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ON ORDINARY AND Z2-GRADED POLYNOMIAL

IDENTITIES OF THE GRASSMANN ALGEBRA
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Communicated by P. Koshlukov

Abstract. The main purpose of this paper is to provide a survey of results
concerning the ordinary and Z2-graded polynomial identities of the infinite
dimensional Grassmann algebra over a field of characteristic zero, as well as
of its sequences of ordinary and Z2-graded codimensions and cocharacters.
We also intend to describe briefly the techniques used by the authors in
order to illustrate some important methods used in PI-theory.

1. Introduction. The infinite dimensional Grassmann algebra over a
field of characteristic zero plays an important role in the PI-theory (the theory
of algebras satisfying a polynomial identity). Furthermore, the description of its
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Ciências).



418 Viviane Ribeiro Tomaz da Silva

ordinary and Z2-graded identities involves relevant ideas used in PI-theory. The
main goal of this paper is to present and discuss briefly these results and their
proofs. In the first part, we will deal with the ordinary identities of the Grass-
mann algebra and its codimension and cocharacter sequences, by exploring some
methods used in their proofs. By proceeding similarly, the Z2-graded identities
of the Grassmann algebra as well as its Z2-graded codimension and cocharacter
sequences are presented in the second part of this paper.

Let us give the precise definitions. Let A be an associative algebra over
a field F of characteristic zero, and X = {x1, x2, . . . } be a countable infinite set
of indeterminates. We say that a polynomial f(x1, . . . , xn) in the free associative
algebra F 〈X〉 is an ordinary polynomial identity of A, if f(a1, . . . , an) = 0 for
all a1, . . . , an ∈ A. For instance, the Lie commutator [x1, x2] := x1x2 − x2x1

is an ordinary polynomial identity for any commutative algebra; moreover the
commutator of length three [x1, x2, x3] := [[x1, x2], x3] is an ordinary polynomial
identity for the Grassmann algebra. If A satisfies a non-trivial ordinary identity,
then we say that A is a PI-algebra. The set Id(A) of all ordinary identities of A
is a T -ideal of F 〈X〉, i.e., an ideal invariant under all endomorphisms of F 〈X〉.

On the other hand, ifX = Y ∪Z is a disjoint union of two countable sets of
indeterminates Y = {y1, y2, . . . } and Z = {z1, z2, . . . }, then the free associative
algebra F 〈X〉 = F 〈Y,Z〉 over X has a natural Z2-grading F(0) ⊕ F(1), where
F(0) (respectively F(1)) is the subspace of F 〈X〉 spanned by all monomials in the
variables X having an even (respectively odd) number of variables of Z.

Recall that an F -algebra A is said to be a Z2-graded algebra over F (or
a superalgebra) if there exist two subspaces A(0), A(1) such that A = A(0) ⊕ A(1)

and the following relations are satisfied:

A(0)A(0) +A(1)A(1) ⊆ A(0) and A(0)A(1) +A(1)A(0) ⊆ A(1).

We call A(i) the i-th homogeneous component of A and we say that a homoge-
neous element a ∈ A(i) has homogeneous degree i. A subspace W ⊆ A is called
homogeneous if and only if W = (W ∩A(0)) ⊕ (W ∩A(1)).

On the other hand, due to the duality between Z2-gradings and Z2-actions
on A, we can associate each Z2-grading of A to an automorphism ϕ of A of order
2 and vice versa. Still, if ϕ is an automorphism of A of order 2, then 〈ϕ〉 ∼= Z2

induces a natural Z2-grading A = A(0) ⊕A(1), where

A(0) = {a ∈ A | ϕ(a) = a} and A(1) = {a ∈ A | ϕ(a) = −a}.

A polynomial f(y1, . . . , yr, z1, . . . , zm) ∈ F 〈Y,Z〉 is a Z2-graded identity

of the superalgebra A if f(a1, . . . , ar, b1, . . . , bm) = 0 for all a1, . . . , ar ∈ A(0) and
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b1, . . . , bm ∈ A(1). The set Id gr(A) of all Z2-graded identities of A is a T2-ideal
of F 〈Y,Z〉, i.e., an ideal invariant under all endomorphisms of F 〈Y,Z〉 which
preserve the Z2-grading.

