . . . , nm) the set of all elements of the form (1) satisfying
(2) and such that ◦vν = nν for all ν ∈ {1, . . . , ℓ}. Let R be the set of all sequences
P = (n1, . . . , nℓ), where n1, . . . , nℓ are non-negative and n1 + · · ·+nℓ = n−2ℓ+2.
We endow R with the lexicographic ordering.

Thus,

f =
∑

P∈R

aP (mod D(ℓ)),

where aP ∈ M(n1, . . . , nℓ) and P = (n1, . . . , nℓ). We show that aP = 0 for
all P ∈ R. Indeed, suppose the contrary. Let P0 be the maximal element in
R such that aP0

6= 0. Suppose that an element of the form (1) occurs with
a non-zero coefficient b at the expression of aP as a sum of polynomials from
M(n1, . . . , nℓ), where (n1, . . . , nℓ) ∈ P0. Perform the substitution ε : Xi =⇒ Y 2i

,
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where i ∈ {1, . . . , n} \ {j1, . . . , jℓ−1}. Then ε

(
∑

P∈R

aP

)

is a linear combina-

tion of monomials of the the form Y α1Xj1Y
α2 · · ·Xjℓ−1

Y αℓ , and the monomial
ε(v1Xi1)Xj1ε(v2Xi2)Xj2 · · ·Xjℓ−1

ε(vℓ) occurs in this linear combination with co-

efficient b. As f ∈ A(ℓ), it follows that ε(f(X)) = 0. This contradiction proves
Theorems 1.3 and 1.1.

In the above arguing we have shown the following:

Proposition 4.1. The elements of the form (1) satisfying (2) constitute

a basis of the vector space D(ℓ−1) modulo D(ℓ).

5. The T -ideal L
−m and proof of Theorem 1.2. In this section

we study the T -ideal T (m) generated by the polynomial

tm := [X1,X2,X3] · · · [X3m−2,X3m−1X3m].

Our aim is to prove Theorem 1.2. By Proposition 3.4, Theorem 1.2 is equivalent
to Theorem 1.4.

Along with the free algebra K[X] we shall use the free algebra K[X;Y ]
with free generators X ∪ Y , where Y = {Yi : i ∈ N}.

Let I = {t1, . . . , tk} ⊆ N(n), where t1 < · · · < tk, and let φ : I =⇒ N be
an injective mapping. Let φ(tν) = rν for ν ∈ {1, . . . , k}. Denote by ε0(I, φ) the
ring homomorphism K[X] =⇒ K[Y ] defined by

ε0(I, φ) : Xtν =⇒ Yr1+···+rν−1+1 · · ·Yr1+···+rν

(if ν = 1 then ε0(I, φ)(Xt1) = Y1Y2 · · ·Yr1
). Denote by ε(I, φ) = ε(t1, . . . , tk, r1, . . . ,

rk) the linear mapping K[X] =⇒ K[X;Y ] defined for f ∈ K[X] as follows:

ε(I, φ)f(X) =
∑

σ∈Sr

(−1)σ · ε0(I, φ)f,

where r = r1 + · · · + rk. That is, the right hand side is the alternating sum of
ε0(I, φ)f over Y1, . . . , Yr. (Note that if f is multilinear then so is ε(I, φ)f .)

Polynomials of the form ε(I, φ)(Xσ(1) · · ·Xσ(n)) for σ ∈ Sn are called

Y -words. For ε(I, φ)f(X1, . . . ,Xn) we write f(X1, . . . ,Xi1−1, Y
(r1), . . . ,Xik−1,

Y (rk), . . . ,Xn). For instance, X1 · · ·Xi1−1Y
(r1) · · ·Xik−1Y

(rk) · · ·Xn denotes the
Y -word ε(I, φ)(X1 · · ·Xn) and [Y (r1), Y (r2)] is ε(i, j, r1, r2)[Xi,Xj ], and so on.
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(Observe that ε(i, j, r1, r2)[Xi,Xj ] does not depend on i, j, so the notation
[Y (r1), Y (r2)] is unambiguous.)

For two disjoint subsets I, J of N(n) we define the composition ε(I, φ) ∗
ε(J, ψ) as follows:

ε(I, φ) ∗ ε(J, ψ) = ε(I ∪ J, φ ∪ ψ), where (φ ∪ ψ)(x) =

{

φ(x) if x ∈ I;

ψ(x) if x ∈ J.

In the sequel we shall frequently use the following obvious lemma:

Lemma 5.1. (1) If r, s ∈ N are odd then [Y (r), Y (s)] = 2Y (r+s), other-

wise, [Y (r), Y (s)] = 0.

(2) Let k ≥ 3. Then [Y (r1), . . . , Y (rk)] = 0 for any choice of r1, . . . , rk ∈ N.

We denote by [X1,X2][X3
︸ ︷︷ ︸

,X4] the polynomial [X1,X2][X3,X4]+[X1,X3]

[X2,X4]. Let J = {i, j, k, l ∈ N}. Then W (J) denotes the set of all polynomials
of the form

∑

σ∈S(J)

ασ[Xσ(i),Xσ(j)][Xσ(k)
︸ ︷︷ ︸

,Xσ(l)],

where ασ ∈ K and σ runs over the symmetric group S(J) of the set J . Obviously,
W (J) is a vector space over K. The elements of W (J) will be called w-elements,
and the polynomials of the form [Xi,Xj ][Xk

︸ ︷︷ ︸
,Xl] are called w-words.

The next lemma follows from Lemma 5.1.

