


Serdica Math. J. 38 (2012), 395–416

ON THE GIBSON BOUNDS OVER FINITE FIELDS∗

Mikhail V. Budrevich, Alexander E. Guterman

Communicated by M. Kochetov

Dedicated to Professor Yuri Bahturin on the occasion of his sixty fifth birthday

Abstract. We investigate the Pólya problem on the sign conversion be-
tween the permanent and the determinant over finite fields. The main at-
tention is given to the sufficient conditions which guarantee non-existence of
sing-conversion. In addition we show that F3 is the only field with the prop-
erty that any matrix with the entries from the field is convertible. As a result
we obtain that over finite fields there are no analogs of the upper Gibson
barrier for the conversion and establish the lower convertibility barrier.

1. Introduction. In this paper Fq denotes a finite field of q elements,
its characteristic char Fq = p > 2, F denotes an arbitrary field, Mmn(Fq) is the
set of m × n matrices with the entries from Fq, Mn(Fq) = Mnn(Fq). F

n
q denotes
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the vector space of n-vectors over Fq. Let X ◦ A be the Hadamard (entrywise)
product of the matrices X and A. By A(i|j) we denote the matrix obtained from
A by deleting the i-th row and the j-th column.

The permanent and determinant functions are well-known:

per(A) =
∑

σ∈Sn

a1σ(1) · · · anσ(n) and det(A) =
∑

σ∈Sn

sgn(σ)a1σ(1) · · · anσ(n),

where A is an arbitrary square matrix, and Sn is the symmetric group of degree
n, and sgn(·) denotes the sign function.

The permanent and determinant functions look very similar, however,
these two functions have considerably different behavior. For example, the dif-
ference between these functions becomes visible when we consider the complexity
of their computation. The determinant function can be computed easily by the
Gauss elimination algorithm in polynomial time. However, it is still an open prob-
lem if there exists a polynomial algorithm to compute the permanent. Moreover,
Valiant [23] has shown that even computing the permanent of a (0,1)-matrix is
a ♯P -complete problem, i.e., this problem is an arithmetic analogue of Cook’s
hypothesis P 6= NP , see [6, 9, 10, 14] for details.

In 1913 Pólya [21] asked if there exists a possibility to compute the perma-
nent function using the determinant function. The idea is based on the following
observation: Consider the map T : M2(F) → M2(F) given by the formula:

(1.1) T :

(

a11 a12

a21 a22

)

→

(

a11 −a12

a21 a22

)

Direct computations show that

(1.2) per(A) = det(T (A))

for any A ∈ M2(F). The existence question for such T which satisfies (1.2),
where T is nothing but the multiplication of some matrix elements by −1 is
called Pólya’s permanent problem, see [18].

Pólya’s permanent problem for the field of complex numbers was solved
negatively by Szegö [22], namely he proved that for n ≥ 3 there is no general-
ization of the formula (1.1). Then several authors investigated possible types of
apriori convertible or apriori non-convertible matrices. The first result showing
that there exists a quantitative barrier for the sign conversion for (0, 1)-matrices is
due to Gibson [12]. Namely, Gibson proved that if v(A) > Ωn = (n2 + 3n − 2)/2
then A is not convertible, where v(A) is the number of nonzero entries of A,
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i.e., he provided an upper barrier Ωn for the conversion over a field F of zero
characteristic. In the extremal case, when v(A) = Ωn, the convertible matrix is
unique up to the permutation equivalence. Later, see for example the paper [3] by
Brualdi, Shader and the references therein, the attention was given to convertible
(0, 1)-matrices with less than Ωn units such that after changing any of its zeros
to a unit, the matrix becomes non-convertible. In the work by Little [16] the low
barrier ωn = n + 5 for convertibility in Mn(F), char F = 0, was obtained by the
methods of graph theory. Namely he proved that any A with v(A) ≤ n+5 is sign
convertible. In [7] a short purely matricial proof of this result was established
and it was shown that for any value v between ωn and Ωn both sign-convertible
and sign non-convertible (0, 1)-matrices with v units do exist.

In parallel over finite fields there were attempts to investigate the trans-
formations converting the determinant to the permanent, see [5, 8], where it is
proved that there are no bijective determinant-permanent converters.

This work is devoted to the investigation of sign-convertibility between
the determinant and the permanent over finite fields.

Our paper is organized as follows. Section 1 is introductory. In Section 2
we show that over the field of 3 elements any matrix is sign-convertible. Section
3 is devoted to the proof that over any other field there are matrices which are
not sign-convertible. In Section 4 we investigate Gibson convertibility barriers
over finite fields in terms of the so called essential elements of matrices.

2. Pólya’s problem over the field F3.

Definition 2.1. A matrix A ∈ Mn(Fq) is called sign-convertible if there

exists X ∈ Mn({±1}) such that per(A) = det(A ◦ X).