Since the characteristic of the ground field F is zero, it is well known that
the study of Id(A) as well of Id gr(A) is determined by their multilinear parts.
More precisely, in the ordinary (respectively Z2-graded) case, if

Pn = spanF{xσ(1)· · · xσ(n) | σ ∈ Sn}

(

respectively P gr
n = spanF {wσ(1)· · ·wσ(n) | σ ∈ Sn, wi ∈ {yi, zi}, 1 6 i 6 n}

)

,

then the study of Id(A) (respectively Id gr(A)) is equivalent to the study of Pn ∩
Id(A) (respectively P

gr
n ∩ Id gr(A)), for all n > 1. Still, if we denote by Pn(A)

(respectively P gr
n (A)) the quotient space

Pn(A) :=
Pn

Pn ∩ Id(A)

(

respectively P gr
n (A) :=

P
gr

n

P
gr

n ∩ Id gr(A)

)

,

then its dimension

cn(A) = dimF Pn(A) (respectively c gr
n (A) = dimF P

gr
n (A))

is called the n-th ordinary (respectively Z2-graded ) codimension of A and carries
relevant information about the ordinary (respectively Z2-graded) identities of A.

Moreover, in the Z2-graded case, we can consider also the multilinear
spaces

Pr,m = spanF {wσ(1) · · ·wσ(r+m) | σ ∈ Sr+m, wi = yi, if 1 6 i 6 r,

wi = zi−r, if r + 1 6 i 6 r +m}

and

Pr,m(A) :=
Pr,m

Pr,m ∩ Id gr(A)
.

The dimension cr,m(A) = dimF Pr,m(A) is called the (r,m)-th graded codimension

of A. The Z2-graded codimensions c gr
n (A) and cr,m(A) are related by

c gr
n (A) =

n
∑

r=0

(

n

r

)

cr,n−r(A).

If we consider the natural action of the group Sn (respectively Z2 ≀Sn and
Sr × Sm) on the space Pn(A) (respectively P

gr
n (A) and Pr,m(A)), then we can
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investigate its structure as an Sn-module (respectively a Z2 ≀ Sn-module and an
Sr×Sm-module) by describing its Sn-character (respectively Z2 ≀Sn-character and
Sr × Sm-character) called ordinary cocharacter (respectively Z2 ≀ Sn-cocharacter

and r ×m-th graded cocharacter).
While, in the ordinary case, it is well known that there is a one-to-one cor-

respondence between irreducible Sn-characters and partitions λ ⊢ n (see Theorem
12.2.7 of [6]); for the Z2-graded case we have that there is a one-to-one correspon-
dence between irreducible Sr×Sm-characters (respectively Z2 ≀Sn-characters) and
pairs of partitions (λ, µ), where λ ⊢ r, µ ⊢ m (respectively |λ| + |µ| = n). Hence
we have

χ(A) =
∑

λ ⊢ n

mλχλ, χr,m(A) =
∑

λ ⊢ r

µ ⊢ m

mλ,µ χλ⊗χµ and χ gr
n (A) =

∑

|λ| + |µ| = n

m′
λ,µ χλ,µ,

where mλ (respectively mλ,µ and m′
λ,µ) denotes the multiplicity of the irreducible

character χλ (respectively χλ ⊗ χµ and χλ,µ) associated with the partition λ

(respectively with the pair of partitions (λ, µ)). Moreover, in the Z2-graded case,
we have mλ,µ = m′

λ,µ for all λ ⊢ r, µ ⊢ n − r, with r = 0, . . . , n (see Theorem
10.4.5 of [8]), and thus here we will focus on χr,m(A) only. Furthermore, when
convenient, we will identify the irreducible character χλ with the Young diagram
corresponding to the partition λ.

Let E be the infinite-dimensional Grassmann algebra with presentation

E = F 〈1, e1, e2, . . . | eiej = −ejei〉.

