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Abstract. This is a survey paper to summarize the latest results on the
universal enveloping algebras of Malcev algebras, triple systems and Leibniz
n-ary algebras.

1. Introduction. Nonassociative algebras are very rich in algebraic
structure. They have important applications not only in many branches of math-
ematics but also in physics. Perhaps, a Lie algebra is the most known example
of a nonassociative algebra. In the classical theory of Lie algebras, the famous
Poincaré-Birkhoff-Witt (PBW) theorem (Poincaré (1900), G. D. Birkhoff (1937),
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Witt (1937))[40, 4, 53] establishes a fundamental connection between Lie and as-
sociative algebras by relating the universal associative enveloping algebra to any
Lie algebra L.

Let L be a Lie algebra over a field F. Then the universal associative
enveloping algebra of L is a pair (U(L), ε) such that

1. U(L) is a unital associative algebra over F.

2. ε : L→ U(L)− is a Lie algebra homomorphism.

3. If (A,ψ) is another such pair, then there exists a unique homomorphism
θ : U(L) → A such that θ ◦ ε = ψ.

The Poincaré-Birkhoff-Witt theorem describes the structure of a linear
basis of U(L):

Theorem 1. Let L be a Lie algebra over a field F, and (U(L), ε) its
universal enveloping algebra. If {xα | α ∈ I} is a basis of L over F where I is an
index set with a total order ≤, then monomials of the form

ε(xα1
)k1 · · · ε(xαr )

kr

where α1 < · · · < αr and the integers ki ≥ 0 are arbitrary and form a basis of
U(L) over F.

In [26] Lazard constructed a universal enveloping algebra for a Lie algebra
over a principal ideal domain. In general, not every Lie ring can be isomorphi-
cally imbedded into the commutator Lie ring A− of an associative ring A. The
corresponding counter-example was given by Shirshov [49].

For other nonassociative structures analogous results have been also dis-
covered which allowed to describe their representations by means of universal
enveloping algebras and to make calculations in a similar way as in a ring of
polynomials. In particular, for color Lie algebras (superalgebras) introduced by
V. Rittenberg and D. Wyler [41] and extensively studied by M. Scheunert [43] the
generalized PBW and Ado theorems hold true which appeared to be a powerful
technique for studying representations.

2. Malcev algebras.

2.1. PBW-theorem. Moufang-Lie algebras (now called Malcev alge-
bras) were introduced by Malcev [32] as the tangent algebras of analytic Moufang
loops.

Definition 1. A Malcev algebra is a vector space M over a field F with
a bilinear product [a, b] satisfying anticommutativity and the Malcev identity for
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all a, b, c ∈M :

[a, a] = 0, [J(a, b, c), a] = J(a, b, [a, c]).

where
J(a, b, c) = [[a, b], c] + [[b, c], a] + [[c, a], b].

Clearly, every Lie algebra is a Malcev algebra, and so Malcev algebras
generalize the class of Lie algebras.

All of the known examples of finite-dimensional Malcev algebras arise
from the following construction.

Example 1. Let A be an alternative algebra, that is, its associator
(a, b, c) = (ab)c − a(bc) satisfies

(a, b, c) = −(b, a, c),

(a, b, c) = −(a, c, b),

for any a, b, c ∈ A. If we introduce a new product by

[x, y] = xy − yx,

then we obtain a new algebra denoted by A− which satisfies both anticommu-
tativity and Malcev identity. Hence, A− is a Malcev algebra. Obviously, any
subspace M of A closed under [ · , · ] is also an example of a Malcev algebra.

In [24] Kuzmin developed the complete theory of Malcev algebras of finite-
dimensions. In particular, he showed that every central simple finite-dimensional
Malcev algebra over a field of characteristic different from 2 and 3 is either a Lie
algebra or the algebra of the form O−/F1, where O is the octonion algebra over
F and 1 denotes the identity of O.

A Malcev algebra is said to be special if it can be realized as a subalgebra
of A−, where A is an alternative algebra. One of the open questions in the
area of Malcev algebras is the well known speciality problem: is every Malcev
algebra special? This problem has been formulated by Kuzmin in the Dniester
Notebook (see also [14, 44, 50]). It is clear that O−/F1 is a special Malcev
algebra. Moreover, all examples of finite-dimensional Malcev algebras we know
are special. Some of the most important recent work related to the speciality
problem for Malcev algebras is in a series of papers by Shestakov and Zhukavets
[46, 47, 48]. In particular, they showed that a free Malcev superalgebra on one
odd generator is special. As a consequence, the Malcev Grassmann algebra is
also special.
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Let us now discuss the results of Shestakov and Zhukavets in more details.

Definition 2. A superalgebra M = M0⊕M1 is a Z2-graded vector space
such that

M0M0 ⊆M0, M1M1 ⊆M0, M1M0 ⊆M1, M0M1 ⊆M1.

The elements from M0 and M1 are called homogeneous of degrees 0 and
1, respectively. Then:

Definition 3. A superalgebra M is called a Malcev superalgebra if the
following super-identities hold:

xy = −(−1)xyyx,

((xy)z)t − x((yz)t) − (−1)y(z+t)(x(zt))y − (−1)t(y+z)((xt)y)z

= (−1)yz(xz)(yt),

where x, y, z, t denote the degrees of the homogeneous elements x, y, z, and t,
respectively.

Let Malc[x] be a free Malcev superalgebra generated by one odd element
x. As proved in [45], Malc[x] admits the following linear basis:

{xk, x4kx2, x4k+1x2 | k > 0}.

Using this fact, the authors showed in [48] that there is an injective homomor-
phism from Malc[x] into A−/I where A = Alt[x] is a free alternative superalgebra
on one odd generator x and I = (A2A2)A+A(A2A2). In other words, Malc[x] is
a special Malcev algebra.

There is another way of constructing Malcev algebras which is based
on the concept of generalized alternative nucleus of A where A is an arbitrary
algebra. Namely, for any algebra A its generalized alternative nucleus is given by

Nalt(A) = {a ∈ A | (a, x, y) = −(x, a, y) = (x, y, a), x, y ∈ A},

where (x, y, z) = (xy)z − x(yz). This is not necessarily a subalgebra of A but it
is a subalgebra of A−, that is, it is closed under [x, y] = xy − yx. In fact, it can
be proven that Nalt(A) is a Malcev algebra relative to [ · , · ].

