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ABSTRACT. In this paper we define the homogeneous Besov spaces associ-
ated with the Dunkl operators on R¢, and we give a complete analysis on
these spaces and same applications.

1. Introduction. Dunkl operators T (j = 1,...,d) introduced by
Dunkl in [13] are parameterized differential-difference operators on R? that are
related to finite reflection groups. Over the last years, much attention has been
paid to these operators in various mathematical (and even physical) directions. In
this prospect, Dunkl operators are naturally connected with certain Schrédinger
operators for Calogero-Sutherland-type quantum many-body systems [3, 12, 17].
Moreover, Dunkl operators allow generalizations of several analytic structures,
such as Laplace operator, Fourier transform, heat semigroup, wave equations,
and Schrédinger equations ([11, 15, 21, 22, 23, 24]).
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Key words: Dunkl operators, homogeneous Littlewood-Paley decomposition, homogeneous
Dunkl-Besov space, paraproduct operator, differential-difference equations.
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In the present paper, we intend to continue our study of generalized spaces
of type Sobolev associated with Dunkl operators started in [20]. Indeed, in [20]
we provided a general theory for the Littlewood-Paley associated with the Dunkl
operators. Furthermore, we study some functions spaces associated with Dunkl
operators: generalized Sobolev spaces, generalized Holder spaces and BMO as-
sociated with the Dunkl operators.

Next, in second paper [18] we have continue our investigation of function
spaces; generalized Bessel potential spaces, nonhomogeneous Besov spaces and
Triebel-Lizorkin spaces associated with Dunkl operators. We obtain their basic
properties and apply them to estimate the solutions of the Dunkl-Schrédinger
and the Dunkl heat equations.

The main subject of this paper is the study of the homogeneous Dunkl-
Besov spaces, establish refined Sobolev inequalities between the homogeneous
Dunkl-Besov spaces and many spaces as the homogeneous Dunkl-Riesz spaces and
the generalized Lorentz spaces. Generalize the Gagliardo-Nirenberg inequality in
the context of Dunkl theory. We shall also consider a few applications of these
results to the generalized heat equations and generalized Schrodinger equations.

The contents of the paper is as follows. In §2 we recall some basic re-
sults about the harmonic analysis associated with the Dunkl operators. In §3
we introduce the homogeneous Littlewood-Paley decomposition associated with
the Dunkl operators. We shall obtain Bernstein’s inequalities. §4 is devoted to
study the Dunkl-Riesz potential spaces, the homogeneous Dunkl-Besov spaces.
According to a standard process in the Euclidean case (cf. [28]), we shall con-
sider equivalent norms, lifting properties, interpolations and dualities of these
spaces. In §5 we summarize some results on embeddings and paraproduct op-
erators, which depend on the index  associated to the multiplicity function of
the root system. We consider also some applications of the homogeneous Dunkl-
Besov spaces to differential-difference equations. We shall obtain Strichartz type
estimates of the solutions of the Dunkl-Schrodinger equation, a space-time esti-
mate of the solutions of the Dunkl heat equation. We give also as applications a
Sobolev inequalities in generalized Lorentz spaces.

2. Preliminaries. In order to confirm the basic and standard notations
we briefly overview the theory of Dunkl operators and related harmonic analysis.
Main references are [11, 13, 14, 15, 24, 25, 26, 29].

2.1. Root system, reflection group and multiplicity function. Let
R? be the Euclidean space equipped with a scalar product (,) and let |z| =
V{z,z). For a in R%\{0}, o, denotes the reflection in the hyperplane H, C R?
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perpendicular to a, i.e., for z € RY o,(z) = 2 — 2|l 2(a, x)a. A finite set
R C RN\{0} is called a root system if RN Ra = {+a} and o,R = R for all
« € R. We normalize each a € R as {(a,a) = 2. We fix a f € RN\UyerHay
and define a positive root system R; of R as Ry = {a € R | (o, 3) > 0}. The
reflections o,,a € R, generate a finite group W C O(d), called the reflection
group. A function £ : R — C on R is called a multiplicity function if it is
invariant under the action of W. We introduce the index ~ as

y=7k) = > ko).

acERL

Throughout this paper, we will assume that k(a) > 0 for all « € R. We denote
by wy, the weight function on R? given by

wi(z) = H ‘<O‘7$>’2k(a)7

aER

which is invariant and homogeneous of degree 2. In the case that the reflection
group W is the group Z§ of sign changes, the weight function wy is a product
function of the form [[%_; |z;|*, k; > 0. We denote by c; the Mehta-type
constant defined by

Jj=

~lzl?
ck = e 2 wi(x)de.
R4

In the following we denote by

C(R?)  the space of continuous functions on RY.