Lemma 5.2. Let I ⊂ N, where |I| = 4, and let r1, r2, r3, r4 ∈ N. Then

(i) ε(I, r1, r2, r3, r4) ·W (I) = (0);

(ii) If J ⊂ I and |J | = 3 then ε(I, r1, r2, r3) ·W (J) 6= 0 if and only if

there is at most one even number in {r1, r2, r3}.

One can easily verify the following lemma.

Lemma 5.3. The following formulas are true:

(3) [X1,X2][X3
︸ ︷︷ ︸

,X4] − [X1,X3][X2
︸ ︷︷ ︸

,X4] = 0;

(4) [X1,X2][X3
︸ ︷︷ ︸

,X4] + [X2,X3][X1
︸ ︷︷ ︸

,X4] + [X3,X1][X2
︸ ︷︷ ︸

,X4] = 0;
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(5) [X1,X2][X3
︸ ︷︷ ︸

,X4] + [X1,X3][X4
︸ ︷︷ ︸

,X2] + [X1,X4][X2
︸ ︷︷ ︸

,X3] = 0;

(6) [X1,X2][X4
︸ ︷︷ ︸

,X3] + [X2,X4][X1
︸ ︷︷ ︸

,X3] + [X4,X2][X1
︸ ︷︷ ︸

,X3] = 0;

(7)
∑

σ∈S3

[Xσ(1),Xσ(2)][X4
︸ ︷︷ ︸

,Xσ(3)] = 0;

(8) [X1,X2][X3,X4][X5
︸ ︷︷ ︸

,X6] + [X1,X3][X2,X4][X5
︸ ︷︷ ︸

,X6]

+ [X1,X2][X3
︸ ︷︷ ︸

,X4][X5,X6] + [X1,X2][X3
︸ ︷︷ ︸

,X5][X4,X6] = 0.

Using the formulas (3)–(7), one can observe that every w-element in
W (J), where J = {k, l,m, p}, k < l < m < p, is a linear combination of polyno-
mials of the form:

w
(1)
J = [Xk,Xl][Xm

︸ ︷︷ ︸
,Xp],

w
(2)
J = [Xp,Xk][Xl

︸ ︷︷ ︸
,Xm],

w
(3)
J = [Xm,Xk][Xl

︸ ︷︷ ︸
,Xp] − [Xk,Xm][Xp

︸ ︷︷ ︸
,Xl],

w
(4)
J = [Xp,Xm][Xk

︸ ︷︷ ︸
,Xl],

w
(5)
J = [Xk,Xm][Xp

︸ ︷︷ ︸
,Xl].

We call the polynomials w
(ν)
J (ν ∈ {1, 2, 3, 4, 5} basic w-elements (of W (J)).

Multilinear products of double commutators

(9) [Xi1 ,Xi2 ] · · · [Xi2k−1
,Xi2k

]

will be called v-polynomials. A v-polynomial is called canonical if i1 < · · · <
i2k. (The polynomial f(X) = 1 is viewed as a canonical polynomial of degree 0.)
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Remark 1. It is known (see, for instance [7]) that [X1,X2][X3
︸ ︷︷ ︸

,X4] ∈

T (1). Therefore, if v1, v2 are v-polynomials in the same set of indeterminates
then either v1 ≡ v2 (mod T (1)) or v1 ≡ −v2 (mod T (1)). In particular, every v-
polynomial is congruent (up to a sign) modulo T (1) to a canonical v-polynomial.

A polynomial g(X) of the form g1(X)g2(X) is called a vw-polynomial,
if g1(X) is a v-polynomial and g2(X) is a w-polynomial.

Definition 5.4. Let I be a finite set of natural numbers and J =
{k, l,m, p} be a subset of I such that i < k < l < m < p for all i ∈ I \ J .

Let g ∈ K[X] be a multilinear polynomial in Xi with i ∈ I. Then g is called a

canonical vw-polynomial if g = g1g2, where g1 is a canonical v-polynomial

and g2 is a w-polynomial of one of the following the forms:

(i) w
(ν)
J (ν ∈ {1, 2, 3, 4, 5});

(ii) [Xm,Xl][Xj
︸ ︷︷ ︸

,Xp] = [Xm,Xj ][Xl
︸ ︷︷ ︸

,Xp], [Xp,Xl][Xj
︸ ︷︷ ︸

,Xm] = [Xp,Xj ][Xl
︸ ︷︷ ︸

,Xm] or

[Xp,Xm][Xj
︸ ︷︷ ︸

,Xl] = [Xp,Xj ][Xm
︸ ︷︷ ︸

,Xl], where j ∈ I (so j 6= k).

(iii) [Xm,Xp][Xj
︸ ︷︷ ︸

,Xi] = [Xm,Xj ][Xp
︸ ︷︷ ︸

,Xi] = −[Xm,Xi][Xp
︸ ︷︷ ︸

,Xj ]−[Xm,Xi][Xj
︸ ︷︷ ︸

,Xp],

where i, j ∈ I, i < j and j 6= l. (The former equality holds by (3), and the latter

does by (5).)

If (i) (respectively, (ii), (iii)) holds then g1g2 is called a canonical vw-

polynomial of the first type (respectively, of the second type, of the third

type).

Note that the polynomials in (ii) above can be described as [Xi2 ,Xi1 ]
[Xi3 ,Xi4 ] = [Xi2 ,Xi3 ][Xi1 ,Xi4 ], where k 6= i3 ∈ I, {i1, i2, i4} = {l,m, p} and
i2 > i1. This will be used in Definition 5.6 below.