In 2004, Pérez-Izquierdo and Shestakov [38] extended the PBW theorem
from Lie algebras to Malcev algebras. For any Malcev algebra M , over a field of
characteristic different fron 2 and 3, they constructed a universal nonassociative
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enveloping algebra U(M) which shares many properties of the universal asso-
ciative enveloping algebras of Lie algebras: U(M) is linearly isomorphic to the
polynomial algebra P (M) and has a natural (nonassociative) Hopf algebra struc-
ture. We note that the PBW theorem does not answer the speciality problem
since U(M) is not necessarily alternative.

Theorem 2 (Pérez-Izquierdo and Shestakov [38]). For every Malcev
algebra M over a field F of characteristic 6= 2, 3 there exists a nonassociative
algebra U(M) and an injective algebra morphism ι : M → U(M)− such that
ι(M) ⊆ Nalt(U(M)). Furthermore, U(M) is a universal object with respect to
such morphisms.

We next recall the construction of U(M) given in [38]. Let {ai | i ∈ Λ} be
a linear basis of M over F where Λ is an index set with some fixed total order ≤.
Consider F (M), the unital free nonassociative algebra on the set of generators
ai, i ∈ Λ. Clearly, M can be viewed as a subset of F (M). Then we generate the
ideal I(M) of F (M) by the following elements:

ab− ba− [a, b], (a, x, y) + (x, a, y), (x, a, y) + (x, y, a),

for all a, b ∈ M and all x, y ∈ F (M). Let us set U(M) = F (M)/I(M). As
follows immediately from the definition of U(M), the mapping ι : M → U(M)−

given by a 7→ ι(a) = a = a+ I(M) is a Malcev homomorphism such that ι(M) ⊆
Nalt(U(M)). As shown in [38] a linear basis of U(M) consists of 1 and the
following left-normed monomials

ai1(ai2(· · · (ain−1
ain) · · · )),

where i1 ≤ . . . ≤ in.
In [5, 8, 52] the structure constants for the universal nonassociative en-

veloping algebras U(M) for the 4-dimensional solvable Malcev algebra, the 5-
dimensional nilpotent Malcev and the one-parameter family of 5-dimensional
solvable (non-nilpotent) Malcev algebras have been determined by means of con-
structing a representation of U(M) by differential operators on the polynomial
algebra P (M).

Since U(M) is not always alternative, it seems reasonable to consider its
alternator ideal

I(U(M)) = 〈(x, x, y), (y, x, x) | x, y ∈ U(M)〉

and its maximal alternative quotient A(M) = U(M)/I(U(M)), which is the uni-
versal alternative enveloping algebra of M . The map τ : M → A(M)− defined
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by τ(a) = a+ I(U(M)) is a universal homomorphism. It remains an open prob-
lem whether τ is always an injective homomorphism which is equivalent to the
speciality problem.

This construction produces new examples of infinite dimensional alterna-
tive algebras.

Example 2 ( Tvalavadze, Bremner [52]). Let Mγ = Span{a, b, c, d, e} be
a 5-dimensional Malcev algebra with the following multiplication table:

[b, c] = 2d, [a, b] = −b, [a, c] = −c, [a, d] = d, [a, e] = γe (γ 6= 0).

Then the universal alternative enveloping algebra A(Mγ) of Mγ has the following
basis:

{aid, aibjckem | i, j, k,m ≥ 0}

with the following multiplication table:

aid · ard = 0,

aid · arbncpes = δ0nδ0pδ0sa
i(a−1)rd,

aibjckem · ard = δj0δk0δm0a
i+rd,

aibjckem · arbncpes = ai(a+j+k−γm)rbj+nck+pem+s + δm,0δs,0δj+n,1δk+p,1T
ir
jk,

where

T ir
jk =





0 if (j, k) = (0, 0),

(a− 1)i+rd− ai(a+ 1)rd if (j, k) = (1, 0),

−(a− 1)i+rd− ai(a+ 1)rd if (j, k) = (0, 1),

ai(a− 1)rd− ai(a+ 2)rd if (j, k) = (1, 1).

In particular this implies that every Malcev algebra Mγ in the one-parameter
family of solvable 5-dimensional Malcev algebras is special.

It is worth mentioning that A(M) is not always infinite-dimensional as in
the following lemma (the proof of this lemma can be found in [6]):

Lemma 1 (Shestakov). The universal alternative enveloping algebra
U(M) of the 7-dimensional simple Malcev algebra M over R is isomorphic to the
division algebra O of real octonions: U(M) ∼= O.
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2.2. Chevalley’s and Ado-Iwasawa theorems. In the theory of uni-
versal enveloping algebras of Lie algebras classical Chevalley’s theorem asserts
that the center of the universal enveloping algebra U(L) of a semi-simple Lie
algebra L is isomorphic to a polynomial ring in n variables where n is the dimen-
sion of the Cartan subalgebra of L. Moreover, by Kostant’s theorem U(L) is in
fact a free module over its center. An analogous result holds for Malcev algebras.

Theorem 3 (Zhelyabin, Shestakov [54]). The center of the universal
nonassociative envelope for a finite-dimensional semisimple Malcev algebra over
a field of characteristic zero is a ring of polynomials in a finite number of variables
equal to the dimension of its Cartan subalgebra, and the universal nonassociative
enveloping algebra is a free module over its center.

If a Malcev algebra is not semisimple, then the center of the universal
nonassociative envelope can have a different structure [52].

Theorem 4. Let M = span{a, b, c, d, e} belong to the one-parameter
family of solvable 5-dimensional Malcev algebras over a field F. Then

Z(U) =





F[ dγmem ] if γ = l/m with l,m ∈ Z, (l,m) = 1, m > 0;

F if γ /∈ Q.

In the rest of this section we discuss the extension of the Ado-Iwasawa
theorem to Malcev algebras. In the case of Lie algebras, Ado’s theorem states
that every finite-dimensional Lie algebra over a field of characteristic zero has a
faithful finite-dimensional representation. Another way of stating this result is
that every finite-dimensional Lie algebra L is a subalgebra of EndV − for some
finite-dimensional vector space V , so can be viewed as an algebra of matrices.
In [15] Filippov constructed an example of a nilpotent finite-dimensional Malcev
algebra over an associative commutative ring Φ (1

6 ∈ Φ) of index 8 on a set of 6
generators which has no faithful representation.