In this section we are going to prove that over the field of 3 elements
sign-convertibility is always possible. In order to do this we need to prove the
following auxiliary lemmas.

Lemma 2.2. Let A ∈ Mn(F3) and per(A) = 1. Then there exists a

matrix X ∈ Mn({±1}) such that det(A ◦ X) = 1.

P r o o f. We proceed by induction.
The base of induction is the case n = 2. Let

A =

(

a11 a12

a21 a22

)

.

Then consider the following matrix

X =

(

1 1
−1 1

)

.
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It is straightforward to check that per(A) = det(X ◦ A).
The inductive step. Assume the statement is true for the matrices of size

less than or equal to n − 1. Consider A ∈ Mn(F3).
If det(A) = 1 then we consider X = (xij), where xij = 1 for all 1 ≤ i, j ≤

n.
If det(A) = −1 then we consider X = (xij), where x1j = −1 and xij = 1

for all 1 ≤ j ≤ n, 2 ≤ i ≤ n.
Let us consider the case det(A) = 0.
By the Laplace decomposition for det(A) along the first row we have

det(A) = a11 det(A(1|1)) − · · · + (−1)n+1a1n det(A(1|n)).

1. Assume there exists j such that a1j det(A(1|j)) 6= 0. There are two
possible cases:

A. (−1)1+ja1j det(A(1|j)) = 1. We consider X = (xkl), where xkl = 1 for all
1 ≤ k, l ≤ n, with (k, l) 6= (1, j), and x1j = −1. Then det(X◦A) = det(A)−
(−1)1+ja1j det(A(1|j)) + (−1)1+jx1ja1j det(A(1|j)) = det(A) − 2 = 1. We
have obtained the required matrix X.

B. (−1)1+ja1j det(A(1|j)) = −1. We consider X = (xkl), where xkl = 1 for
all 2 ≤ k ≤ n, 1 ≤ l ≤ n, and x1j = 1, x1,l = −1 for all 1 ≤ l ≤
n with l 6= j. Then det(X ◦ A) = −(det(A) − (−1)1+ja1j det(A(1|j)) +
(−1)1+jx1ja1j det(A(1|j))) = −(det(A) + 2) = 1.

2. Assume now that for any j we have a1j det(A(1|j)) = 0. Since per(A) =
1 then there exists a number k such that a1kper(A(1|k)) 6= 0. Let us apply
the inductive hypothesis for A(1|k): there exists Y ′ ∈ Mn−1({±1}) such that
det(A(1|k) ◦ Y ′) 6= 0. Consider Y ∈ Mn({±1}) such that Y (1|k) = Y ′ and the
other entries of Y are 1.

Now for the matrix Y ◦ A there exists a nonzero element in the Laplace
decomposition of det(Y ◦ A) along the first row. By Case 1 we can construct a
matrix Z such that det(Z ◦ (Y ◦ A)) = 1. Consider now X = Z ◦ Y . �

Lemma 2.3. Let Σ be the sum of two or more elements equal to 1 in F3.

Then it is possible to change the signs of the elements in Σ in such a way that

the obtained sum Σ′ = 0.

P r o o f. Consider all possible cases for the value of Σ.

1. Let Σ = 0. Then Σ′ = Σ = 0 (without any changes of the signs).
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2. Let Σ = 1. Then Σ contains 3k +1 elements. Thus Σ contains at least four
elements, each of them equals to 1. Let us change the signs of two of them.
Then for the new sum Σ′ = Σ − 2 − 2 = 0.

3. Let Σ = −1. Let us change one sign. Thus we have Σ′ = Σ − 1 − 1 =
−1 − 2 = 0. �

Corollary 2.4. Let Σ be the sum of certain elements in F3. Assume

that among them there are two or more non-zero elements. Then it is possible

to change the signs of the elements in Σ in such a way that the obtained sum

Σ′ = 0.

P r o o f. Indeed we change the signs of all elements equal to −1 to obtain
+1 and then apply Lemma 2.3. �

Lemma 2.5. Let A ∈ Mn(F3). Assume that per(A) = 0. Then there

exists a matrix X ∈ Mn({±1}) such that det(A ◦ X) = 0.

P r o o f. In the case det(A) = 0 it is sufficient to take the matrix X = (xij)
with xij = 1 for all i, j = 1, . . . , n.

Thus further we assume that det(A) 6= 0. We shall show that there exists
X ∈ Mn(F3) such that the columns of X ◦ A are linearly dependent. We now
start the proof by induction.

For n = 2 we choose X =

(

1 1
−1 1

)

.

Assume the statement is true for all matrices of size less than or equal
to n − 1. We would like to show that it is also true for the matrices of size n.
Consider the number of non-zero elements in the rows of A.

Case 1. Assume that in each row there exist at least two nonzero elements.