In this notation we have:

Lemma 5.5. Let f be a vw-polynomial in Xi (i ∈ I). Let J = {k, l,m, p}
⊆ I, where i < k < l < m < p for all i ∈ I \ J . Then

f ≡ g(X) + h(X) (mod T (2)),

where h(X) is a linear combination of polynomials of the form h1(X)h2(X),
h1(X) is a vw-polynomial, h2(X) is a v-polynomial of degree > 0, and g(X) is a

linear combination of canonical vw-polynomials.
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P r o o f. Denote by R the set of all polynomials h of the form described in
the statement of the lemma. We have to show that f ≡ g (modR+ T (2)), where
g is a linear combination of canonical vw-polynomials. Let

f = [Xi1 ,Xi2 ] · · · [Xi2q−1
,Xi2q

][Xj1 ,Xj2 ][Xj3
︸ ︷︷ ︸

,Xj4 ],

where i1, . . . , i2q, j1, j2, j3, j4 ∈ I and 2q = |I|−4. We can assume that i1 < · · · <
i2q by Remark 1 (which will be frequently used below).

Claim 1. The lemma is true if {j1, j2, j3, j4} = {k, l,m, p}.

Indeed, using the formulas (3) – (7), one can express f as a linear combi-
nation of canonical vw-polynomials of the first type.

Claim 2. The lemma is true if j2, j3, j4 ∈ {k, l,m, p}.

If j1, j2, j3, j4 ∈ {k, l,m, p}, we are done by Claim 1. Otherwise, let
ν ∈ {k, l,m, p} and ν /∈ {j1, j2, j3, j4}. Then we may assume that ν = l2q, see
Remark 1. By (8), we get

f ≡ −[Xi1 ,Xi2 ] · · · [X2q−1,Xj1 ][Xν ,Xj2 ][Xj3
︸ ︷︷ ︸

,Xj4 ] (modT (2) +R),

and the claim follows by Claim 1.

Claim 3. It suffices to prove the lemma in the case where j3 = p.

(i) Let p ∈ {j1, j2, j3, j4}. Using (3), (4), (5), we can express
[Xj1 ,Xj2 ][Xj3

︸ ︷︷ ︸
,Xj4 ] as a linear combination of w-polynomials of the form

[Xk1
,Xk2

][Xp
︸ ︷︷ ︸

,Xk3
] (where {k1, k2, k3} ⊂ {j1, j2, j3, j4}).

(ii) Let p /∈ {j1, j2, j3, j4}. Then p = i2q. By (8), we get

f ≡ −[Xi1 ,Xi2 ] · · · [X2q−1,Xj1 ][Xp,Xj2 ][Xj3
︸ ︷︷ ︸

,Xj4 ] (modT (2) +R).

So the claim follows by (i).

Claim 4. The lemma is true if (j3, j4) = (p,m).

If j2 ∈ {k, l} then the lemma follows by Claim 2. So j2 /∈ {k, l}, and
hence either l = j1 or l = i2q. If l = j1 then

[Xl,Xj2 ][Xp
︸ ︷︷ ︸

,Xm] = [Xl,Xp][Xj2
︸ ︷︷ ︸

,Xm] = −[Xj2 ,Xl][Xm
︸ ︷︷ ︸

,Xp] − [Xp Xl][Xj2
︸ ︷︷ ︸

,Xm].
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So (setting v(X) = [Xi1 ,Xi2 ] · · · [Xi2q−1
,Xi2q

]) we have

f = v(X)[Xl,Xj2 ][Xp
︸ ︷︷ ︸

,Xm] = −v(X)[Xj2 ,Xl][Xm
︸ ︷︷ ︸

,Xp] − v(X)[Xp Xl][Xj2
︸ ︷︷ ︸

,Xm],

and the claim follows by applying Claim 2 to the first summand, as the second
summand is a canonical vw-polynomial of the second type.

If l = i2q then by (8):

f ≡ −[Xi1 ,Xi2 ] · · · [Xi2q−1
,Xj1 ][Xl,Xj2 ][Xp

︸ ︷︷ ︸
,Xm] (modT (2) +R),

and the result follows from the above.

Claim 5. The lemma is true if j2 = m.

By Claim 2, j4 /∈ {k, l}. Then either j1 = l or i2q = l. If j1 = l then, by
(5) and (6)

[Xl,Xm][Xp
︸ ︷︷ ︸

,Xj4 ] = −[Xl,Xp][Xj4
︸ ︷︷ ︸

,Xm] − [Xl,Xj4 ][Xm
︸ ︷︷ ︸

,Xp]

= [Xp,Xj4 ][Xl
︸ ︷︷ ︸

,Xm] + [Xj4 ,Xp][Xl
︸ ︷︷ ︸

,Xm] + [Xj4,Xm][Xl
︸ ︷︷ ︸

,Xp] + [Xm,Xj4 ][Xl
︸ ︷︷ ︸

,Xp].

So (setting v(X) = [Xi1 ,Xi2 ] · · · [Xi2q−1
,Xi2q

]) we have

v(X)[Xp,Xj4 ][Xl
︸ ︷︷ ︸

,Xm] + v(X)[Xj4 ,Xp][Xl
︸ ︷︷ ︸

,Xm]

+v(X)[Xj4 ,Xm][Xl
︸ ︷︷ ︸

,Xp] + v(X)[Xm,Xj4 ][Xl
︸ ︷︷ ︸

,Xp].