Note that the set

BE := {ei1 · · · eit | 1 6 i1 < · · · < it, t > 0}

is a basis of E over F . For a basic element a = ei1 · · · eit ∈ BE, the length |a| is
given by t, the quantity of generators in a. Moreover, we can decompose E as a
direct sum of the subspaces

E(0) = spanF{a ∈ BE | |a| ≡ 0 (mod 2)}

and
E(1) = spanF {a ∈ BE | |a| ≡ 1 (mod 2)},

which are the center and the anti-commutative part of E, respectively. Clearly
the subspaces E(0) and E(1) satisfy the necessary conditions to turn E a super-
algebra, and one calls E = E(0) ⊕ E(1) the canonical grading of E. Still, given a
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superalgebra A = A(0) ⊕ A(1), we can build, from the canonical grading of E, a
new superalgebra called the Grassmann envelope of A and given by

G(A) := (A(0) ⊗ E(0)) ⊕ (A(1) ⊗ E(1)).

It is worth to say that the importance of the Grassmann algebra for
the PI-theory can be explicitated, for instance, through the celebrated Kemer’s
theory. In his works, Kemer proved [9, 10] that E appears in the classification
of the so-called verbally prime algebras, and any associative PI-algebra over a
field of characteristic zero is PI-equivalent to the Grassmann envelope of a finite
dimensional associative superalgebra.

Here we will deal with the Z2-gradings of E by considering the automor-
phisms ϕ of E of order 2 associated with them. Thus, when we are working with
the Z2-grading of E induced by the automorphism ϕ of E of order 2, we will
refer to E as Eϕ, and we will use the notations Id(Eϕ), Pr,m(Eϕ), cn(Eϕ) and
χr,m(Eϕ) instead of Id gr(E), Pr,m(E), c gr

n (E) and χr,m(E), respectively.
Note, for instance, that the canonical grading of E is induced by the

automorphism ϕ such that ϕ(ei) = −ei, for all i > 1. In particular, the vector
space L := spanF{e1, e2, . . . } is a homogeneous subspace of ϕ in this case.

In general, if ϕ is an automorphism of order 2 of the Grassmann algebra,
then for each i = 1, 2, . . . we have

ϕ(ei) =
∞
∑

j=1

αjiej +
∑

ak∈BE ,|ak|≥2

βkiak,

in which only finite many scalars αji, βki are nonzero.
Consider then the linear part ϕl of ϕ defined by

ϕl(ei) =
∞
∑

j=1

αjiej , i = 1, 2, . . . ,

and extend ϕl to E as a homomorphism. We clearly obtain that the automor-
phism ϕl is a linear operator on the vector space L = spanF {e1, e2, . . . }, that is,
L is a homogeneous subspace of ϕl. Note that L can be presented as a direct
sum of its subspaces, which are eigenspaces of ϕl. More precisely, L = L1 ⊕L−1,
where

L1 = {v ∈ L | ϕl(v) = v} and L−1 = {v ∈ L | ϕl(v) = −v}.

Observe that we have three possibilities for dimF L1 and dimF L−1:
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Case 1: dimF L1 = ∞ and dimF L−1 = ∞.

Case 2: dimF L1 = ℓ <∞ and dimF L−1 = ∞.

Case 3: dimF L1 = ∞ and dimF L−1 = ℓ <∞.

Moreover, one example of each case is given by the automorphisms ϕ
(∞)
l ,

ϕ
(ℓ)
l and ϕ

(ℓ∗)
l defined as follows:

ϕ
(∞)
l (ei)=

{

ei, i even

−ei, i odd
ϕ

(ℓ)
l (ei)=

{

ei, i = 1, . . . , ℓ

−ei, otherwise

ϕ
(ℓ∗)
l (ei)=

{

−ei, i = 1, . . . , ℓ

ei, otherwise.

2. Ordinary identities, codimensions and cocharacters. In
1973, Krakowski and Regev [11] computed the T -ideal of ordinary polynomial
identities of the Grassmann algebra by using the theory of codimensions. We will
recall briefly the useful and interesting method developed by them in [11].