CP(R%)  the space of functions of class CP on R,

E(RY)  the space of C™-functions on R?.

S(RY)  the Schwartz space of rapidly decreasing functions on R%.
D(R?)  the space of C*°-functions on R¢ which are of compact support.

S'(R?)  the space of temperate distributions on R?.

2.2. The Dunkl operators. Let £ : R — C be a multiplicity function
on R and R a fixed positive root system of R. Then the Dunkl operators T},
1 < j <d, are defined on C*(R?) by

— f(0a(2))

g ()

mM:%WHZMWﬂ@

aER

?
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where a = (aq, a9, -+ ,aq). Similarly as ordinary derivatives, each T} satisfies
for all f, g in C*(R?) and at least one of them is W-invariant,

Ti(fg) = (T;f)g + f(T;9)

and for all f in C}(RY) and g in S(RY),

/ T, f (2)g(@)wn(x)dz = — / £ (@) Tyg()wn(2) .
R4 Rd

Furthermore, according to [13, 14], the Dunkl operators T}, 1 < j < d commute
and there exists the so-called Dunkl’s intertwining operator Vj such that T;V}, =
Vi(0/0x;) for 1 < j < d and Vi (1) = 1. We define the Dunkl-Laplace operator
Ay, on R4 by

d
Nif(x) =) T ()
j=1
=Af@)+2 Y ko) (<V{Off;;a> @ <—a;f$(>02a(x))> |

a€ERT

where A and V are the usual Euclidean Laplacian and nabla operators on R¢
respectively. Since the Dunkl operators commute, their joint eigenvalue problem
is significant, and for each y € R?, the system

Tju(x,y) = yju(z,y), j=1,...,d, and u(0,y) =1

admits a unique analytic solution K (z,v), € R, called the Dunkl kernel, which
has a holomorphic extension to C¢ x C%. For z,y € C%, the kernel satisfies

(a) K(z,y) = K(y,z),
(b) K(Az,y) = K(x,\y) for A € C,
(¢) K(wz,wy)= K(z,y) for we W.

2.3. The Dunkl transform. For functions f on R? we define LP-norms
of f with respect to wi(z)dz as

g = [ Ir@)Pentoie) "

if 1 <p < ooand ||fllpere = ess sup,era|f(z)]. We denote by LP(R?) the

space of all measurable functions f on R? with finite LP-norm.
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The Dunkl transform Fp on L}(R?) is given by
Fof)w) =+ [ F@)K e, ~ihe(e)da.
k JRd
Some basic properties are the following (cf. [15] and [11]): For all f € Li(R%),
(@) 1Fp(F)lloe ey < ' 1F ]l @a),
(b) Fo(f(-/M))(y) = X Fp(f)(Ay) for A >0,
(c) if Fp(f) belongs to L}(RY), then
Fo)w) =+ [ @K@ gz ae.
k JRd
and moreover, for all f € S(RY),
(d) Fo(Tif)(y) = w;Fo(f) ),
(e) if we define 7 (f)(y) = Fp(f)(—y), then

FoFp = FoFp = Id.

Proposition 1. The Dunkl transform Fp is a topological isomorphism
from S(R?) onto itself and for all f in S(R?),

/ (@) P (@) dz = / Fp(F)(E)Pwr(€)de.
Rd Rd

In particular, the Dunkl transform f — Fp(f) can be uniquely extended to an
isometric isomorphism on L3 (R?).

We define the tempered distribution 7} associated with f € L7 (RY) by

(1) 700 = [ f@o(hn(e)ds

for ¢ € S(R?) and denote by (f, ¢); the integral in the righthand side.

Definition 1. The Dunkl transform Fp(t) of a distribution T € S'(R?)
is defined by
(Fp(7),¢) = (7, Fp(9))
for ¢ € S(RY).
In particular, for f € LF(R?), it follows that for ¢ € S(R?),

(Fp(f),9) = (Fp(Ty), ) = (T, Fp(9)) = (f; FD(#))-

Theorem 1. The Dunkl transform Fp is a topological isomorphism from
S'(RY) onto itself.
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2.4. The Dunkl convolution.