Definition 4. A linear map ρ : A→ EndV , where A is a Malcev algebra
and V is a vector space, is called a representation if the sum A⊕ V is a Malcev
algebra under the following operation:

(x1 + v1) · (x2 + v2) = x1x2 + ρ(x2)(v1) − ρ(x1)(v2).

Moreover, ρ is said to be faithful if

Ker(ρ) = {x ∈ A | ρ(x) = 0} = {0}.
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As follows from Theorem 2 any Malcev algebra M can be realized as a
subalgebra of Nalt(A) for some algebra A. In [38] the authors proved that if M
is finite-dimensional, then A can be taken finite-dimensional, too. Namely, the
following generalized version of Ado’s theorem for Malcev algebras holds.

Theorem 5. Let M be a finite-dimensional Malcev algebra over a field of
characteristic not equal to 2 and 3. Then, there exist a unital finite-dimensional
algebra A and a monomorphism of Malcev algebras ι : M → Nalt(A).

3. Triple systems.

3.1. Lie and Jordan triple systems. A triple system over a field F
is a linear space over F with a trilinear operator. Among the triple systems the
most important examples are Lie triple systems (LTS) and Jordan triple systems
(JTS). They were introduced and systematically studied by N. Jacobson [18].

Definition 5. A triple system V with a trilinear operator [ · , · , · ] is said
to be a Lie triple system if [ · , · , · ] satisfies the following identities:

(3.1) [x, y, z] = −[y, x, z],

(3.2) [x, y, z] + [z, x, y] + [y, z, x] = 0,

(3.3) [u, v, [x, y, z]] = [[u, v, x], y, z] + [x, [u, v, y], z] + [x, y, [u, v, z]]

for any x, y, z, u, v ∈ V.

By introducing the following ternary operation [a, b, c] := [[a, b], c] any
Lie algebra g can be turned into a Lie triple system. Other examples of Lie
triple systems naturally arise from sets of skew-symmetric elements of g relative
to involutary automorphisms. Namely, let ϕ : g → g be any automorphism of g

such that ϕ2 = id. Then gϕ = {x ∈ g | ϕ(x) = −x} is closed under [[ · , · ], · ].
Hence, gϕ is itself a Lie triple system.

Definition 6. Let g be a Lie algebra, and T a Lie triple system with
a triple product [ · , · , · ]. An embedding of T into g is a linear transformation
θ : T → g such that

(i) θ([x, y, z]) = [[θ(x), θ(y)], θ(z)], for any x, y, z ∈ T,

(ii) θ(T ) generates g.
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It can be easily shown that if θ : T → g is an embedding then

g = θ(T ) ⊕ [θ(T ), θ(T )].

In [18] Jacobson noticed that any Lie triple system T can be embedded
into its standard enveloping Lie algebra denoted by Ls(T ). Let us briefly recall
the construction of Ls(T ) [17].

Definition 7. A linear transformation D : T → T is said to be a
derivation if

D([a, b, c]) = [D(a), b, c] + [a,D(b), c] + [a, b,D(c)]

for any a, b, c ∈ T.

Equation (3.3) (Definition 5) implies that for any fixed a, b ∈ T , Da,b(c) =
[a, b, c] is a derivation which will be called inner. The set InnDer(T ) of all inner
derivations has a natural Lie algebra structure given by

[Da,b,Dc,d] = Da,bDc,d −Dc,dDa,b.

Note that the relation

[Da,b,Dc,d] = DDa,b(c),d +Dc,Da,b(d)

proves the closure of InnDer(T ) under the Lie bracket. Let

Ls(T ) = T ⊕ InnDer(T ).

By setting

[(x,Da,b), (y,Dc,d)] = (Da,b(y) −Dc,d(x),Dx,y + [Da,b,Dc,d])

Ls(T ) can be transformed into a Lie algebra. Note that

T = {(x,D) ∈ Ls(T ) | ϕ((x,D)) = −(x,D)}

where ϕ : Ls(T ) → Ls(T ) such that ϕ((a,D)) = (−a,D) is an automorphism
of order 2. Thus, every LTS arises as the set of skew-symmetric elements for a
suitable automorphism of order 2.

With any Lie triple system we can also associate its universal enveloping
Lie algebra Lu(T ) defined in the following natural way. Let L(T ) be a free Lie
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algebra based on T , and τ : T → L(T ) be a linear mapping given by τ(x) = x
for every x ∈ T . Consider I � L(T ) generated by all elements of the form

τ([a, b, c]) − [[τ(a), τ(b)], τ(c)]

where a, b, c ∈ T . Then Lu(T ) = L(T )/I. Moreover, for any Lie algebra g

and θ : T → g satisfying θ([a, b, c]) = [[θ(a), θ(b)], θ(c)] there exists a unique
homomorphism ψ : Lu(T ) → g such that θ = ψ ◦ τ .

In [28] Lister determined all simple finite-dimensional Lie triple systems
over an algebraically closed field of zero characteristic. The main idea of his proof
was to reduce the classification problem to the determination of similarity classes
among the automorphisms of period 2 in the simple Lie algebras. Recall that the
Lie algebras of types An, Bn, Cn, Dn together with the exceptional algebras G2,
F4, E6, E7, E8 form a complete list of simple finite-dimensional Lie algebras over
an algebraically closed field of zero characteristic. A simple Lie triple system of
a non-exceptional simple Lie algebra is isomorphic to one of the following:

(1) The set of matrices of trace zero skew-symmetric relative to an auto-
morphism X → P−1

n,rXPn,r, where Pn,r = diag{1, . . . , 1,︸ ︷︷ ︸
r

−1, . . . ,−1︸ ︷︷ ︸
n−r

};

(2) The set of symmetric matrices of trace zero;

(3) The set of symplectic symmetric matrices of trace zero (the order of
matrices must be even);

(4) The set of skew-symmetric matrices of order 2n + 1 that are also
skew-symmetric relative to X → P−1

2n+1,rXP2n+1,r;

(5) The set of skew-symmetric matrices of order 2n that are additionally
symplectic symmetric;

Let P ′
n,r = diag{1, . . . , 1,︸ ︷︷ ︸

r

−1, . . . ,−1,︸ ︷︷ ︸
n
2
−r

1, . . . , 1,︸ ︷︷ ︸
r

−1, . . . ,−1︸ ︷︷ ︸
n
2
−r

} for even n.

(6) The set of symplectic skew-symmetric matrices which are skew-symmetric
relative to X → P ′−1

n,r XP
′
n,r;

(7) The set of symplectic skew-symmetric matrices which are additionally
symmetric.