Given an element σ ∈ Sn and a subset I ⊆ {1, . . . , n}, consider the integer

f
(n)
I (σ) ∈ {−1, 1} defined by the equality

aσ(1) · · · aσ(n) = f
(n)
I (σ) a1 · · · an,

where a1, . . . , an are arbitrary elements of BE such that a1 · · · an 6= 0 and the set
of indices i for which ai is of odd length coincides with the I.

Define the 2n × n! matrix

(1) H(n) = (f
(n)
I (σ))

determined by ordering the 2n subsets of {1, . . . , n} and using them as row indices,
and ordering the n! elements of Sn and using them as column indices.

Krakowski and Regev proved that cn(E) = rankFH
(n) and thus, by

studying the rank of H(n), they obtained a lower bound to cn(E), by showing
rankF H

(n) > 2n−1 and thus concluding

(2) cn(E) > 2n−1.
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On the other hand, an upper bound to cn(E) was found by working with
codimensions of the Jd-type algebras, that is, algebras satisfying an identity of
the form

x1 · · · xd =
∑

σ ∈ Sd
σ(1) 6= 1

ασxσ(1) · · · xσ(d).

Note that the Grassmann algebra E is an algebra of type J3, since E satisfies the
identity [x1, x2, x3] = 0, that is, the identity x1x2x3 = x2x1x3 +x3x1x2 −x3x2x1.
In [11], the authors proved that for any algebra A of type Jd

(3) cn(A) 6 (d− 1)n−1.

Hence as a corollary they established that cn(E) 6 2n−1. In this way Krakowski
and Regev concluded the following:

Theorem 1. For any positive integer n, the n-th ordinary codimension

of the Grassmann algebra E is given by cn(E) = 2n−1.

Given any T -ideal I, denote by cn(I) the dimension of the vector space

Pn(I) :=
Pn

Pn ∩ I
.

Note that as a consequence of (3), we also get cn(〈[x1, x2, x3]〉T ) 6 2n−1 and thus,
since clearly 〈[x1, x2, x3]〉T ⊆ Id(E), we have

2n−1
6 cn(E) 6 cn(〈[x1, x2, x3]〉T ) 6 2n−1

and therefore Krakowski and Regev concluded that in general, for the Grassmann
algebra E over a field F of characteristic 6= 2, we have cn(E) = cn(〈[x1, x2, x3]〉T )
and Pn ∩ Id(E) = Pn ∩ 〈[x1, x2, x3]〉T . In the case when the characteristic of F is
zero, this implies the following:

Theorem 2. The T -ideal of ordinary polynomial identities for the Grass-

mann algebra E is generated by [x1, x2, x3], that is, Id(E) = 〈[x1, x2, x3]〉T .

It is important to say that, in 1962, Latyshev [12] proved that the T -
ideal 〈[x1, x2, x3]〉T is Spechtian. Moreover, in 1991, Di Vincenzo [4] worked also
with the finite dimensional Grassmann algebras and gave a different proof for
Theorem 2.

On the other hand, the cocharacter sequence of the Grassmann algebra
was described by Olsson and Regev [13] in 1976. In their proof, the authors
showed that some irreducible characters appeared in the cocharacter χn(E) and,
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by computing their dimensions, they established (2) and concluded, by using
Theorem 1, the following result.

Theorem 3. For any positive integer n, the n-th ordinary cocharacter

of the Grassmann algebra E is given by χn(E) =

n−1
∑

i=0

← n − i →

↑
i

↓

.

Observe that, in particular, Olsson and Regev gave a new proof to (2).
Hence, by finding a set of generators to Pn(〈[x1, x2, x3]〉T ) as a vector space, one
may prove by a different way Theorem 1 (and also Theorem 2). Note that this
was done in the proof of Theorem 4.1.8 of [8].

3. Z2-graded identities, codimensions and cocharacters. As
a consequence of the study of the ordinary case, we clearly have a complete
description of the Z2-graded identities as well of the Z2-graded codimensions and
cocharacters for the trivial grading E = E ⊕ 0, that is, for the superalgebra
E

ϕ
(0∗)
l

. On the other hand, Giambruno, Mishchenko and Zaicev [7] proved in

2001 the following result about the canonical grading E = E(0) ⊕ E(1), that is,
the superalgebra E

ϕ
(0)
l

.