Definition 2. Let y be in RY. The Dunkl translation operator f — Ty f
is defined on S(R?) by

(2) Fp(ryf)(x) = K (iz,y) Fp(f)(z), forall z € R%

Proposition 2. If f(x) = F(||z||) in £E(R?), then we have

i/ (2) = Vi [P/l + TP+ 20, )] (@), forall 2 € RY

where Vi, is the Dunkl intertwining operator. (Cf. [25]).

Using the Dunkl translation operator, we define the Dunkl convolution
product of functions as follows (cf. [29]).

Definition 3. The Dunkl convolution product of f and g in S(R?) is the
function f *xp g defined by

(3) f*pglx)= /Rd T f(—y)9(y)wi (y)dy, forall z € R,

This convolution is commutative and associative and satisfies the follow-
ing properties. (Cf. [26]).

Proposition 3. i) For f and g in S(RY) the function f *p g belongs to
S(R%) and we have

(4) Fo(f #p 9)(y) = Fo(f)(y)Fnlg)(y), forallye R
ii) Let 1 < p,q,r < oo, such that E + R L If f is in LE(R?) and
p q r

g is a radial element of L}(R?), then fxpg € Ly (R?) and we have
(5) 1f =D QHL;(Rd) < HfHLg(Rd) HgHLZ(Rd) :

iii) Let W = Z$. We have the same result for all f belongs to LY (R?)
and g € L{(RY).

Definition 4. The Dunkl convolution product of a distribution S in
S'(R?) and a function ¢ in S(R?) is the function S xp ¢ defined by

S#*p ¢(x) = (Sy, Ty ().
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Proposition 4. Let f be in L} (R?), 1 < p < oo, and ¢ in S(R?). Then
the distribution Ty xp ¢ is given by the function f xp ¢. If we assume that ¢
is arbitrary for d = 1 and radial for d > 2, then Ty xp ¢ belongs to Li(Rd).
Moreover, for all ¢ € S(R?),

(6) (Tp *p ¢,9) = (f, ¢ *D V)i,
where () = (—z), and
(7) Fp(Ty *p ¢) = Fp(T§) Fp(9).

For each u € S'(R?), we define the distributions Tju, 1 < j < d, by
(Tju,v) = —(u, Tj1)

for all 1 € S(RY). Then (Agu, 1)) = (u, Ape) and these distributions satisfy the
following properties (see 2.3 (d)):

(8) Fp(Tju) = iy;Fp(u),
Fp(Lpu) = —=|lyl*Fp(u).

In the following we denote 7 given by (1) by f for simplicity.

3. Homogeneous Dunkl-Littlewood-Paley decomposition.
One of the main tools in this paper is the homogeneous Littlewood-Paley de-
compositions of distributions associated with the Dunkl operators into dyadic
blocs of frequencies.

1
Lemma 1. Let us define by C the ring of center 0, of small radius = and

great radius 2. It exist two radial functions ¢ and ¢ the values of which are in
the interval [0,1] belonging to D(R?) such that

suppy C B(0,1), suppp CC
VEER?, (&) + Y (2798 =1
7=0
veecC, Y e =1
JEZ
|In —m|>2= suppe(27".)Nsuppp(2~™.) =0
j>1= suppy Nsuppyp(277.) = 0.
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Notation. We denote by

©  vien ar=7(o(5)A0). si- Y A
n<j—1
The distribution A;f is called the j-th dyadic block of the homogeneous Little-
wood-Paley decomposition of f associated with the Dunkl operators.
Throughout this paper we define ¢ and x by ¢ = J”-"*l( )and x = ]—'71 (¥).
When dealing with the Littlewood-Paley decomposition, it is convenient
to introduce the functions @Z) and ¢ belonging to D(Rd) such that 1/} =1 on supp ¥
and @ = 1 on supp ¢ as well the operators S and A; defined by

FoBi0) =5 (55) Pt Foi0) =i (55) 7l
We remark that
Fol$0)6) =7 55) Fo(8i0(© and Fo(851)(6) = 7 5 ) FolA,1)©)
We put R )
¢ = Fp'(@), and X = Fp'(¥).

Definition 5. Let us denote by S’h’k(Rd) the space of tempered distribu-

tion such that
lim Sju=0 in S'(RY).