Here the first and the third summands are vw-words of the second type, and the
second and the forth summands can be ignored by Claim 2.

Let i2q = l. Then by (8), we have

f ≡ −[Xi1 ,Xi2 ] · · · [Xi2q−1
,Xj1 ] ([Xl,Xm][Xp

︸ ︷︷ ︸
,Xj4 ] (modT (2) +R),

and the result follows from the previous paragraph.

Claim 6. It suffices to prove the lemma when (j1, j3) = (m, p).

Indeed, by Claims 4 and 5, m /∈ {j2, j4}. So either m = j1 or m = i2q,
but the latter case reduces to the former one by (8).
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Thus, we can assume that m = j1, so (keeping v(X) as in Claim 5) we
have

f = v(X) [Xm,Xj2 ][Xp
︸ ︷︷ ︸

,Xj4 ].

If j4 = l then [Xm,Xj2 ][Xp
︸ ︷︷ ︸

,Xj4 ] = −[Xj2,Xp][Xm
︸ ︷︷ ︸

,Xl]−[Xp,Xm][Xj2
︸ ︷︷ ︸

,Xl]

by (4). Therefore,

f = v(X) [Xm,Xj2 ][Xp
︸ ︷︷ ︸

,Xj4 ] = −v(X)[Xj2 ,Xp][Xm
︸ ︷︷ ︸

,Xl]−v(X)[Xp,Xm][Xj2
︸ ︷︷ ︸

,Xl].

The second term at the right hand side is a vw-polynomial of the second type.
The first term can be ignored by Claim 2.

Thus, j4 6= l. Suppose that j2 = l. As

[Xm,Xl][Xp
︸ ︷︷ ︸

,Xj4 ] = −[Xm,Xj4 ][Xp
︸ ︷︷ ︸

,Xl] − [Xm,Xj4 ][Xl
︸ ︷︷ ︸

,Xp]

= [Xj4,Xp][Xm
︸ ︷︷ ︸

,Xl] + [Xp,Xm][Xj4
︸ ︷︷ ︸

,Xl] − [Xm,Xj4 ][Xl
︸ ︷︷ ︸

,Xp]

by (4), (5) and (3), we have

f = v(X)[Xj4 ,Xp][Xm
︸ ︷︷ ︸

,Xl] + v(X)[Xp,Xm][Xj4
︸ ︷︷ ︸

,Xl] − v(X)[Xm,Xj4 ][Xl
︸ ︷︷ ︸

,Xp].

Here the first term can be ignored by Claim 2, whereas the second and third
terms are vw-polynomials of the second type.

Thus, l /∈ {j2, j4}. If j4 < j2 then f is a vw-polynomial of the third type.
So we are left to prove the following:

Claim 7. The lemma is true if j2 < j4.

Using (7), we get

v(X) [Xm,Xj2 ][Xp
︸ ︷︷ ︸

,Xj4 ] = −v(X) [Xm,Xj4 ][Xp
︸ ︷︷ ︸

,Xj2 ] − v(X) [Xj2 ,Xm][Xp
︸ ︷︷ ︸

,Xj4 ]

(10)
−v(X) [Xj4 ,Xm][Xp

︸ ︷︷ ︸
,Xj2 ] − v(X) [Xj2 ,Xj4 ][Xp

︸ ︷︷ ︸
,Xm] − v(X) [Xj4 ,Xj2 ][Xp

︸ ︷︷ ︸
,Xm].

The first term is a vw-polynomial of the third type. The other terms can
be ignored by Claim 2. (As l /∈ {j2, j4}, we can assume that l = i2q, and by (7)
we may reorder l with j2 or j4, returning to the cases already considered.)

This completes the proof. �
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Fix n ∈ N. To every canonical vw-polynomial f of degree |I| in indeter-
minates Xi for i ∈ I ⊆ N(n) we associate an operator ξn(f) : K[X] =⇒ K[X;Y ].
The fashion of defining ξn depends on the type of the vw-polynomial (defined
prior Lemma 5.5):

Definition 5.6. Let f be a canonical vw-polynomial in the indetermi-

nates Xi, i ∈ I, |I| = 2q+4. Let k < l < m < p be the largest numbers in I (that
is, i < k for every i ∈ I \ {k, l,m, p}). Set J = {k, l,m, p}.

(1) Suppose that f is of the first type, and let

(11) f = [Xi1 ,Xi2 ] · · · [Xi2q−1
,Xi2q

] · w
(ν)
J (ν ∈ {1, 2, 3, 4, 5}).

For every ν define j1, j2 as follows:

ν 1 2 3 4 5

j1 3 1 1 1 4

j2 4 3 4 2 2

and then define ξn(f) : K[X] =⇒ K[X;Y ] by

ξn(f) = ε(I \ j2;φ), where φ(i) = 3ni for all i ∈ I \ {j1, j2}, φ(j1) = 2j1 .

(2) Let f be of the second type:

(12) f = [Xi1 ,Xi2 ] · · · [Xi2q−1
,Xi2q

] [Xj2 ,Xj1 ][Xj3 ,Xj4 ],

where j1 < j2, {j1, j2, j4} = {l,m, p} and j3 6= k.
Then we set

ξn(f) = ε(I \ j4;φ), where φ(i) = 3ni for all i ∈ I \ {j3, j4}, φ(j3) = 2j3 .

(3) Suppose that f is of the third type:

f = [Xi1 ,Xi2 ] · · · [Xi2q−1
,Xi2q

] [Xm,Xp][Xj2
︸ ︷︷ ︸

,Xj1 ], (j1 < j2).