Theorem 4. For the canonical grading E
ϕ

(0)
l

of the Grassmann algebra

we have the following:

(i) Id(E
ϕ

(0)
l

) = 〈[y1, y2], [y1, z1], z1z2 + z2z1〉T2
;

(ii) cn(E
ϕ

(0)
l

) = 2n, for all n > 1;

(iii) χr,m(E
ϕ

(0)
l

) = ← r → ⊗
↑

m

↓

, for all r,m > 0.

In general, if ϕl is an arbitrary automorphism of order 2 of E such that
L is a homogeneous subspace, then the Z2-graded codimensions cn(Eϕl

) were
investigated by Anisimov [2] in 2001. He proved the following result.

Theorem 5. For any positive integer n:

(i) If dimF L1 = ∞ and dimF L−1 = ∞, then

cn(Eϕ) = cn(Eϕl
) = 4n− 1

2 ;
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(ii) If dimF L−1 = ℓ <∞, then

cn(Eϕl
) = 2n−1

min{ℓ,n}X
k=0

 
n

k

!
;

(iii) If dimF L1 = ℓ <∞, then cn(Eϕl
) = 4n− 1

2 for n 6 ℓ and

2n−1
ℓ

∑

k=0

(

n

k

)

6 cn(Eϕl
) 6 2n

ℓ
∑

k=0

(

n

k

)

for n > ℓ+ 1.

It is interesting that, in order to establish the above result, Anisimov (see
[1] and [2]) generalized the method developed by Krakowski and Regev for the
computation of the codimension sequence of E (in the ordinary case) by using
the matrices H(n) given in (1). In [15], by applying this generalization, da Silva
obtained the exact value of cn(Eϕl

) in the open case left by Anisimov.

Theorem 6. If dimF L1 = ℓ <∞ and n > ℓ+ 1, then

cn(Eϕl
) =























2n−1

ℓ
∑

k=0

(

n

k

)

+ 2n−1

(

n− 1

ℓ

)

, if ℓ is even

2n−1

ℓ
∑

k=0

(

n

k

)

+ (2n−1 − 1)

(

n− 1

ℓ

)

, if ℓ is odd.

Also in [2], Anisimov described the Z2-graded codimensions cn(Eϕ) as
well as the T2-ideal Id(Eϕ) for any automorphism ϕ of order 2 of E such that
dimF L1 = dimF L−1 = ∞.

Theorem 7. Let ϕ be an automorphism of order 2 of the Grassmann

algebra such that dimF L1 = dimF L−1 = ∞. Then:

(i) Id(Eϕ) = Id(Eϕl
) = 〈[u1, u2, u3] | ui ∈ Y ∪ Z〉;

(ii) cn(Eϕ) = cn(Eϕl
) = 4n− 1

2 for any positive integer n.

The deep connections between the T2-ideals Id(Eϕ) and Id(Eϕl
) as well

as the Z2-graded codimensions cn(Eϕ) and cn(Eϕl
), when one of the eigenspaces

L1 or L−1 is finite-dimensional, were pointed out by Anisimov in 2003. Given an
automorphism ϕ of the order 2 of E we say that ϕ is a graded automorphism if
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ϕ(E(i)) = E(i), for i = 0, 1, where E = E(0) ⊕E(1) is the canonical grading of E.
In [3], Anisimov proved the following result.

Theorem 8. Let ϕ be a graded automorphism of order 2 of the Grass-

mann algebra. If ϕ satisfies one of the conditions:

(i) dimF L−1 = ℓ < ∞ and

ℓ+1
∏

j=1

(ϕ(eij ) − eij ) = 0 for any ℓ + 1 generators

ei1 , . . . , eiℓ+1
,

(ii) dimF L1 = ℓ < ∞ and

ℓ+1
∏

j=1

(ϕ(eij ) + eij ) = 0 for any ℓ + 1 generators

ei1 , . . . , eiℓ+1
,

then

• Id(Eϕ) = Id(Eϕl
);

• cn(Eϕ) = cn(Eϕl
) for any positive integer n.