Jj——o0

Remark 1. i) If a tempered distribution u is such that its Dunkl trans-
form Fp(u) is locally integrable near 0, then u belongs to S'j, . (RY).

ii) A non zero constant function u does not belongs to S'; (R?).

iii) The space &'p, x(R?) is exactly the space of tempered distributions for

u = ZAJU

jET

which we may write

Proposition 5 (Bernstein inequalities). For all « € N¢ and o € R, for
all j € Z, for all 1 < p,q < oo and for all f € S'(R?), we have

. ~ d+2 1 L, 1 1 1
i) ”Ajf”LZ(Rd) < ”¢||L;(Rd)”Ajf||L§(Rd)2j( 7)(” q), with 5 = 5+;—1-



Generalized homogeneous Besov spaces and their applications 583

d+2 11 1
) 155 g < IRy g2 G4) it £ = 22,
iii) [|(V=55)A; fllp@ay < IF5 (N7 2 ety 1245 F 1] o ety 277
Moreover if W = Z 5, we have
: e} d a j| o
iv) |T AijL’,;(}Rad) <2:|T ¢HL}€(Rd)HAjf”Lg(Rd)le 2

a o o
) 1178, fllcp ey < 27 1T 11 ey 155/ 1| oo ety 2710

Proof. The proof is similar to the nonhomogeneous case (cf. [18]). O

Definition 6. For s € R, the operator Rj, from S'hx(RY) to S’;Lk(Rd) is
defined by
Ri() =Fp (- I°PFp 1)

The operator R, * is called Dunkl-Riesz potentials.

4. B; ’;, ’HS . Spaces and basic properties. In this section we define
analogues of the homogeneous Besov and Riesz potential spaces associated with
the Dunkl operators on R? and obtain their basic properties. In particular, we
use the homogeneous Dunkl-Littlewood-Paley decomposition of f in S’ hk(Rd),
obtained in the previous section, and apply the standard process used in the

Euclidean case.

4.1. Definitions. From now, we make the convention that for all non-
1
negative sequence {a,}qcz, the notation (Z ag) stands for sup, a, in the case

q
r=o00. Let s € Rand 1 < p < oo. For a sequence {u;};jez of functions on R,

we define

-

o ey = (D@ gl een)?)

JEZ.

Definition 7. Let s € R and p,q € [1,00]. The homogeneous Dunkl-
Besov spaces Byt (RY) is the space of distribution in S'hk(RY) such that

1

1Dy = (D@14 g ay)?) " < .

JEL



584 H. Mejjaoli

Proposition 6 ([1]). Lets € R, p and q two elements of [1,00], the space
BSE(RY) is the set of f € 8y x(RY) verifying

lggsen = (€17 20 delign)' )" < o

Deﬁnitipn 8. For se R and 1 < p < oo, the homogeneous Dunkl-Riesz
potential space H;k(Rd) is defined as the space ’R,,;s(Li(Rd)), equipped with the
norm. |l gy = IRE(H g

Proposition 7. Let s € R and 1 < p,q < oo satisfy

d—+2 d+2
5§ < —i—’y, or s= + and ¢ = 1.
p p

Let {u;}jez be a sequence of functions such that H{Uj}”lS(LZ(Rd)) < o0.

(1) If supp Fp(uj) C 2R for some annulus R centered at the origin,
then f = Z uj belongs to B;jg(Rd) and there exists a positive constant C(s) such
JEZ
that || fll gk gay < C(8) {1 Hlog(p ray)-

q
(2) If s > 0 and supp Fp(uj) C 2/B for some ball B centered at the
oTigin.
Then f = Zuj belongs to B;:l;(Rd) and there exists a positive constant
JEZL
C(s) such that
1l oy < OO s a ey

Proof. We obtain these results by a similar ideas used in the nonhomo-
geneous case. (cf. [18]). O

Corollary 1. Let p,q be as above. The definitions of the space B;jl;(]Rd)
do not depend on the choice of the couple (,v) defining the homogeneous Dunkl-
Littlewood-Paley decomposition.

Proposition 8. Let s € R and 1 < p,q < 0.
i) The operator Ay is a linear continuous operator from Bf;jl,;(Rd) into
By (RY) and from H ,(RY) into Hy2(RY).
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i) When W = Zg, the operators T;, j = 1,...,d are a linear continuous
operators from Byk(R?) into By "(RY) and from HZ H(RY) into H3H(RY).