Then we set

ξn(f) = ε(I \ j2;φ), where φ(i) = 3ni for all i ∈ I \ {j1, j2} and φ(j1) = 2j1 .
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Next we define ξn(f) for canonical v-polynomials f and for canonical
multilinear commutators.

Definition 5.7. (1) Let f be a canonical v-polynomial:

f = [Xi1 ,Xi2 ] · · · [Xi2q−1
,Xi2q

],

where i1 < · · · < i2q, I = {i1, . . . , i2q} ⊂ N(n).

Then we set ξn(f) = ε(I;φ), where φ(i) = 3ni for all i ∈ I.

(2) Let f be a canonical multilinear commutator of degree greater than 2:

(13) f = [Xi1 , . . . ,Xiq ],

where q ≥ 3, i1 < · · · < iq−2, iν < iq for all ν ∈ {1, . . . , q − 1}, and {i1, . . . , iq} ∈

N(n). Then we set

ξn(f) = ε(I \ iq−1;φ), where φ(i) = 2i for all i ∈ I \ {iq−1}.

We call the elements of the form (13) canonical u-polynomials. If f
is a multilinear polynomial of the form a(X)b(X), where a(X) is a canonical
v-polynomial and b(X) is a canonical u-polynomial then f is called a canonical

vu-polynomial. In this case we set ξn(f) = ξn(a) · ξn(b).
A multilinear polynomial f is called canonical of rank l if f is of the

form

(14) f = a1(X)a2(X) · · · al−1(X)al(X),

where every polynomial ai(X) for i = 1, . . . , l−1 is either canonical vw-polynomial
or canonical vu-polynomial, and al(X) is a canonical v-polynomial. For a canon-
ical polynomial f as in (14) we set

(15) ξn(f) = ξn(a1) ∗ ξn(a2) ∗ · · · ∗ ξn(al)

and

(16)
=⇒
f = (◦(a1(X), . . . ,◦ (al−1(X),◦ (al(X)) ∈ N

l .

Definition 5.8. Let ≤ be a lexicographic ordering on N
l. If f is a

canonical polynomial and ξn(f) = ε(I, φ) then we denote by α(f) the number of

i ∈ I such that φ(i) is even, that is, φ(i) = 2i.
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In order to understand the principle of constructing the operators ξn(f),
one has to keep in mind the following remarks:

Remark 2. The functions φ in the definition of the operators ξn(f)
always take values in the set M = {2, 22, . . . , 2n, 3n, 32n, . . . , 3n2

}. This set has
been selected so that the following condition would hold: if A,B ⊂ M and
∑

i∈A

i =
∑

j∈B

j then A = B. Define a mapping E from the set of all numbers of the

form
∑

i∈A

i, where A ⊆M , to the set of all subsets ofM as follows: E

(
∑

i∈A

i

)

= A.

Thus E is well defined.

Remark 3. The operators ξn(f) are constructed so that they would
have an extreme property with respect to the function α introduced in Definition
5.8: it follows from Lemmas 5.1 and 5.2 that, if f is a canonical polynomial
(a vw-polynomial or a vu-polynomial) and ξn(f) = ε(I, φ) then ε(I;φ) · f 6= 0,
whereas ε(J ;ψ) · f = 0 for a pair (J, ψ) such that either |J | > |I| or |J | = |I| and
|{j ∈ J : ψ(j) is even}| > α(f). In particular, this implies the following lemma:

Lemma 5.9. If f, g ∈ Pn are canonical polynomials of rank l and α(f) >
α(g) then ξn(f) · g(X) 6= 0.

Let T (m) be the T -ideal of K[X] generated by the polynomial tm. Recall
that tm = [X1,X2,X3] · · · [X3m−2,X3m−1,X3m]. Obviously, T (m) is stable under
the derivatives ∂/∂Xi (i ∈ N), and hence is a T -ideal in K[X].

Theorem 5.10. Let T be a T -ideal in K[X]. Then the following condi-

tions are equivalent:

(1) T ⊆ T (m);

(2) for every KSn-module M ⊆ Tn one has h′(M) ≥ m.

P r o o f. Denote by B
(m)

the set of all polynomials f ∈ K[X] such that
f has no consequences in K[X;Y ] of the form g(X1, . . . ,Xm−1, Y1, . . . , Yn) that
are linear in X1, . . . ,Xm−1 and alternating in Y1, . . . , Yn (n ∈ N). It is easy to

observe that B
(m)

is a T -ideal in K[X]. In order to prove Theorem 1.2 it suffices

to show that B
(m)

= T (m) (see Proposition 3.4).

It follows from Lemma 5.1 (2) that tm(X) ∈ B
(m)

. Therefore, T (m) ⊆

B
(m)

. So it suffices to show that if f ∈ B
(m)

then f ∈ T (m).
We use induction on m. If m = 1, this is equivalent to the following well

known fact: if f does not imply any standard polynomial then f ∈ T (1) (see [5,
7.1.2]).
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Let m = l and f ∈ B
(l)
n (n ∈ N). As B

(l)
⊂ B

(l−1)
, the inductive assump-

tion implies that f ∈ T (l−1). The space T
(l−1)
n is spanned by polynomials of the

form a1(X) · · · ak(X), where every polynomial a1(X), . . . , ak(X) is either a canon-
ical commutator or w-polynomial, and the total number of the w-polynomials and
u-polynomials (that is, canonical commutators of degree greater than 2) in this
product is at least l − 1. Then it follows from Lemma 5.5 that

(17) f ≡

d∑

i=1

cifi (modT (l)),

where c1, . . . , cd ∈ K and f1, . . . , fd are canonical polynomials of rank l.
We shall prove that ci = 0 for all i = 1, . . . , d. Indeed, suppose the

contrary. Then there is 0 < i ≤ d such that

(i) ci 6= 0;

(ii) if α(fj) > α(fi) for 0 < j ≤ d then cj = 0, where α is as in Definition
5.8;

(iii) if
=⇒
fj >

=⇒
fi and α(fj) = α(fi) then cj = 0.