Note that the conditions (i) and (ii) are natural for the graded automor-
phisms of order 2 of E. Indeed, in [3], Anisimov proved that the conditions (i)
and (ii) hold for any such automorphism with dimL−1 = 1 and dimL1 = 1,
respectively. In other words, given any graded automorphism of order 2 of E we
have

(4) Id(Eϕ) = Id(Eϕl
) and cn(Eϕ) = cn(Eϕl

), if dimL−1 = 1 or dimL1 = 1.

In particular, the previous results show that in order to know Id(Eϕ)
and cn(Eϕ) (as well as χr,m(Eϕ)), for any automorphism ϕ of order 2 of E in
any of the cases mentioned above, it suffices to study Id(Eϕl

) and cn(Eϕl
) (and

χr,m(Eϕl
)), respectively.

Di Vincenzo and da Silva described in [5] (see also [14]) the Z2-graded
identities, codimensions and cocharacters of Eϕl

. Observe that a complete de-
scription of Id(Eϕl

), cn(Eϕl
) and χr,m(Eϕl

) is given when we describe the Z2-
graded polynomial identities, as well as its Z2-graded codimension and cochar-
acter sequences, for the superalgebras E

ϕ
(∞)
l

, E
ϕ

(ℓ)
l

and E
ϕ

(ℓ∗)
l

defined in the

introduction.
In [5], the authors exploited the deep relations between the Sr × Sm-

modules Pr,m(E
ϕ

(∞)
l

), Pr,m(E
ϕ

(ℓ∗)
l

) and Pr+m(E) established by the linear iso-

morphism ψr,m : Pr+m −→ Pr,m induced by the map

xi 7→

{

yi for i = 1, . . . , r

zi−r for i = r + 1, . . . , r +m
.
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And thus, by using the knowledge of the ordinary case given by Theorems 1, 2
and 3, they obtained a new proof of items (i) and (ii) of Theorem 5, as well as
the following results about the Z2-graded polynomial identities and cocharacter
sequences for the superalgebras E

ϕ
(∞)
l

and E
ϕ

(ℓ∗)
l

.

Theorem 9. Let U = Y ∪ Z. Then

(i) Id(E
ϕ

(∞)
l

) = 〈[u1, u2, u3] | ui ∈ U〉T2

(ii) Id(E
ϕ

(ℓ∗)
l

) = 〈[u1, u2, u3], z1z2 · · · zℓ+1 | ui ∈ U〉T2
.

Theorem 10. If d = ∞, ℓ∗ with ℓ > 0, then, for all r,m > 1, we have

(i) χ0,m(E
ϕ

(d)
l

) =



























m−1
∑

j=0

∅ ⊗

↑

m − j

↓

← j →

,
if either d = ∞

or d = ℓ∗ with m 6 ℓ

0, if d = ℓ∗ with m > ℓ+ 1

(ii) χr,m(E
ϕ

(d)
l

) =



























2

r−1
∑

i=0

m−1
∑

j=0

← r − i →

↑

i

↓

⊗
↑

m− j

↓

← j →

,
if either d = ∞

or d = ℓ∗ with m 6 ℓ

0, if d = ℓ∗ with m > ℓ+ 1

(iii) χr,0(Eϕ
(d)
l

) =
r−1
∑

i=0

← r − i →

↑
i

↓

⊗ ∅, for d = ∞, ℓ∗.

While the restriction on the quantity of generators ei with Z2-degree 1
leads us to a nilpotent condition expressed by the Z2-graded identity z1z2 · · · zℓ+1

of E
ϕ

(ℓ∗)
l

, we have that the restriction on the quantity of generators ei with Z2-

degree 0 has deeper consequences. The study of the superalgebras E
ϕ

(ℓ)
l

was done

by Di Vincenzo and da Silva in [5] by using the so-called Y-proper polynomials,
that is, the polynomials f ∈ F 〈Y,Z〉 such that all the variables yi ∈ Y occurring
in f appear in commutators only.