Let L be a simple exceptional Lie algebra with a fixed Cartan subalgebra
denoted by H. Choose the following canonical basis for L:

h1, . . . , hr, eα1
, . . . , eαk
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where h1, . . . , hr is a basis for H, and {eα1
, . . . , eαk

} is a system of root vectors.
If L has one of the following types: G2, F4, E7 or E8, then every Lie triple system
of L is defined by an appropriate automorphism ϕ of the form:

(3.4) ϕ(h) = h, ϕ(eα) = ±eα

where h ∈ H, and eα is a root vector. The only case left is when L has type
E6. If ψ is an inner automorphism of E6 of period 2, then it is equivalent to
an automorphism of form (3.4). Choose in L a canonical basis h1, . . . , h6, eα, . . ..
The roots of L are

αpq(h) = λp − λq,

αp,q,s(h) = λp + λq + λs,

−αp,q,s(h), α0(h) =

6∑

i=1

λi, −α0(h),

where h =
∑6

i=1 λihi, p, q, s are all distinct, and p, q, s = 1, . . . , 6. Let epq, epqs,
e′pqs, e0, and e′0 be the corresponding root vectors. It is known from [28] that all
outer automorphisms of E6 are equivalent to an automorphism χ given by:

χ(e12) = ±e12, χ(e23) = ±e41, χ(e34) = ±e34,

χ(e45) = ±e63, χ(e56) = ±e56, χ(e135) = ±e135.

where {α12, α23, α34, α45, α56, α135} forms a set of simple roots of L.

Jordan triple systems are generalizations of Jordan algebras (commutative
algebras satisfying (xy)x2 = x(yx2) ). The following definition was given by
Meyberg in [33]:

Definition 8. A triple system V with a trilinear operator { · , · , · } is
said to be a Jordan triple system if { · , · , · } satisfies the following identities:

(3.5) {x, y, z} = {x, z, y},

(3.6) {u, v, {x, y, z}} = −{{v, u, x}, y, z} + {x, {u, v, y}, z} + {x, y, {u, v, z}}

for any x, y, z, u, v ∈ V.

Simple Jordan triple systems over an algebraically closed field of char-
acteristic different from 2 have been classified by O. Loos in [30]. In [35, 36]
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E. Neher obtained the complete description of the real finite-dimensional simple
Jordan triple systems.

Let J be a Jordan algebra over a field of characteristic different from 2.
Introducing the following triple product

{x, y, z} = (xy)z + (zy)x− y(xz)

J becomes a Jordan triple system. However, the converse is not true: not every
JTS comes from some Jordan algebra in this way. For instance, the following two
examples of JTS from [37] do not have Jordan algebras associated with them.

Example 3. Consider an associative algebra D with involution i. The
set of p × q matrices Mp,q(D) with entries from D forms a JTS under the triple
product given by

{X,Y,Z} = X(i(Y ))tZ + Z(i(Y ))tX.

Example 4. Let Ap(F) be the set of all skew-symmetric matrices of order
p over a base field F. Then Ap(F) becomes a JTS under

{X,Y,Z} = XY Z + ZYX.

Meyberg showed [34] that every Jordan triple system (T, { ˙, ,̇ ˙}) defines
a Lie triple system denoted by T− with the following triple product

[x, y, z] = {x, y, z} − {y, x, z}.

In most cases, this construction carries central simple Jordan triple systems into
central simple Lie triple system.

Jordan triple systems are closely related to the so-called Jordan pairs [31]
defined as follows:

Definition 9. Let V = (V+, V−) be a pair of vector spaces equipped with
the following trilinear maps: Vε × V−ε × Vε → Vε where ε = ± satisfying

{xε, y−ε, zε} = {zε, y−ε, xε},

{xε, y−ε, {uε, v−ε, wε}} − {uε, v−ε, {xε, y−ε, zε}} =

{{xε, y−ε, uε}, v−ε, wε} − {uε, {y−ε, xε, v−ε}, wε}
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With any Jordan triple system V we can associate a Jordan pair (V, V )
equipped with {xε, y−ε, zε} = {x, y, z}.

We next will be concerned with the universal associative enveloping alge-
bras of Lie (Jordan) triple systems (see [18] for more details).

Let F 〈X〉 be a free associative algebra generated by X = {xα}. Let V be
a Lie triple system with basis yα, α ∈ I, and the following multiplication table:

[yα, yβ, yγ ] =
∑

δ

µδ
αβγyδ,

where α, β, γ ∈ I and µδ
αβγ ∈ F.

The universal associative envelope of V is defined in the following way.
Set U(V ) = F 〈X〉/J where J is the ideal of F 〈X〉 generated by the elements:

[[xα, xβ ], xγ ] −
∑

δ

µδ
αβγxδ.

There is a natural linear map ε : V 7→ U(V ) defined by ε(yα) = xα, α ∈ I.
Moreover, for any unital associative algebra A and a linear map σ : V 7→ A such
that

σ([a, b, c]) = [[σ(a), σ(b)], σ(c)]

there exists a unique homomorphism of unital associative algebras ψ : U(V ) 7→ A
such that ψ ◦ ε = σ.

Since any Lie triple system T has a standard imbedding into Ls(T ) defined
above and any Lie algebra is imbedded into its universal associative envelope we
have that the universal homomorphism ε must be injective.

In a similar manner we can define the universal associative envelope for
a Jordan triple system.

Some interesting recent work towards generalization of Lie triple systems
has been done in [7]. The authors have introduced the concept of Leibniz triple
systems in such a way that any Lie triple system automatically satisfies the defin-
ing identities of Leibniz triple systems. Besides, they have constructed universal
Leibniz envelopes for Leibniz triple systems and obtained some results regarding
polynomial identities in Leibniz algebras.

3.2. Anti-Lie and anti-Jordan triple systems. We start this section
with the notion of an (ε, δ)-Freudenthal-Kantor triple system (FKTS) which gen-
eralizes the concept of a generalized Jordan triple system (GJTS) of the second
order.
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Let V be a vector space over a field F of characteristic different from 2
and 3 with a trilinear product ( · , · , · ) : V × V × V → V.