Proof. We obtain these results by a similar ideas used in the nonhomo-
geneous case. (cf. [18]). O

Theorem 2. Let s,t € R and 1 < p,q < co. The operator R}, is a linear
continuous injective operator from B;,j’;(Rd) onto B;;lt’k(Rd), and from H;k(Rd)
onto H;;:(Rd).

Proof. Since Fp satisfies (4), we can apply the same arguments used in
the proof of Theorem 5.1.1 in [28]. O

4.2. Embeddings. As in the Euclidean case (cf. [28]), the monotone
character of [,-spaces and Minkowski’s inequality yield the following.

Proposition 9. If 1 < ¢; < g2 < 0o we have

(10) ByE (RY) — Bk (RY), (1<p<oo, seR).
Moreover
(11) By (RY) — H ) (RY) — Byh (RY), (1 <p<oo, seR).

If sg # s1 we also have
(12) (%R, 1 (RY)o g = By(RY)  (1<p,q <00, 0€(0,1)),

where s = (1 — 0)sg + Os1.
Proof. We obtain these results by a similar ideas used in the nonhomo-

geneous case. (cf. [18]). O

d+2y d+ 2y

S1 —
p p1

. Then the

Proposition 10. We assume that s —

following inclusion hold

ByERY) — Btk (RY), (1<p<pi<oo, 1<qg<q <00, s, 51 €R).

Proof. In order to prove the inclusion, we use the estimate.

A;f = ¢j*p A f.
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The Proposition 5 i) give that
HAijLil(Rd) = |l¢;j*p Ajf”Lﬁl(Rd)
< PG A f .

By definition of the homogeneous Dunkl-Besov spaces, we therefore infer

[e9) a1

1Flgers oy = | 0 @855l a)®

j=—o00

< 0| @2 G A £ g )
JEL

a1
< C z:(stHAJ‘JFHLQ(M))(]1
JEZL
< 55
= CHfHBpi’qc(Rd)a
since ¢ < gq;. This gives the inclusion. O

As a consequence of real and complex interpolations, we can deduce mul-
tiplicative inequalities, which will be needed in the theory of differential-difference
operators.

Theorem 3. (1) If u belongs to Byk(R?) N B5E(RY), then u belongs to
Bﬁsj“ o)t k(Rd) for all 6 € [0,1] and
ol g gy < el o 2

(2) If u belongs to Byho(RY) N BEE(RY) and s < t, then u € Bﬁffr(l_e)t’k(Rd) for
all 6 € (0,1) and there ezists a positive constant C(t,s) such that

Julgesr-0n gay < €8l

Bs k (Rd)‘ Bt k: (Rd)
(3) If u belongs to ByE (RY) N Bss (RY) and € > 0, then u belongs to B;:lf(Rd)

and there exists a positive constant C such that

C

||u”35+€k(Rd)
ol < =l (Rd>1og2( L

Tllse g
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Proof. The proof is the same as in the nonhomogeneous frame work,
and thus omitted. O

4.3. Subspace dense. We proceed as in the Euclidean case (cf. [27] and
[28]), we prove.

Lemma 2. Let a and b two numbers real such that 0 < a < b and (ut)r>0
a family of distributions such that

i) supp Fp(u) C {€ € R?: % < |lell < 2,

i ([T Hutrupm))th) <.

oot o0 dt
|0 <ctwnn ([T )’
0 Bplq(RY) 0

If s > 0, we have the same conclusion when we replace i) by
iii) supp Fp(u) {f € Re . €]l < %}

Proposition 11. For q < oo, the subspace

Then

{u € BZ:’;(]RUZ) . support(Fp(u)) s compact}
is dense in By (R).
1
. : dt
Proof. Let f € Bf,j’;(Rd) and f. = / f *D (;St?. From the previous

lemma we deduce that f. belongs to B;;l;(Rd), on the other hand since ¢ < co we
see that f. tends to f in norm ByF(R4). O

Proposition 12. If q is a real number greater than 1 and (s,p) is cou-
d+ 2y

ple of real numbers so that s < and p greater than 1, then the space

ﬂ BS K(RY) is a dense subspace of Bi(R%).
seR
Proof. The proof of this consists in writing that

o= Sl < S0

1>7

B” (R9)
1

. q
ORI

2]

IN
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So, the proposition is proved because the remainder term of a convergent series
tends to 0. O

Proposition 13. For all s € R and 1 < p,q < oo, the couple (B;jg(Rd),
| - HB;:I;(Rd)) is a normed space. If besides q is finite then D(RY) N BZ:Z(Rd) is
densely embedded in Byk(R?).