This implies that in the sum
n
∑

j=1
aijxij there are at least two nonzero elements

for any fixed i = 1, . . . , n. Therefore we can apply Corollary 2.4 to this sum. We
set xij = −1 if the application of Corollary 2.4 assumes change of the sign of
aij and xij = 1 otherwise. Therefore we obtain the matrix X = (xij) satisfying
n
∑

j=1
aijxij = 0 for any i. Thus the rows of X ◦ A are linearly dependent over F3

with the coefficients λ1 = · · · = λn = 1. Therefore the required matrix X is
constructed.

Case 2. It is straightforward to see that since det(A) 6= 0, the matrix A
does not contain a zero row. Thus it remains to consider only the following case.
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Case 3. Assume that there exists a row of A with unique nonzero element.
Permuting the rows and the columns of A we can move this nonzero element to
position (1, 1). We obtain

PAQ = A(1) =













±1 0 · · · 0

a
(1)
21 a

(1)
22 · · · a

(1)
2n

...
...

. . .
...

a
(1)
n1 a

(1)
n2 · · · a

(1)
nn













,

where P,Q are permutation matrices. The following equalities are true:

0 = per(A) = per(A(1)) = a
(1)
11 per(A(1)(1|1)).

In addition a
(1)
11 6= 0 and therefore per(A(1)(1|1)) = 0. Thus by the inductive

hypothesis for A(1)(1|1) we can find Y ∈ Mn({±1}) such that det(A(1) ◦ Y ) =
a11y11 det(A(1)(1|1) ◦ Y (1|1)) = 0. We choose X = P−1Y Q−1. Then

det(A ◦ X) = det
(

(P−1A(1)Q−1) ◦ (P−1Y Q−1)
)

= det
(

P−1(A(1) ◦ Y )Q−1
)

since P and Q are permutation matrices. Hence, by the multiplicativity of the
determinant we have that

det(A ◦ X) = det(P−1Q−1) det
(

A(1) ◦ Y
)

= 0.

Thus the result follows. �

Theorem 2.6. If A ∈ Mn(F3), then there exists X ∈ Mn({±1}) such

that per(A) = det(A ◦ X).

P r o o f.

1. Let per(A) = 0. By Lemma 2.5 we can choose a matrix X ∈ Mn({±1})
such that det(A ◦ X) = 0.

2. Let per(A) = ±1. It is sufficient to consider the case when per(A) = 1
(otherwise we multiply the first row of X by −1). By Lemma 2.2 we derive
the required statement. �

3. Nonconvertible matrices over fields with more than 3

elements. Now we prove that F3 is the only field for which Pólya’s sign-
convertibility between the permanent and the determinant is always possible.
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3.1. Fields of characteristic 3. In this section we use the presentation
of the field F3k as a quotient ring F3k ≃ F3[x]/(f(x)), where F3[x] is a polynomial
ring over F3 and f(x) is an irreducible polynomial of degree k. The details related
to this presentation can be found for example in [25, Chapter 9.5].

Theorem 3.1 [25, Theorem 9.5.7]. For any prime p and n ∈ N there

exists a field with pn elements. This field is unique up to isomorphism.

Theorem 3.2. [25, Corollary on p. 383]. For any n > 1 there exists an

irreducible polynomial f(x) ∈ Fp[x] of degree n and Fpn ≃ Fp[x]/(f(x)).

Proposition 3.3. Let Fq be a finite field of characteristic 3, q = 3k,

k > 1. Then there exists a non-convertible (3 × 3)-matrix over Fq.

P r o o f. Let us choose an irreducible polynomial f(x) ∈ F3[x], ◦f = k,
and consider F3k ≃ F3[x]/(f(x)). Note that since ◦f = k > 1 the element x + 1
is defined correctly in this quotient ring. Let

A =





x + 1 −1 1
1 1 1
1 1 1



 ∈ M3(F3k).

Let us show that the matrix A is not convertible. In the beginning we
compute its permanent

(3.1) per





x + 1 −1 1
1 1 1
1 1 1



 = 2(x + 1)

Suppose that A is convertible. Let Y = (yij) ∈ M3({±1}) and det(Y ◦
A) = 2(x + 1). By the Laplace decomposition we obtain

det(Y ◦ A) = ax + b

where a = y11(y22y33 − y23y32) and

b = y11(y22y33 − y23y32) + y12(y21y33 − y23y31) + y13(y21y32 − y22y31).

Since Y is a converter we obtain

(3.2) ax + b = 2(x + 1).

By assumption k > 1, and therefore x and 1 are linearly independent independent
over F3. It follows from the equality (3.2) that a = 2 and b = 2. Thus

(3.3) 2 = y11(y22y33 − y23y32).
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Without loss of generality we assume that y11 = 1, otherwise we may
multiply the first and the second rows of Y by −1 to obtain a new converter
satisfying the required conditions. Then by the equality (3.3) we have that
y22y33 − y23y32 = 2. Since yij ∈ {1,−1} we have one of the following four
possibilities for the matrix Y :

(3.4)





1 y12 y13

y21 1 1
y31 −1 1



 ,





1 y12 y13

y21 1 −1
y31 1 1



 ,





1 y12 y13

y21 −1 1
y31 −1 −1



 ,





1 y12 y13

y21 −1 −1
y31 1 −1



 .