Definition 10. Let ε, δ = ±1. A pair (V, ( · , · , · )) is called an (ε, δ)-
Freudenthal-Kantor triple system if for any x, y, z, a, b, c ∈ V its triple product
has the following properties:

(a, b, (x, y, z)) = ((a, b, x), y, z) + ε(x, (b, a, y), z) + (x, y, (a, b, z)),

K(K(a, b)x, y) − L(y, x)K(a, b) + εK(a, b)L(x, y) = 0,

where

L(a, b)c = (a, b, c), K(a, b)c = (a, c, b) − δ(b, c, a).

The concept of a (−1, 1)-FKTS coincides with that of a GJTS of the
second order. For ε = 1 and δ = −1 we obtain the standard definition of an
anti-Jordan triple system (AJTS), namely:

Definition 11. Let V be a vector space that possesses a triple product
〈 · , · , · 〉 satisfying

(3.7) 〈x, y, x〉 = 0,

(3.8) 〈x, y, 〈u, v,w〉〉 − 〈u, v, 〈x, y,w〉〉 = 〈〈x, y, u〉, v, w〉 + 〈u, 〈y, x, v〉, w〉

for all x, y, u, v, w ∈ V . Then (V, 〈 · , · , · 〉) defines an anti-Jordan triple system.

The next concept is closely related to anti-Jordan triple systems and useful
to obtain constructions of Lie superalgebras.

Definition 12. Let V be a vector space over a field F of characteristic
differernt from 2. Suppose that a triple product [ · , · , · ] in V satisfies (3.2), (3.3)
and the following equation

(3.9) [x, y, z] = [y, x, z]

for all x, y, z ∈ V . Then (V, [ · , · , · ]) defines an anti-Lie triple system.

Let (V, 〈 · , · , · 〉) be an AJTS (or, equivalently, a (1,−1)-FKTS). Intro-
ducing the second triple product by

(3.10) [x, y, z] = 〈x, y, z〉 + 〈y, x, z〉

we obtain an anti-Lie triple system.
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As was shown in [1, 19, 22] all simple Lie (super)algebras over a field F of
characteristic different from 2 and 3 can be constructed from suitable Freudenthal-
Kantor triple systems by means of the standard embedding method. Let us briefly
recall this construction from [20]. Consider an (ε, δ)-FKTS denoted by U . Then
the direct sum T = U ⊕U can be turned into a LTS (if δ = 1) or an anti-LTS (if
δ = −1) by introducing the following triple product: let x = x1 ⊕ x2, y = y1 ⊕ y2

and z = z1 ⊕ z2 be arbitrary elements from T . Then, by definition,

[x, y, z] := ((L(x1, y2) − δL(y1, x2))z1 + δK(x1, y1)z2)

⊕ (−εK(x2, y2)z1 + ε(L(y2, x1) − δL(x2, y1))z2),

where the operators L( · , · ) and K( · , · ) are as in Definition 10. Denote the set of
all left-multiplications L( · , · ) (inner derivations) of (T, [ · , · , · ]) by InnDer(T ). It
is a Lie algebra under the standard Lie bracket on the set of linear transformations
of T . Then for δ = 1 the direct sum

L = InnDer(T ) ⊕ T

becomes a Lie algebra under the following Lie bracket:

[u, v] = L(u, v),

[L(u, v), z] = L(u, v)(z),

[L(u, v), L(x, y)] = L(u, v)L(x, y) − L(x, y)L(u, v),

for any u, v, x, y ∈ T . For δ = −1, (L, [ · , · ]) is a Lie superalgebra with even
component L0 = InnDer(T ) and the odd component L1 = T .

We can now give a few examples of finite-dimensional anti-Jordan triple
systems over a field F.

Example 5. Let X,Y,Z ∈ Mm,n(F), m = 2r, and A =

(
0 Ir

−Ir 0

)

where Ir is the r × r identity matrix. Then Mm,n(F) is an anti-Jordan triple
system relative to the triple product

〈X,Y,Z〉 = XY tAZ − ZY tAX.

Example 6. Let X,Y,Z ∈ Mm,n(F), n = 2r, and B =

(
0 Ir

−Ir 0

)

where Ir is the r × r identity matrix. Then Mm,n(F) is an anti-Jordan triple
system under

〈X,Y,Z〉 = XBY tZ − ZBY tX.
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Example 7. Let X,Y,Z ∈ Mn,n(F). Then it becomes an anti-Jordan
triple system via

〈X,Y,Z〉 = XY Z − ZY X.

Example 8. Let T be a vector space over F, and B : T × T → F be an
alternating nondegenerate bilinear form. Consider an invertible endomorphism f
of T satisfying

αB(f(x), f(y)) = B(x, y), f2 = β · id

for nonzero scalars α, β ∈ F, and x, y ∈ T . Then T is an anti-Jordan triple system
with triple product:

〈x, y, z〉 = B(x, f(y))z +B(f(y), z)x+B(x, z)f(y),

where x, y, z ∈ T .

In all of the above examples the resulting anti-Jordan triple system turns
out to be simple. Based on Faulkner’s and Ferrar’s [16] classification of the
finite-dimensional simple anti-Jordan pairs S. Bashir [2] obtained the complete
description of finite-dimensional simple anti-Jordan triple systems over an alge-
braically closed field of characteristic zero. In order to state the classification
theorem we recall the definition of an anti-Jordan pair:

Definition 13. Let V = (V +, V −) be a pair of vector spaces over a field
F with trilinear maps { · , · , · }ε : V ε × V −ε × V ε → V ε such that {x, y, z}ε :=
Dε(x, y)z, for ε = ±. Then V is called an anti-Jordan pair if for all x, u ∈ V ε,
y, v ∈ V −ε and ε = ±

{x, y, x}ε = 0,

[Dε(x, y),Dε(u, v)] = Dε({x, y, u}ε, v) +Dε(u, {y, x, v}−ε).

If V = (V +, V −) is an anti-Jordan pair with a trilinear product 〈 · , · , · 〉,
then T (V ) = V + ⊕ V − under

〈x+ ⊕ x−, y+ ⊕ y−, z+ ⊕ z−〉 = 〈x+, y−, z+〉 ⊕ 〈x−, y+, z−〉

is an anti-Jordan triple system associated with V .

Theorem 6 (Bashir [2]). T is a finite-dimensional simple anti-Jordan
triple system over an algebraically closed field F of characteristic zero if and only
if T is isomorphic to one of the following:
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(a) The triple system associated with one of the three simple anti-Jordan
pairs Mmn(F), ssn(F) and the symplectic anti-Jordan pair (see [16]).

(b) The anti-Jordan triple systems of Examples 5, 6, 7, 8.