Suppose that fi = a1(X) · · · al−1(X)al(X), where every polynomial aj(X)
for 1 ≤ j ≤ l−1 is either a canonical vw-polynomial or a canonical vu-polynomial,
and al(X) is a canonical v-polynomial. Apply the operator ξn(fi) to f .

First consider ξn(fi)·fi (keeping in mind (15)). By the definition of ξn(fi),
for every µ = 1, . . . , l − 1 we have:

ξn(fi) · aµ(X) = ξn(aµ) · aµ(X) = 2λµ · Y (rµ)Xtµ +

rµ∑

ν=1

γνY
(rµ−ν)XtµY

(ν),

where λµ ≥ 0. In addition, ξn(fi) · al(X) = 2λlY (rl) for some integer λl ≥ 0, see
Lemma 5.1. Express ξn(fi) · fi as a linear combination of distinct Y -words (in
what follows we shall call such an expression a Y -expansion of the polynomial).
Then the Y -word

(18)





l∏

µ=1

2λµ



 · Y (r1)Xt1Y
(r2) · · ·Xtl−2

Y (rl−1)Xtl−1
Y (rl)

occurs in the Y -expansion of ξn(fi) · fi.
Suppose that we have already proved that the Y -word (18) for j 6= i

(1 ≤ j ≤ d) cannot occur with a non-zero coefficient in the Y -expansion of
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ξn(fi) · fj. Then the Y -word (18) occurs in the Y -expansion of the polynomial

g(X;Y ) = ξn(fi) · (

d∑

i=1

cifi) with coefficient ci. Therefore, g(X;Y ) 6= 0. On the

other hand, g(X;Y ) is alternating in all indeterminates except Xt1 , . . . ,Xtl−1
,

which contradicts the assumption that f ∈ T (l) and (17). This contradiction
shows that ci = 0 in (17) for all i = 1, . . . , d, and hence f ∈ T (l), as required.

We are left to show that the Y -word (18) does not occur with a non-
zero coefficient in the Y -expansion of ξn(fj). Suppose the contrary. Let fj =
b1(X) · · · bl−1(X)bl(X), where bµ(X) for µ = 1, . . . , l−1 are canonical vu-polynomials
or vw-polynomials and bl(X) is a canonical v-polynomial.

Note that we can assume that

(iv) cj 6= 0.

As ξn(fi) · fj 6= 0, it follows from Lemma 5.9 that α(fj) ≥ α(fi), which means,
in view of (ii) and (iv), that

(v) α(fj) = α(fi).

Now it follows from (iv), (v) and (iii) that
=⇒
f j≤

=⇒
f i. If

=⇒
f j<

=⇒
f i then it follows

from Remark 2 that the Y -word (18) occurs with a non-zero coefficient in the
Y -expansion of ξn(fi) · fj. Therefore, we can assume that

(vi)
=⇒
f j=

=⇒
f i.

Let ξn(fi) = ε(I, φ) and I0 = {ν : φ(ν) = 2ν}, I1 = I \ I0. Set J = N(n) \ I.
Clearly, in (18) we have t1, . . . , tl−1 ∈ J . In view of Remark 3 and (v) one easily
observes that ξn(fi) · fj 6= 0 implies that bµ(X) for every µ ∈ {1, . . . , l − 1} is
either (a) a canonical vw-polynomial or (b) a canonical vu-polynomial.

(a) In this case

bµ(X) = [Xi1 ,Xi2 ] · · · [Xi2q−1
,Xi2q

] · [Xj1,Xj2 ][Xj3
︸ ︷︷ ︸

,Xj4 ],

and then the following conditions hold (see Definition 5.6):

|J ∩ {j1, j2, j3, j4}| = 1;

|I0 ∩ {j1, j2, j3, j4}| = 1;

{i1, . . . , i2q} ⊆ I1.
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(b) In this case

bµ(X) = [Xi1 ,Xi2 ] · · · [Xi2q−1
,Xi2q

] · [Xj1 , . . . ,Xjk
],

and then the following conditions hold:

|J ∩ {j1, . . . , jk}| = 1;

|I0 ∩ {j1, . . . , jk}| = k − 1;

{i1, . . . , i2q} ⊆ I1.

Suppose now that the Y -word (18) occurs with a non-zero coefficient in
the Y -expansion of ξn(fi) · fj. In view of (vi) and Remark 2, for every µ =
1, . . . , l− 1 the Y -word Y (rµ)Xtµ (which occurs with a non-zero coefficient in the
Y -expansion of the polynomial ξn(fi) ·aµ(X) = ξn(aµ) ·aµ(X)) also occurs in the
Y -expansion of the polynomial ξn(fi) · bµ(X) = ξn(aµ) · bµ(X). We shall show
that in this case aµ(X) = bµ(X) for all µ = 1, . . . , l − 1, and then automatically
we have al(X) = bl(X). It follows from this that fi = fj, which contradicts the
assumption.