Note that all these matrices have the same determinant, and we can transform
any of them to another one multiplying by −1 two of the rows or a row and a
column. Hence, either all these four matrices listed in (3.4) define converters for
A or none of them. Therefore, we can assume that Y has the following form:

Y =





1 y12 y13

y21 1 1
y31 −1 1



 .

By the Laplace decomposition formula for det(Y ◦ A) we have

det(Y ◦ A) = det





(x + 1) −y12 y13

y21 1 1
y31 −1 1





= 2(x + 1) + y12 det

(

y21 1
y31 1

)

+ y13 det

(

y21 1
y31 −1

)

= per(A) + ∆,

where

(3.5) ∆ = det

(

y21 y12 + y13

y31 y12 − y13

)

.

Let us show that ∆ 6= 0. Observe that Y ∈ M3({±1}). Therefore, we have to
consider the following two cases:

1. y12 = −y13. Then (3.5) has the form

∆ = det

(

y21 0
y31 −y12

)

= −y21y12 6= 0

since yij ∈ {1,−1}.
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2. y12 = y13. Then (3.5) has the form

∆ = det

(

y21 −y12

y31 0

)

= y31y12 6= 0

The last inequality is also true since by the definition yij 6= 0.

Hence, ∆ 6= 0, and thus the required Y does not exists. �

3.2. Fields of characteristic p > 3.

Lemma 3.4. Let B ∈ M3({±1}) ⊆ M3(Fq) and Fq be a field of charac-

teristic p > 3. Then det(B) 6= 2.

P r o o f.

det(B) = b11b22b33 + b12b23b31 + b21b32b13 − b13b22b31 − b12b21b33 − b11b23b32.

Each of the above summands is either 1 or −1 since B ∈ M3({±1}). Each entry
bij is a factor of exactly two different summands. Hence, the change of the sign
of bij does not reflect to the parity of the number of negative summands. In this
way both the number of 1 and the number of −1 among these summands are
always odd. Hence det(B) ∈ {0, 4,−4}. Thus det B 6= 2 in Fp. �

Theorem 3.5. Let n ≥ 3 and Fq be any field with char Fq > 3. Then

there exists a nonconvertible matrix An ∈ Mn(Fq).

P r o o f. Consider

A3 =





−1 1 1
1 1 1
1 1 1



 ∈ M3(Fq)

Direct computations show that per(A3) = 2. By Lemma 3.4 for any X ∈
M3({±1}) we have det(B ◦ X) 6= 2 and therefore A3 is not convertible.

Now for arbitrary n > 3 we choose the matrix An = In−3 ⊕A3 ∈ Mn(Fq)
which concludes the proof. �

Remark 3.6. Theorem 2.6, Proposition 3.3 and Theorem 3.5 provide
examples of matrices which are convertible over the field F3 and are not convert-
ible over some other fields.
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4. Convertibility barriers for matrices over finite fields.

In the sequel we need the following notion of essential rank of a matrix.

Definition 4.1. An essential rank (see [20], [2]) ess (A) of A ∈ Mn,k(Fq)
is the maximal r such that any r columns in A are linearly independent.

In Lemmas 4.2 and 4.3 below we construct two nonsingular matrices with
nonzero elements that will be used in our further considerations.

Lemma 4.2. Let char(Fq) = p > 3, n be not divisible by p, and G =
(gij) ∈ Mn(Fq) be the following matrix:

(4.1) G =

















2 2 2 . . . 2 3 + δ
1 2 2 . . . 2 1
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
1 . . . . . . 1 2 1
1 1 . . . . . . 1 1

















,

where

gii =







1 if i = n,
3 if 2n − i is divisible by p,
2 otherwise,

gij =







1 if i > j or j = n and i 6= 1,
2 if i < j < n,

3 + δ if (i, j) = (1, n),

and

δ =

{

1 if 2n + 1 is divisible by p,
0 otherwise.

Then rk (M) = n. Moreover, the sum of all entries in any row of M is not equal

to 0.

P r o o f. Apply elementary transformations to transfer the matrix into
some simpler form. Namely,

1. Let us subtract the first column from the others. We obtain the matrix

G1 =

















2 0 0 . . . 0 1 + δ
1 1 1 . . . 1 0

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
1 . . . . . . 0 1 0
1 0 . . . . . . 0 0

















.
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Note that the last row of the obtained matrix contains a unique nonzero
element.