In what follows we focus on the universal envelope of anti-Jordan triple
systems. There has not been much research done on enveloping algebras of anti-
Jordan triple systems. It is still an open problem whether every AJTS (or at least
a finite-dimensional AJTS) can be isomorphically embedded into an associative
algebra.

Definition 14. We call (T, 〈 · 〉) a symplectic anti-Jordan triple system
if there exists an alternating non-degenerate bilinear form B on T such that

(3.11) 〈x, y, z〉 = B(x, y)z +B(y, z)x+B(x, z)y

for all x, y, z ∈ T.

Let T be a finite-dimensional anti-Jordan triple system with basis
{x1, . . . , xs} and the multiplication table as follows

(3.12) 〈xi, xj , xk〉 =
s∑

m=1

cmijkxm.

We note that any associative algebra A becomes an anti-Jordan triple system
with respect to the triple product defined by

(a, b, c) = abc− cba.

In a similar way as for Lie triple systems we can construct the universal
associative envelope of T . Namely, we let U(T ) be the unital free associative
algebra on generators x1, . . . , xs modulo the ideal J generated by the elements

(3.13) xixjxk − xkxjxi −

s∑

m=1

cmijkxm.

Clearly, there exists a universal homomorphism τ : T → U(T ). However, it is
not known whether this homomorphism is generally injective.

Using noncommutative Gröbner-Shirshov bases in [51] the author studied
the universal associative envelope of symplectic T and established a generalization
of the PBW theorem for a finite-dimensional simple symplectic anti-Jordan triple
system.
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From now on we assume that T is a simple symplectic anti-Jordan triple
system. Since T is simple, its alternating bilinear form B is non-degenerate and,
therefore, dim T = 2n. It is well known that there exists a basis e1, e2, . . . , e2n−1,
e2n of T such that B(e2i−1, e2i) = 1, i = 1, . . . , n, and the remaining B(ek, ej) = 0,
k < j.

Definition 15. We say that indices i, j form a pair if the corresponding
B(ei, ej) is nonzero.

Lemma 2. Let A = F [e1, . . . , e2n] be a unital free associative algebra.
Then U(T ) = A/J where J is generated by the following elements

e2kek+1 − ek+1e
2
k − 2ek, e2k+1ek − eke

2
k+1 + 2ek+1,(3.14)

ekek+1ei − eiek+1ek − ei, ekeiek+1 − ek+1eiek − ei,(3.15)

eiekek+1 − ek+1ekei − ei, eresem − emeser,(3.16)

where i, k, r, s,m = 1, 2, . . . , 2n are such that i /∈ {k, k + 1} and k, k + 1 is a pair
but none of r, s,m form a pair.

For n = 1 we consider Ã = F [e1, e2, t] which is a free associative algebra
on the free generators e1, e2, t. Consider the set of the following elements in Ã:

e1t+ te1 − 2e1, e2t+ te2 − 2e2,(3.17)

e1e2 − e2e1 − t.(3.18)

We denote by J̃ the ideal of Ã generated by these elements. Let us now set

Ũ(T) = Ã/J̃ .
For n > 1 we consider Ã = F [e1, . . . , e2n, t] which is a free associative

algebra on the free generators e1, . . . , e2n, t. Consider the following elements in
Ã:

eit− ei, tei − ei,(3.19)

t2 − t, eres − eser,(3.20)

eq+1eq − eqeq+1 + t,(3.21)

where i = 1, . . . , 2n, q = 1, 3, . . . , 2n − 1, and (r, s) is not a pair. Let J̃ be the
ideal generated by these elements. Set

Ũ(T) = F [e1, . . . , e2n, t]/J̃ .
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Lemma 3. U(T ) and Ũ(T ) are isomorphic as associative algebras.

Theorem 7 ([51]). Let T be a simple symplectic anti-Jordan triple system

with basis e1, e2. Then the imbedding of T into Ũ(T ) is injective. Moreover, the
following products

(3.22) tkei1e
j
2,

where k, i, j ∈ N ∪ {0} form a basis of the vector space U(T ).

Theorem 8 ([51]). Let T be a simple symplectic anti-Jordan triple system

with basis e1, . . . , e2n, n ≥ 2. Then the imbedding of T into Ũ(T ) is injective.
Moreover, the following products

ek1

1 . . . ekn

2n and t,

where k1, . . . , kn ∈ N ∪ {0} form a basis of the vector space U(T ).

Using the explicit structure of the PBW-basis for U(T ) it is possible to
compute its center denoted by Z(U). Namely, the following holds true.

Theorem 9 ([51]). Let T be a finite-dimensional simple symplectic anti-
Jordan triple system over a field F. Then

Z(U) =





F1 if dimT = 2,

span{1, t}F if dimT > 2,

where Z(U) is the center of the universal enveloping algebra.

4. Leibniz n-ary algebras. Recall that n-Lie algebras (sometimes
referred to as Filippov algebras or Nambu-Lie algebras) were introduced by Fil-
ippov in 1985 [13]. For n = 2, the class of n-Lie algebras coincides with the class
of Lie algebras.

Definition 16. An n-Lie algebra over a field F is a vector space L
over F with an n-ary operation [−,−, . . . ,−] : L × . . . × L → L satisfying the
anticommutative identity and the generalized Jacobi identity:

(4.1) [x1, . . . , xi, . . . , xj , . . . , xn] = −[x1, . . . , xj , . . . , xi, . . . , xn],

(4.2) [[x1, . . . , xn], y2, . . . , yn] =
n∑

i=1

[x1, . . . , [xi, y2, . . . , yn], . . . , xn].
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Example 9. Let Vn be an (n + 1)-dimensional vector space with the
basis

{e1, e2, . . . , en+1}.

Then we define
[x1, x2, . . . , xn] = detA

where A is the following matrix




e1 e2 . . . en+1

x11 x21 . . . xn+1,1

x12 x22 . . . xn+1,2

...
...

. . .
...

x1n x2n . . . xn+1,n




,

and xi = x1ie1 + x2ie2 + · · ·+ xn+1,ien+1. Then Vn equipped with this n-bracket
is an n-Lie algebra.

In [29] Ling showed that any simple finite-dimensional n-Lie algebra over
an algebraically closed field F of zero characteristic is isomorphic to Vn defined
above. In other words, for a fixed n ≥ 3 there exists a unique (up to an isomor-
phism) simple finite-dimensional n-Lie algebra. A natural question about the
classification of irreducible representations arises for simple finite-dimensional n-
Lie algebras. In a light of Ling’s results, only representations of Vn need to be
studied.