So we are proving that aµ(X) = bµ(X) for all µ = 1, . . . , l− 1. Note that

ξn(aµ) determines the mapping φ : I =⇒ N and rµ =
∑

i∈I

φ(i). Define a mapping

E as in Remark 2. There are the following possibilities:

(1) aµ(X) is a canonical vw-polynomial and bµ(X) is a canonical vu-
polynomial. Then E(rµ) contains exactly one even number (by the construction
of ξn(fi)). But this contradicts (b) which requires |I0 ∩ {j1, . . . , jk}| = k − 1 ≥ 2.

(2) aµ(X) is a canonical vu-polynomial and bµ(X) is a canonical vw-
polynomial. Then E(rµ) contains exactly t−1 even numbers, where t is the degree
of the canonical u-polynomial that occurs in aµ(X). As t ≥ 3, this contradicts
(a), which requires |I0 ∩ {j1, j2, j3, j4}| = 1.

(3) aµ(X) and bµ(X) are canonical vu-polynomials. In this case the equal-
ity aµ(X) = bµ(X) follows straightforwardly from our assumption and Remark
2. Indeed, both of them are of the form v(X)[Xj1 , . . . ,Xjk−2

,Xtµ ,Xjk−1
], where

v(X) is a canonical v-word in the indeterminatesXk1
, . . . ,Xkr

, and {2j1 , . . . , 2jk−1}
(respectively, {3nk1 , . . . , 3nkr}) is the set of all even (respectively, odd) numbers
in E(rµ).
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(4) aµ(X) and bµ(X) are canonical vw-polynomials. Our reasoning here
splits in three parts depending on the type of aµ(X).

(4-1) aµ(X) is a vw-polynomial of the first type. Suppose that
aµ(X) is a polynomial defined by (11) in Definition 5.6. Let k < l < m < p be
the largest numbers in the set {i1, . . . , i2q, j1, j2, j3, j4}. By the construction of
ξn(aµ) (see Definition 5.6 (1), E(rµ) contains a unique even number 2e, where
e ∈ {k, l,m, p} and iµ ∈ {k, l,m, p}. With this in mind, one observes that bµ(X)
cannot be a vw-polynomial of the second or of the third type. Therefore, bµ(X) =

[Xi1 ,Xi2 ] · · · [Xi2q−1
,Xi2q

]w
(λ)
J ′ , where J ′ = {k, l,m, p} and 1 ≤ λ ≤ 5. One can

check straightforwardly (using Definition 5.6 (1)) that if in the Y -expansions of
ξn(aµ) · aµ(X) and ξn(aµ) · bµ(X) the terms of the form Y (α)Xβ coincide, then
aµ(X) = bµ(X).

(4-2) aµ(X) is a vw-polynomial of the second type, and k < l <
m < p are as above. So

[Xi1 ,Xi2 ] · · · [Xi2q−1
,Xi2q

] · [Xj2 ,Xj1 ][Xj3 ]
︸ ︷︷ ︸

,Xj4 ],

where j1 < j2, {j1, j2, j3, j4} = {k, l,m, p} and j3 6= k. Then we have rµ =

3nj1 + 3nj2 + 2j3 +

2q
∑

i=1

3in, where tµ = j4. As j3 /∈ {k, l,m, p} and ξn(aµ) · bµ 6= 0,

one observes that bµ cannot be a vw-polynomial of the first type in view of
Remark 2.

Suppose that bµ is a vw-polynomial of the second type. One can check
straightforwardly (using item (2) of Definition 5.6) that if the terms of the form
Y (α)Xβ are the same in the Y -expansions of ξn(aµ) · aµ(X) and ξn(aµ) · bµ(X),
then aµ(X) = bµ(X).

Finally, bµ(X) cannot be a vw-polynomial of the third type. Indeed,
tµ = j4 ∈ {l,m, p}, and one checks straightforwardly (using item (3) of Definition
5.6) that if the Y -expansion of ξn(aµ) · bµ(X) 6= 0 contains the term Y (α)Xβ then
β ∈ {l,m, p}.

(4-3) aµ(X) is a vw-polynomial of the third type. Then

[Xi1 ,Xi2 ] · · · [Xi2q−1
,Xi2q

] · [Xm,Xp][Xj2
︸ ︷︷ ︸

,Xj1 ], where j1 < j2.

It follows from item (3) of Definition 5.6 that tµ = j2 /∈ {l,m, p} and
E(rµ) contains a unique even number 2e for some e ∈ {l,m, p}. If bµ(X) is of
the first or of the second type and the Y -expansion of ξn(aµ) · bµ(X) contains



T -ideals from view point of representation theory of Sn 233

the term Y (α)Xβ then either E(α) contains 2i for i ∈ {l,m, p} or β ∈ {l,m, p}.
Therefore, bµ(X) is a vw-polynomial of the third type. But then one checks
straightforwardly (using item (3) of Definition 5.6) that if the Y -expansions of
ξn(aµ) · aµ(X) and ξn(aµ) · bµ(X) contain the term Y (α)Xβ then aµ(X) = bµ(X).
This completes the proof of the theorem. �

Fix an arbitrary sequence I = (i1, . . . , im−1) of pairwise distinct numbers
in N(n) and a sequence Π = (P1, . . . , Pm) of m pairwise disjoint sets Pi such that
∪m

i=1Pi = N(n) \M(I). Denote by S(I,Π) the subset of Sn formed by all σ ∈ Sn

such that σ−1(i1) < · · · < σ−1(im−1), and in the permutation

σ(1), σ(2), . . . , i1, . . . , i2, , . . . , im−1, , . . . , σ(n − 1), σ(n)

the set of symbols occurring prior i1 coincides with P1 and of those between iν−1

and iν coincides with Pν . (In particular, i1 is located at the (|P1|+1)-th position.)
Thus, S(I,Π) depends on the ordering of the elements {i1, . . . , im−1} and on the
choice of the subsets P1, . . . , Pm.