2. Then we subsequently subtract the last row from the rows with indexes
2, . . . , n − 1 with multiplicity 1 and from the first row with multiplicity 2,
and obtain the matrix

G2 =

















0 0 0 . . . 0 1 + δ
0 1 1 . . . 1 0
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
0 . . . . . . 0 1 0
1 0 . . . . . . 0 0

















which differs from G1 only in the first column.

3. Now we use Laplace decomposition for the determinant of G2 along the
first row and then along the last row. This produces the factor −(1 + δ),
since the sign is (−1)n+1+n = −1, and we receive:

(4.2) detG2 = −(1 + δ) · det













1 1 1 . . . 1
0 1 . . . . . . 1
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
0 0 . . . 0 1













.

In the right-hand side of the equality (4.2) there is an upper triangular
(n−2)×(n−2) matrix with nonzero elements on the main diagonal. Hence,
its determinant is nonzero. Since δ ∈ {0, 1}, it follows that (1 + δ) 6= 0.
Therefore, the right-hand side is nonzero, hence, rk (G) = n.

Now let us check that the sum of elements in each row is different from
0. For the first row we have 2n + 1 + δ. By the definition of our matrix δ was
chosen in such a way that 2n + 1 + δ 6≡ 0 (mod p).

Let 1 < k < n. If p6 | (2n− k) then gkk = 2. Thus we have that the sum of
the elements in the k-th row is equal to (k−1)+2(n−k)+1 = 2n−k 6≡ 0 (mod p).
If p | (2n − k) then gkk = 3. Thus we have that the sum of the elements in the
k-th row is equal to (k − 1) + 2(n − k − 1) + 3 + 1 = 2n − k + 1 6≡ 0(mod p). For
the last row the sum is n which is not divisible by p by the assumption. �

Lemma 4.3. Let char(Fq) = p > 3, n be divisible by p, and H = (hij) ∈
Mn(Fq) be the following matrix:
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(4.3) H =

















2 2 2 . . . 2 1
1 2 2 . . . 2 1
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
1 . . . . . . 1 2 1
1 1 . . . . . . 1 2

















,

where

hij =

{

1 if i > j or j = n,
2 if i < j < n,

and hii =

{

3 if 2n − i is divisible by p,
2 otherwise.

Then rk (H) = n. Moreover each row sum of the matrix H is different from 0.

P r o o f. We are going to show that H is nonsingular. In order to do this
we transform it to some simpler form by elementary transformations.

1. We subtract the first column from the others and then obtain the following
matrix:

H1 =

















2 0 0 . . . 0 −1
1 1 1 . . . 1 0

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
1 . . . . . . 0 1 0
1 0 . . . . . . 0 1

















.

2. There are only 2 nonzero elements in the first row, namely h11, h1n, and
only two nonzero elements in the last row, namely hn1, hnn. If we add the
last row to the first one, then we obtain the following matrix:

H2 =

















3 0 0 . . . 0 0
1 1 1 . . . 1 0
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
1 . . . . . . 0 1 0
1 0 . . . . . . 0 1

















.

3. We use the Laplace decomposition of the determinant of H2 along the first
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row. Then the following equality holds:

detH2 = 3det













1 1 . . . 1 0
0 1 . . . 1 0
. . . . . . . . . . . . . . .
0 . . . 0 1 0
0 . . . . . . 0 1













.

4. In the right-hand side of the last equality there is an upper triangular matrix
with nonzero elements on the main diagonal. Hence, its determinant is
nonzero. Since char Fq 6= 3, it follows that detH2 6= 0, hence rk (H) = n.

Let us show that the sum of elements in each row is different from 0. In
the first row we have 2n − 1 = −1 in Fq since n is divisible by p.

For the k-th row 1 < k < n we have that if p6 |(2n − k) then hkk = 2, and
the sum is (k − 1) + 2(n− k) + 1 = 2n− k 6≡ 0(modp). However, if k is such that
2n − k is divisible by p, then hkk = 3, and hence the sum of the elements in the
kth row is equal to 2n − k + 1 6≡ 0(mod p). The corresponding sum for the last
row is equal to n + 1 = 1 in Fq since n is divisible by p. �

Now we construct an n × (n + 1) matrix with all elements different from
zero and essential rank equal n.

Lemma 4.4. Let Fq be a field of characteristic p > 3. Let C ∈
Mn,n+1(Fq) be such that its first n columns coincide with the first n columns

of G from Lemma 4.2 and the (n + 1)st column is the sum of all columns of G.

Let D ∈ Mn,n+1(Fq) be such that its first n columns coincide with the first n
columns of H from Lemma 4.3 and the (n+1)st column is the sum of all columns

of H. Then the following conditions are satisfied:

1. All elements of C and D are nonzero.

2. ess (C) = ess (D) = n.

P r o o f. By their definitions matrices G and H do not contain zero ele-
ments. Therefore it is sufficient to show that the last columns of C and D also
do not contain zero elements. By Lemmas 4.2 and 4.3 the sum of the elements in
each row of G and H is not equal to 0. Therefore the vectors obtained as sums
of column vectors also do not have zero elements and all elements of C and D
are different from 0.