Recall that to any n-Lie algebra g we can assign the Lie algebra
L(g) =

∧n−1
g with the bracket:

[a1∧· · ·∧an−1, b1∧· · ·∧bn−1] =

n−1∑

i=1

(−1)i+n[a1, . . . , an−1, bi]∧b1∧· · ·∧b̂i∧· · ·∧bn−1

where a1, . . . , an−1, b1, . . . , bn−1 ∈ g. Filippov proved that L(Vn) ∼= son+1.

Definition 17. A representation of an n-Lie algebra g in a vector space
M is a linear map ρ :

∧n−1
g → End(M) defined by ρ(a1 ∧ · · · ∧ an−1)(m) =

[a1, . . . , an−1,m] such that

ρ([a1, . . . , an] ∧ an+1 ∧ · · · ∧ a2n−2)

=
n∑

i=1

(−1)i+nρ(a1 ∧ · · · ∧ âi ∧ · · · ∧ an)ρ(ai ∧ an+1 ∧ · · · ∧ a2n−2),
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where a1, . . . , a2n−2 ∈ g.

Note that the above condition implies that M is an ordinary Lie module
over L(g).

Dzhumadil’daev in [10] proved that any finite-dimensional n-Lie repre-
sentation of Vn, n ≥ 2, is completely reducible. Moreover, any finite-dimensional
irreducible n-Lie Vn-module can be extended to L(Vn)-module (son+1-module)
with the highest weight tπ1 (π1 is a fundamental weight of son+1) for a nonneg-
ative integer t.

Let A be an associative algebra. It becomes an n-ary algebra under

(x1, . . . , xn) =
∑

σ∈Sn

(−1)σxσ(1) . . . xσ(n).

It will be denoted by A− and called the commutator algebra of A. By analogy
with other nonassociative structures, it seems reasonable to study embeddings
of an n-Lie algebra into A− where A is an associative algebra. Pojidaev in [39]
showed that such an enveloping algebra does not exist for a semisimple finite-
dimensional ternary Lie algebra (3-Lie algebra). He also conjectured the existence
of the universal associative enveloping algebras for simple n-Lie algebras. This
problem was partially solved in [12] where for even n and any (n+1)-dimensional
n-Lie algebra L the authors constructed a universal associative enveloping algebra
U(L) and showed that the natural map L→ U(L) is injective.

In 2002 Casas, Insua, and Ladra [9] introduced the generalized version of
n-Lie algebras called Leibniz n-algebras.

Definition 18. A Leibniz n-algebra is a vector space with n-linear map
[−,−, . . . ,−] satisfying the Leibniz n-identity

[[x1, . . . , xn], y1, . . . , yn−1]

=

n∑

i=1

[x1, . . . , xi−1, [xi, y1, . . . , yn−1], xi+1, . . . , xn]

When n = 2 one recovers Leibniz algebras. Clearly, any n-Lie algebra is a
Leibniz n-ary algebra which additionally satisfies anticommutativity identity. A
Lie triple system is a particular example of a Leibniz 3-algebra that also satisfies
the following conditions:

[x, y, z] + [y, z, x] + [z, x, y] = 0,

[x, y, y] = 0.
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In what follows let K = L⊗(n−1) denote the tensor product of n−1 copies
of L. Moreover, K can always be turned into a Leibniz algebra by introducing
the following binary product:

[a1 ⊗ · · · ⊗ an−1, b1 ⊗ · · · ⊗ bn−1] =
n−1∑

i=1

a1 ⊗ · · · ⊗ [ai, b1, . . . , bn−1] ⊗ · · · ⊗ an−1.

Definition 19. A representation of a Leibniz n-algebra L in a vector
space V is defined by n multilinear mappings

ρi : K → End(V ),

0 ≤ i ≤ n− 1, satisfying the following axioms:

ρk([l1, . . . , ln], ln+1, . . . , l2n−2)

=
n∑

i=1

ρi(l1, . . . , l̂i, . . . , ln) · ρk(li, ln+1, . . . , l2n−2), 2 ≤ k ≤ n,

[ρ1(ln, . . . , l2n−2), ρk(l1, . . . , ln−1)]

=
n−1∑

i=1

ρk(l1, . . . , li−1, [li, ln, . . . , l2n−2], li+1, . . . , ln−1), 1 ≤ k ≤ n.

A particular example of representation is the adjoint representation when
V = L and all ρi are given by

adi(l1, . . . , ln−1)(l) = [l1, . . . , li−1, l, li, . . . , ln−1].

In order to construct the universal associative envelope for a Leibniz n-
algebra we introduce the following notation. Consider n isomorphic copies of
K: one left copy, (n − 2) middle copies and one right copy denoted by Kl, Kmi

,
1 ≤ i ≤ n− 2, Kr, respectively. We next consider the tensor algebra of the direct
product of all isomorphic copies of K, that is,

T (Kl ⊕Km1
⊕ . . .⊕Kmn−2

⊕Kr).

Let x1⊗· · ·⊗xn−1 be an element fromK. Then we denote by l1⊗· · ·⊗ln−1,
mi

1 ⊗ · · · ⊗mi
n−1, r1 ⊗ · · · ⊗ rn−1 the corresponding elements from Kl, Kmi

, Kr.
Setting

ρ1(x1, . . . , xn−1) = l1 ⊗ · · · ⊗ ln−1,
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ρi(x1, . . . , xn−1) = mi−1
1 ⊗ · · · ⊗mi−1

n−1,

ρn(x1, . . . , xn−1) = r1 ⊗ · · · ⊗ rn−1,

where x1, . . . , xn−1 ∈ L we can rewrite the defining relations (see Definition 19)
as follows

(1) If 2 ≤ k ≤ n− 1,

[mk−1
1 , . . . ,mk−1

n ] ⊗mk−1
n+1 ⊗ . . .⊗mk−1

2n−2

= (l2 ⊗ . . .⊗ ln) · (mk−1
1 ⊗mk−1

n+1 ⊗ . . .⊗mk−1
2n−2)

+
n−1∑

i=2

(mi−1
1 ⊗ . . .⊗ m̂i−1

i ⊗ . . .⊗mi−1
n ) · (mk−1

i ⊗mk−1
n+1 ⊗ . . .⊗mk−1

2n−2)

+ (r1 ⊗ . . .⊗ rn−1) · (m
k−1
n ⊗mk−1

n+1 ⊗ . . .⊗mk−1
2n−2).