Set J = {i1, . . . , im−1}. If I ′ is a reordering of i1, . . . , im−1 and Π′ is a
similar sequence for I ′ then S(I,Π)∩S(I ′,Π′) is empty. It is easy to observe that
for every fixed J we have Sn = ∪I,ΠS(I,Π), where I ranges over the ordering of
the elements of J , and Π are as above. In other words, Sn = ∪I,ΠS(I,Π) is a
partition of Sn.

This partition defines an equivalence relation on Sn, which is denoted by

R
(n)
J . So σ ≡ σ′ (modR

(n)
J ) means σ, σ′ ∈ S(I,Π) for some I,Π as above.

Let M ⊆ N(n) and L = N(n) \ M = {l1, . . . , lk}, where l1 < · · · <
lk. If σ ∈ Sn then we denote by σL the permutation of the set L such that
DM (Xσ(1) · · ·Xσ(n)) = Xσi(l1) · · ·Xσi(lk), where DM is the differential operator
in Xi (i ∈ M). For a sequence I it is convenient to denote by M(I) the set
{i1, . . . , im−1}, that is, M(I) = J . In this notation state the following proposition.

Proposition 5.11. Let f =
∑

σ∈Sn
ασXσ(1), . . . ,Xσ(n) ∈ Pn, where

ασ ∈ K. Then the following conditions are equivalent:

(1) There is no polynomial g 6= 0 following from f which is linear in

X1, . . . ,Xm−1 and alternating in indeterminates from Y .

(2) For every set S(I,Π) ⊂ Sn with M(I) = J and for arbitrary L ⊂

N(n) \M(I) we have

(19)
∑

σ∈S(I,Π)

(−1)σLασ = 0.
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P r o o f. (1) =⇒ (2). Let J be an arbitrary subset of cardinality m− 1 in

N(n). We shall prove that (19) holds for every set S(I,Π) with M(I) = J .
Let L ⊂ N(n) \ J . Consider the operator ξ := ε(L, φ), where φ(i) =

2i for all i ∈ L and φ(i) = 3ni otherwise. It follows from Remark 2 that

ξ(Xσ(1) · · ·Xσ(n)) = ±ξ(Xτ(1) · · ·Xτ(n)) if and only if σ ≡ τ(modR
(n)
J ). Tak-

ing into account Lemmas 5.1 and 5.2 we observe that in the Y -expansion of
the polynomial ξ(f) the coefficient of the Y -word that corresponds to S(I,Π)
with M(I) = J is equal, up to the sign, to 2|L|

∑

σ∈S(I,Π)(−1)σLασ. Note that
the polynomial ξ(f) is alternating in the indeterminates in Y and linear in Xi

(i ∈ J) and is a consequence of f . Therefore,
∑

σ∈S(I,Π)(−1)σLασ = 0.

(2) =⇒ (1). Suppose the contrary. Then there exists an operator ξ =
ε(N(n)\J ;φ) such that |J | = m−1 and ξ(f) 6= 0. The elements ξ(Xσ(1) · · ·Xσ(n))

for σ ∈ Sn are Y -words (with coefficients ±1). In addition, if σ = τ (modR
(n)
J )

then the corresponding Y -words coincide. Let M = {i ∈ L : φ(i) is even}. Using
Lemmas 5.1 and 5.2, we observe that the coefficient of the Y -word ξ(Xσ(1) · · ·Xσ(n))

equals ±2|M |
∑

τ∈S(I,Π)(−1)τMατ , where M(I) = J and σ ∈ S(I,Π). By (2), this
number equals zero. This is a contradiction, and the proposition follows. �

Lemma 5.12. Let B(m) be the T -ideal of K[X] generated by the poly-

nomials f that have no consequences of the form g(X1, . . . ,Xm−1;Y ), where g is

linear in X1, . . . ,Xm−1 and alternating in the indeterminates in Y . Then B(m)

is stable under the derivations ∂/∂Xi for all i ∈ N.

P r o o f. It suffices to check that
∂

∂Xi
T (m)

n ⊆ T
(m)
n−1 for i ∈ N(n) and

n ≥ m. For every σ ∈ Sn denote by σ′ ∈ Sn−1 the permutation that satisfies
∂

∂Xn
Xσ(1) · · ·Xσ(n) = Xσ′(1) · · ·Xσ′(n−1). Let J ⊆ N(n − 1), where |J | = m− 1.

It is easy to see that if σ ≡ τ (mod R
(n)
J ) then σ′ ≡ τ ′ (mod R

(n−1)
J ). Therefore,

if (19) holds for f =
∑

σ∈Sn

Xσ(1) · · ·Xσ(m−1) then (19) remains valid for
∂f(X)

∂Xn
=

∑

σ′∈Sn−1

Xσ′(1) · · ·Xσ′(m−1), and the lemma follows. �

It follows from this that B(m) = B
(m)

, where B
(m)

is the T -ideal in K[X]
discussed in the proof of Theorem 5.10.

The proof of Theorem 1.4 follows from Theorem 5.10 and Lemma
5.12. This also implies Theorem 1.2.
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