Now we are going to prove that ess (C) = ess (D) = n. Assume the
opposite, namely that the essential rank ess (C) < n or ess (D) < n. This implies
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that there exists a singular square submatrix of C or D of order n. By Lemmas
4.2 and 4.3 the submatrices C(|n + 1) and D(|n + 1) are nonsingular. Consider
any submatrix C(|k), k < n + 1. We subtract all the columns of C(|k) from the
last one. By the choice of C, the last column of the obtained matrix is equal
to the k-th column of C. This implies that we have obtained a matrix which
differs from G only by a permutation of columns. Therefore C(|k) is nonsingular.
This is the contradiction and thus the essential rank of C is equal to n. Similar
considerations with D and H provide the same result. �

Now we are going to prove several technical lemmas about ± combinations
of elements in a finite field.

Lemma 4.5. Let us consider the field Fp, |Fp| = p > 2 be a prime

number. Let a1, . . . , ap−1 ∈ Fp \ {0}, possibly equal. Then for any a ∈ Fp there

exists a (p − 1)-tuple (δ1, . . . , δp−1), where δi ∈ {±1}, such that
p−1
∑

i=1
δiai = a.

P r o o f. It is sufficient to show that

(4.4)
∣

∣

∣

{

k
∑

i=1

δiai | δi ∈ {±1}
}∣

∣

∣
≥ k + 1

for each k = 1, . . . , p − 1.
Note that a1 6= −a1 since char Fp 6= 2. Hence |{a1,−a1}| = 2, and the

condition (4.4) is satisfied for k = 1.
We proceed by induction on k. Note that if on some step we have obtained

all the elements from F, then the condition (4.4) is satisfied for all k and we are
done. So, by induction we further assume that for any l < k it holds that

Nl =
∣

∣

∣

{ l
∑

i=1
δiai | δi ∈ {±1}

}∣

∣

∣
≥ l + 1 and Nl < p. To prove the lemma we

need to show that after we add the element ak ∈ Fp to the family a1, . . . , ak−1

the number of different elements that can be obtained as ± combinations of
a1, . . . , ak is greater than the number of such combinations for a1, . . . , ak−1 at
least by 1.

Let us denote the sets of all possible different ± combinations

{b1, . . . , bN} :=
{

k−1
∑

i=1

δiai | δi ∈ {±1}
}

, M :=
{

k
∑

i=1

δiai | δi ∈ {±1}
}

and consider two induced sets:

M1 = {b1 + ak, . . . , bN + ak} and M2 = {b1 − ak, . . . , bN − ak} ⊆ M.
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Note that |M1| = |M2| = N because all elements b1, . . . , bN are different. Hence

(4.5) |M1 ∪ M2| ≥ N.

Suppose there is an equality in (4.5). Comparing this assumption with
the fact that |M1| = |M2| = N we obtain that M1 = M2. Since these sets are
equal we have that the sums of all elements of these sets are equal, i.e.,

N
∑

i=1

(bi + ak) =

N
∑

i=1

(bi − ak).

After simplification we obtain

2Nak = 0.

This is a contradiction since no one of these factors is zero. Hence the inequality in
formula (4.5) is strict. Thus |M | ≥ |M1 ∪M2| > N . By the inductive hypothesis
N ≥ (k − 1) + 1 = k. This concludes the proof. �

Corollary 4.6. Let us consider the field Fp, where |Fp| = p is a prime

number. Let m ≥ p and a1, . . . , am be a tuple of fixed non-zero elements of Fp, we

admit that possibly some of them may coincide. Then for any a ∈ Fp there exists

an m-tuple (δ1, . . . , δm), where δi ∈ {±1}, i = 1, . . . ,m, such that a =
m
∑

i=1
δiai.

P r o o f. Let us consider x = ap + . . .+am. By Lemma 4.5 there is a tuple

(δ1, . . . , δp−1), where δi ∈ {±1}, such that a − x =
p−1
∑

i=1
δiai. Therefore

a =

p−1
∑

i=1

δiai +
m
∑

i=p

ai =
m
∑

i=1

δiai, where δi ∈ {±1}, i = 1, . . . ,m. 2

The next example shows that the result of Lemma 4.5 cannot be further
improved for m < p − 1.

Example 4.7. Let us consider p − 2 non-zero elements a1 = a2 = . . . =
ap−2 = 1. Then not all elements of Fp can be represented as ± combinations of
a1, . . . , ap−2. Namely, 0 cannot be equal to a sum of all these elements with ±
signs since p − 2 < p and (p − 2) is odd.

Now, we are going to prove that all elements of Fp\{0} can be represented
as ± combinations of any non-zero p − 2 elements of F.
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Corollary 4.8. Let Fp be a field, |Fp| = p > 2, p be a prime number.