(2) If k = n,

[r1, . . . , rn] ⊗ rn+1 ⊗ . . .⊗ r2n−2 = (l2 ⊗ . . .⊗ ln) · (r1 ⊗ rn+1 ⊗ . . .⊗ r2n−2)

+

n−1∑

i=2

(mi−1
1 ⊗ . . .⊗ m̂i−1

i ⊗ . . .mi−1
n ) · (ri ⊗ rn+1 ⊗ . . .⊗ r2n−2)

+ (r1 ⊗ . . . ⊗ rn−1) · (rn ⊗ rn+1 ⊗ . . .⊗ r2n−2).

(3) If k = 1,

(ln ⊗ . . .⊗ l2n−2) · (l1 ⊗ . . . ⊗ ln−1) − (l1 ⊗ . . . ⊗ ln−1) · (ln ⊗ . . . ⊗ l2n−2)

= [l1 ⊗ . . .⊗ ln−1, ln ⊗ . . . ⊗ l2n−2].

(4) If 2 ≤ k ≤ n− 1,

(ln ⊗ . . .⊗ l2n−2) · (m
k−1
1 ⊗ . . .⊗mk−1

n−1) − (mk−1
1 ⊗ . . . ⊗mk−1

n−1) · (ln ⊗ . . .⊗ l2n−2)

= [mk−1
1 ⊗ . . . ⊗mk−1

n−1,m
k−1
n ⊗ . . .⊗mk−1

2n−2].

(5) If k = n,

(ln ⊗ . . .⊗ l2n−2) · (r1 ⊗ . . .⊗ rn−1) − (r1 ⊗ . . .⊗ rn−1) · (ln ⊗ . . .⊗ l2n−2)

= [r1 ⊗ . . . ⊗ rn−1, rn ⊗ . . .⊗ r2n−2]
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Definition 20. The universal enveloping algebra of the Leibniz n-algebra
L is the unitary associative algebra

Un(L) = T (Kl ⊕Km1
⊕ . . .⊕Kmn−2

⊕Kr)/I,

where I is the n-sided ideal corresponding to the relations (1)−(5).

The following result was obtained in [9]:

Theorem 10. The category of representations of the Leibniz n-algebra
L is equivalent to the category of right modules over Un(L).

Our next goal is to construct an explicit basis of PBW-type for L. Let L
be a finite-dimensional Leibniz n-algebra with a basis {e1, . . . , ed}, and let

F [xs1,...,sn−1
, yk

s1,...,sn−1
, zs1,...,sn−1

]

be a free associative algebra on the generators xs1,...,sn−1
, yk

s1,...,sn−1
, zs1,...,sn−1

where s1, . . . , sn−1 ∈ {1, . . . , d}, 1 ≤ k ≤ n − 2. Let es1
⊗ · · · ⊗ esn−1

be a
basis element from K. Then we denote by ls1

⊗ · · · ⊗ lsn−1
, mi

s1
⊗ · · · ⊗mi

sn−1
,

rs1
⊗ · · · ⊗ rsn−1

the corresponding elements from Kl, Kmi
, Kr.

Then we can define the following morphism

ε : T (Kl ⊕Km1
⊕ · · · ⊕Kmn−2

⊕Kr) → F [xs1,...,sn−1
, yk

s1,...,sn−1
, zs1,...,sn−1

]

by
ε(ls1

⊗ · · · ⊗ lsn−1
) = xs1,...,sn−1

,

ε(mi
s1

⊗ · · · ⊗mi
sn−1

) = yi
s1,...,sn−1

,

ε(r1 ⊗ · · · ⊗ rsn−1
) = zs1,...,sn−1

.

The relations (1)–(5) are translated into

(R1)

ε([mk−1
s1

, . . . ,mk−1
sn

] ⊗mk−1
sn+1

⊗ . . .⊗mk−1
s2n−2

)

= xs2,...,sn · yk−1
s1,sn+1,...,s2n−2

+
n−1∑

i=2

yi−1
s1,...,bsi,...,sn

· yk−1
si,sn+1,...,s2n−2

+ zs1,...,sn−1
· yk−1

sn,sn+1,...,s2n−2
,

(R2)

ε([rs1
, . . . , rsn ] ⊗ rsn+1

⊗ · · · ⊗ rs2n−2
)
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= xs2,...,sn · zs1,sn+1,...,s2n−2
+

n−1∑

i=2

yi−1
s1,...,bsi,...,sn

· zsi,sn+1,...,s2n−2

+ zs1,...,sn−1
· zsn,sn+1,...,s2n−2

,

(R3)

ε([ls1
⊗ · · · ⊗ lsn−1

, lsn ⊗ · · · ⊗ ls2n−2
])

= xsn,sn+1,...,s2n−2
· xs1,...,sn−1

− xs1,...,sn−1
· xsn,sn+1,...,s2n−2

,

(R4)

ε([mk−1
s1

⊗ · · · ⊗mk−1
sn−1

,mk−1
sn

⊗ · · · ⊗mk−1
s2n−2

])

= xsn,sn+1,...,s2n−2
· yk−1

s1,...,sn−1
− yk−1

s1,...,sn−1
· xsn,sn+1,...,s2n−2

,

(R5)

ε([rs1
⊗ · · · ⊗ rsn−1

, rsn ⊗ · · · ⊗ rs2n−2
])

= xsn,sn+1,...,s2n−2
· zs1,...,sn−1

− zs1,...,sn−1
· xsn,sn+1,...,s2n−2

.

Calculating a Gröbner-Shirshov basis for the ideal

ε(I) ⊂ F [xs1,...,sn−1
, yk

s1,...,sn−1
, zs1,...,sn−1

]

generated by (R1)-(R5), Casas, Insua, and Ladra proved a PBW theorem for
Leibniz n-algebras. Namely, the following holds true.

Theorem 11. Let L be a Leibniz n-algebra of dimension d. Then a linear
basis of the universal enveloping algebra Un(L) is formed by the monomials of the
type

xa11...1

11...1 . . . x̂
aα1...αn−1

α1...αn−1
h(y1

11...1, . . . , y
n−2
dd...d) · z

e
s1,...,sn−1

,

where
h(y1

11...1, . . . , y
n−2
dd...d)

is a monic monomial and e = 0, 1.
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