Here, we denote by B(Y ) the set of all Y-proper polynomials and we recall
(see [6]) that, if A is a unitary superalgebra over a field F of characteristic zero,
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then its T2-ideal Id gr(A) is determined by its multilinear Y-proper polynomials,
that is, by the elements of the spaces Γr,m := Pr,m ∩ B(Y ) which are Z2-graded
identities for A. Furthermore, we can consider the quotient space

Γr,m(A) :=
Γr,m

Γr,m ∩ Id gr(A)

and define in an obvious way the Y-proper (r,m)-th codimension and cocharacter

of A, which are denoted by γr,m(A) and ξr,m(A), respectively. Due to the deep re-
lations between the Sr ×Sm-structure (and dimension) of the spaces Pr,m(A) and
Γr,m(A), one may obtain a complete description of the Z2-graded identities, codi-
mensions and cocharacters of a superalgebra A, by studying the Y-proper spaces.
It is exactly this strategy which was used in [5] in the investigation of E

ϕ
(ℓ)
l

.

Furthermore, by considering

I := 〈[u1, u2, u3] | ui ∈ Y ∪ Z〉

and that, for any σ ∈ Sn, we have

[uσ(1), uσ(2)] · · · [uσ(n−1), uσ(n)] = (−1)σ [u1, u2] · · · [un−1, un] (mod I),

where (−1)σ is the sign of the permutation σ, the authors easily established the
crucial lemmas:

Lemma 11. If r ≡ 0 (mod 2) and m > 0, then for each f ∈ Γr,m there

exists g ∈ Γ0,m such that

f(y1, . . . , yr, z1, . . . , zm) ≡ g(z1, . . . , zm)[y1, y2] · · · [yr−1, yr] (mod I).

Moreover we have

(i) If r > ℓ+ 1, then f ∈ Id(E
ϕ

(ℓ)
l

);

(ii) If r 6 ℓ, then f ∈ Id(E
ϕ

(ℓ)
l

) if and only if g ∈ Id(E
ϕ

(ℓ−r)
l

).

Lemma 12. If r ≡ 1 (mod 2) and m > 1, then for each f ∈ Γr,m there

exists g ∈ Γ1,m such that

f(y1, . . . , yr, z1, . . . , zm) ≡ g(z1, . . . , zm, y1)[y2, y3] · · · [yr−1, yr] (mod I).

Moreover we have

(i) If r > ℓ+ 1, then f ∈ Id(E
ϕ

(ℓ)
l

);
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(ii) If r 6 ℓ, then f ∈ Id(E
ϕ

(ℓ)
l

) if and only if g ∈ Id(E
ϕ

(ℓ−r+1)
l

).

Note that these lemmas have the relevant rule to show where the investi-
gation aboutE

ϕ
(ℓ)
l

should focus, namely on the study of the spaces Γ0,m∩Id(E
ϕ

(h)
l

)

and Γ1,m ∩ Id(E
ϕ

(h)
l

), for all h. The next step consisted on to find an appropriate

set of generators for Γ0,m modulo I:

Definition 13. Given a subset T = {j1, . . . , jt} ⊆ {1, . . . ,m} such that

j1 < j2 < · · · < jt and t = |T | is even, we consider the elements i1 < i2 < · · · < ir
of the complementary set {1, . . . ,m} − T . We define the polynomial fT in Γ0,m

by:

fT = zi1 · · · zir [zj1 , zj2 ] · · · [zjt−1 , zjt ].

A specific linear combination of these polynomials fT has a crucial role.

Definition 14. For m > 2 let

gm(z1, . . . , zm) =
∑

T
|T | even

(−2)−
|T |
2 fT ,

moreover, define

g1(z1) = z1.

Indeed, concerning the spaces Γ0,m and Γ1,m, we have:

Proposition 15. The polynomials

gℓ+2(z1, . . . , zℓ+2), [gℓ+1(z1, . . . , zℓ+1), y] and gℓ+1(z1, . . . , zℓ+1)[zℓ+2, y]

are Z2-graded polynomial identities for E
ϕ

(ℓ)
l

.