Assume that a1, . . . , am ∈ Fp \ {0}, m ≥ p − 2, are non-zero elements of Fp,

possibly some of them are equal. Then for any a ∈ Fp \ {0} there exists an

m-tuple (δ1, . . . , δm), where δi ∈ {±1}, i = 1, . . . ,m, such that a =
m
∑

i=1
δiai.

P r o o f. If m ≥ p − 1 then the result follows from Lemma 4.5 and Corol-
lary 4.6. Let us show that the result holds if m = p − 2.

For p = 3 we have m = 1 and {a1,−a1} = {1, 2} = F3 \ {0}.

Assume now that p > 3. The rest of the proof splits into the following
two cases:

Case 1. Let us assume that among a1, . . . , ap−2 there are at least two

elements a, b such that a 6= ±b. Without loss of generality a1 6= ±a2. Then the
four elements ±a1 ± a2 are distinct. Indeed, assume in the contrary that there
are equal elements among them. Then one of the following equalities is true:

2(a1 ± a2) = 0; 2ai = 0, i = 1, 2.

Each of these equalities contradicts either with a1 6= ±a2, or with ai 6= 0, or with
p = char Fp > 2.

Now we repeat the arguments from the proof of Lemma 4.5 showing that

adjoining ak adds at least one element to the set
{k−1
∑

i=1
δiai | δi ∈ {±1}

}

. Since at

the second step there are 4 different elements, then at (p − 2)-nd step there are

p different elements, i.e.,
{p−2
∑

i=1
δiai | δi ∈ {±1}

}

= Fp.

Case 2. Let us assume now that all ai are equal up to the signs. By
choosing appropriate δi we may consider only the case a1 = . . . = ap−2. Then

p−2
∑

i=1

δiai = a1

(

p−2
∑

i=1

δi

)

, δi ∈ {±1}.

Multiplication by a non-zero a1 is a bijection in the field Fp. Thus it is sufficient to

consider only the set M =
{p−2
∑

i=1
δi | δi ∈ {±1}

}

. It is straightforward to see that

M = F \ {0}. Indeed, for any odd l ∈ {1, . . . , p − 1} we have the representation

l =
l
∑

i=1

1 +

p−2−l

2
∑

i=1

1 +

p−2−l

2
∑

i=1

(−1)
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and for any even l ∈ {1, . . . , p − 1} it holds that

l =

p−l
∑

i=1

(−1) +

l−2

2
∑

i=1

1 +

l−2

2
∑

i=1

(−1).

This concludes the proof. �

The following lemma is a key tool in the proof of the main results.

Lemma 4.9. Let the matrix A = (aij) ∈ Mn(Fq) have no zero elements.

Then there exists a matrix X ∈ Mn({±1}) such that per(A ◦ X) 6= 0.

P r o o f. In case per(A) 6= 0 we can take the matrix X with all elements
equal to one.

Assume now that per(A) = 0. Let us prove the existence of X by induc-
tion.

For n = 2 if per(A) = a11a22 + a12a21 = 0 then for the matrix

X =

(

1 1
−1 1

)

we have that per(A ◦ X) 6= 0. Indeed if for both matrices A and A ◦ X the
permanent is zero then

0 = per(A) + per(A ◦ X) = a11a22 + a12a21 + a11a22 − a12a21 = 2a11a22 6= 0

since p 6= 2 and a11, a22 6= 0.
Now we assume that for all matrices of size less than n the lemma is

true. Let A = (aij) ∈ Mn(Fq), per(A) = 0, aij 6= 0. Consider the Laplace
decomposition of A along the first row

(4.6) per(A) =

n
∑

i=1

a1iper(A(1|i)).

There are two possibilities:
Case 1. There exists a nonzero summand in the decomposition (4.6). Let

a1lper(A(1|l)) 6= 0. We consider X = (xij), x1l = −1, xij = 1 for all other (i, j).
Then per(A ◦ X) 6= 0 since otherwise

0 = per(A) − per(A ◦ X) = 2a1lper(A(1|l)) 6= 0.

Case 2. In the decomposition (4.6) all summands are equal to zero. Then
by the inductive hypothesis applied to the matrix A(1|1) we can choose Y ∈
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Mn({±1}) such that per(A(1|1) ◦ Y (1|1)) 6= 0. Then the Laplace decomposition
of

per(A ◦ Y ) =
n
∑

i=1

y1ia1iper(A(1|i) ◦ Y (1|i))

has a non-zero summand. Thus arguing as in Case 1 with the matrix A ◦ Y we
find Z ∈ Mn({±1}) such that per(A◦Y ◦Z) 6= 0. It remains to set X = Y ◦Z. �

Remark 4.10. In the paper [12] it was proved that if F is a field of zero
characteristic, A ∈ Mn(F) is a convertible matrix with perA > 0, then A contains
no more than (n2 + 3n− 2)/2 non-zero elements, so-called upper Gibson barrier.

The following theorem demonstrates non-existence of similar barrier for
the conversion over finite fields.

Theorem 4.11. Let p be a prime number. Then for any n ≥ p − 2
there exists a convertible matrix A = (aij) ∈ Mn(Fp) with nonzero permanent

and without zero entries.

P r o o f. Let us take B ∈ Mn(Fp) constructed as follows: b11 = . . . =
b1n = 1 and for the submatrix B(1|) located in the rows 2, . . . , n we take the
matrix C constructed in Lemma 4.4 if p6 | (n − 1) and the matrix D constructed
in Lemma 4.4 if p | (n − 1).

By Lemma 4.9 there exists Y ∈ Mn({±1}) such that α := per(B ◦Y ) 6= 0.
Let us consider A = B ◦ Y and prove that it is convertible.

We decompose the determinant of the matrix B by the first row

(4.7) det(B) =

n
∑

i=1

(−1)i+1b1i det(B(1|i)).

Since by Lemma 4.4 ess (B(1|)) = n−1 the sum (4.7) consists of n nonzero
summands. By Corollary 4.8 there are constants δ1, . . . , δn ∈ {±1} such that

n
∑

i=1

δi(−1)i+1c1i det(B(1|i)) = α.

Consider now the matrix Z = (zij) ∈ Mn({±1}) defined by

zij =

{

δj, if i = 1, j = 1, . . . , n,
1, if i ≥ 2, j = 1, . . . , n.

Hence,
det(B ◦ Z) = α.
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Now take X = Y ◦ Z. Therefore,

per(A) = per(B ◦ Y ) = α = det(B ◦ Z) = det(B ◦ Y ◦ Y ◦ Z) = det(A ◦ X).

Thus for any n ≥ p − 2 we have constructed the convertible matrix with
nonzero permanent. �

Low convertibility barriers for matrices over fields of zero characteristic
were investigated in the papers [7, 16]. It was proved that (0, 1)-matrices with
less than n + 6 non-zero elements are always convertible. Below we provide the
analog of this result for the matrices over finite fields.

Definition 4.12. Let A ∈ Mn(Fq). A generalized diagonal of A is a set

of n entries of A, no two of which lie in the same row or column.

Definition 4.13. Let A = (aij) ∈ Mn(Fq). An element aij is called

an essential element if it belongs to a generalized diagonal consisting of nonzero

elements.

Lemma 4.14. Let A = (aij) ∈ Mn(Fq) and aij be a non-essential element

of A. Then A is convertible if and only if the matrix A′ in which the element aij

is equal to 0 is convertible.

P r o o f. In the case aij is not essential we have that by its definition there

is no σ ∈ Sn such that
n
∏

k=1

akσ(k) 6= 0 where σ(i) = j. We write both determinant

and permanent of A as formal sums removing possible zero summands. Then
the obtained expressions do not depend on aij and therefore we can substitute
zero element instead of it. To prove the opposite implication we observe that this
substitution do not effect the set of zero summands. �

Lemma 4.15. Let A ∈ Mn({0, 1}) be a convertible (0, 1)-matrix over the

field of zero characteristic. Then any matrix with the same pattern of zeros is

convertible over any field.

P r o o f. The permanent of a (0, 1)-matrix is equal to the number of gen-
eralized diagonals which does not contain any zero element. If a (0, 1)-matrix A
is convertible then there exists X ∈ Mn({±1}) such that all nonzero summands
in the determinant of A ◦ X are positive, i.e. the formal expressions for the per-
manent of A and the determinant of A ◦X coincide. Thus substituting arbitrary
elements instead of ones we derive that the permanent of A and the determinant
of A ◦ X are still equal as formal expressions and therefore they coincide. In
particular any matrix with the pattern of zeros as in A is convertible by means
of the matrix X. �
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Below we provide the low barrier for the convertibility. This bound ap-
pears to be the same as the one established in [16] and [7] for (0, 1)-matrices over
fields of zero characteristic and is equal to ωn = n + 5.

Theorem 4.16. Let A ∈ Mn(Fq) and the number of the essential ele-

ments be not greater than ωn = n + 5. Then A is convertible.

P r o o f. By Lemma 4.14 we can substitute nonessential elements by zeros.
The obtained matrix contains less than or equal to ωn nonzero elements. Let us
substitute these elements by 1 and consider the obtained matrix as (0,1)-matrix
over the field of zero characteristic. By the theorem on the lower bound for the
conversion [7] the obtained (0,1)-matrix is convertible. Let X ∈ Mn(1,−1) be
the corresponding converter. Then by Lemma 4.15 X is the converter for the
matrix A. �

Remark 4.17. This bound is exact for the fields with more than 3
elements and of characteristic different from 2 since in Proposition 3.3 and The-
orem 3.5 nonconvertible matrices which contain n + 6 essential elements are con-
structed.
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