The main results of [5] are the following:

Theorem 16. The T2-ideal Id(E
ϕ

(ℓ)
l

) is generated by the set of the fol-

lowing polynomials:

(i) [u1, u2, u3], ui ∈ Y ∪ Z,

(ii) [y1, y2] · · · [yℓ−1, yℓ][yℓ+1, uℓ+2], uℓ+2 ∈ Y ∪ Z (if ℓ is even),
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(iii) [y1, y2] · · · [yℓ−2, yℓ−1][yℓ, yℓ+1] (if ℓ is odd),

(iv) gℓ−r+2(z1, . . . , zℓ−r+2)[y1, y2] · · · [yr−1, yr] (for all r 6 ℓ, r even),

(v) [gℓ−r+2(z1, . . . , zℓ−r+2), y1][y2, y3] · · · [yr−1, yr] (for all r 6 ℓ, r odd),

(vi) gℓ−r+2(z1, . . . , zℓ−r+2)[zℓ−r+3, y1][y2, y3] · · · [yr−1, yr] (for all r 6 ℓ, r odd).

Theorem 17. Given ℓ > 0, we have, for all r,m > 1:

(i) χ0,m(E
ϕ

(ℓ)
l

) =

min{m−1,ℓ}
∑

j=0

∅ ⊗
↑

m− j

↓

← j →

(ii) χr,0(Eϕ
(ℓ)
l

) =











































min{r−1,ℓ}
∑

i=0

← r − i →

↑

i

↓

⊗ ∅, if ℓ is even

min{r−1,ℓ−1}
∑

i=0

← r − i →

↑

i

↓

⊗ ∅, if ℓ is odd

(iii) χr,m(E
ϕ

(ℓ)
l

) =
r−1
∑

i=0

m−1
∑

j=0

mi,j

← r − i →

↑
i

↓

⊗
↑

m − j

↓

← j →

,

where mi,j =











2, if i+ j 6 ℓ− 1

1, if i+ j = ℓ

0, otherwise.

The interested reader can find other proofs of these results in [14]. In
particular, the Z2-graded cocharacters are described directly by da Silva, without
using the Y-proper polynomials.

The following corollary is a consequence of the results of this section:
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Corollary 18.

(i) If dimF L1 = ∞ and dimF L−1 = ∞, then

Id(Eϕ) = Id(E
ϕ

(∞)
l

) = 〈[u1, u2, u3] | ui ∈ Y ∪ Z〉T2
,

cn(Eϕ) = cn(E
ϕ

(∞)
l

) = 4n− 1
2 and χr,m(Eϕ) = χr,m(E

ϕ
(∞)
l

)

(see Theorem 10).

(ii) If ϕ is a graded automorphism and ℓ is a positive integer then:

Id(Eϕ) cn(Eϕ) χr,m(Eϕ)

dimF L1 = 1
Id(E

ϕ
(1)
l

)

see Theorem 16

cn(E
ϕ

(1)
l

)

see Theorems 5 and 6

χr,m(E
ϕ

(1)
l

)

see Theorem 17

dimF L1 = ℓ > 1

and

ℓ+1Y
j=1

(ϕ(eij
) + eij

) = 0

for any ℓ + 1 generators ei1 , . . . , eiℓ+1

Id(E
ϕ

(ℓ)
l

)

see Theorem 16

cn(E
ϕ

(ℓ)
l

)

see Theorems 5 and 6

χr,m(E
ϕ

(ℓ)
l

)

see Theorem 17

dimF L−1 = 1
Id(E

ϕ
(1∗)
l

)

see Theorem 9

cn(E
ϕ

(1∗)
l

)

see Theorem 5

χr,m(E
ϕ

(1∗)
l

)

see Theorem 10

dimF L−1 = ℓ > 1

and

ℓ+1Y
j=1

(ϕ(eij
) − eij

) = 0

for any ℓ + 1 generators ei1 , . . . , eiℓ+1

Id(E
ϕ

(ℓ∗)
l

)

see Theorem 9

cn(E
ϕ

(ℓ∗)
l

)

see Theorem 5

χr,m(E
ϕ

(ℓ∗)
l

)

see Theorem 10

It is worth to say that the above results remain valid if 1 does not belong
to E (see [2, 3, 14]).
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