Proof. It is obvious that || - HB;;’;(Rd) is a semi-norm. Let us assume that
HUHB;,;’;(Rd) = 0 for some u in &p, ,(RY). This implies that Supp Fp(u) C {0}

and thus that for any j € Z we have Sju = u. As u belongs to S’h’k(Rd), we

must have lim Sju = 0 so that we can conclude that v = 0. Now, if ¢ is
j——o0

finite and u € BZ:’; (R9), it is obvious that the sequence of general term Z Apu

Im|<n
belongs to £(RY) N Bk (R?) and tends to w in Byf(R?). Arguing like as the
nonhomogeneous case (cf. [18]), it is then easy to exhibit a sequence of functions
of D(RY) N B3¥(R?) which tends to u in By (RY). O

d+2 .
Theorem 4. If s < T 7, then (Byt(RY), | - ||B's,k(Rd)) is a Banach
p,q
L d+2y
space. For any p, the space p,f ’ (Rd) is also a Banach space.
Proof. Let us first prove that (Bik(R%), | - ||B's,k(Rd)) is continuously
p,q

2y . :
is easy because the series

d
embedded in S’(R?). The case ¢ = 1 and s = +

Z Aju is convergent in L°(RY). As u = Z Aju, this implies that u belongs to
J J
L$°(RY). Besides, we have

d+2~

(13) B, "(RY < BY (R < LR < §'(RY).

d+ 2y

Let us now assume that s < . Using that

3 _d+2y k

BiERY) = Boood T (RY).

By a simple calculation we prove one can find a large integer M such that for all
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nonnegative j

3(HE2—s)
[(Aju, x)| < C270 » ull - arer XLz ey
Beooo? T (RY)

J(EEZ )
< CP Il g I s

where

Ixlas = sup (L4 [|lz[)M|T"u()].
z€R4, |v|<M

Because u belongs to S'j, 1 (RY), we have (u,x) = Z(Aju,x>. Therefore, for

J
large enough M

(14) 0] < Cllul gk gy Il s

and we can conclude that BZ:Z(RCI) — S'(RY).

We still have to prove that for all triplet (s, p, ¢) satisfying the hypothesis
of the theorem, the set Bf;jl,;(]Rd) is a Banach space. So let us consider a Cauchy
sequence (), in BZ:’;(R”[). Using (13) or (14), this implies that a temperate
distribution u exists such that the sequence (uy), converges to u in S’(R%). We

d+2
now have to state that u belongs to &’j, 1(R9). Let us first assume that s < iy
p

Since u,, belongs to &'y x(R?), we have, thanks to (14),

d+2
p

. ; v
VjeZ,¥YneN, [(Sjun,x)| < 0! S)HunHB‘;:’;(Rd)HXHM&
As the sequence (uy,), tends to u in &'(R?), we have

. a2y
Vi€Z vneN, |(Sjux) < CPC5 Y supllun g g X[ ars
neN P

Thus u belongs to &'p, x(R?).
. d+2vy
The case when u belongs to B, { (R9) is a little bit different. Let € > 0.
. d+27’ .
As (up)n is a Cauchy sequence in B, f (RY) s Bgfl(Rd), there exists an integer
N such that

. g
Vj€Z,Yn>N, > [Amun ] Lo ray < 5 + > [Amun || Lo (ra)-

m<n m<n
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Let us choose J small enough so that

Z ||AmUN”L,3°(Rd) <

m<J

O™

As u, belongs to S’hk(Rd), we have
Vji<.J Vn>N, HSjunHLzo(Rd) <e.
As sequence (up), tends to u in L$°(RY), this implies that
Vi<, HS’juHLzo(Rd) <e.

This proves that u belongs to S'j, 1 (R?). Next, arguing like in the nonhomoge-
neous case completes the proof. 0O

4.4. Comparison with nonhomogeneous spaces. We recall the defi-
nition of nonhomogeneous Besov spaces associated with the Dunkl operators (cf.
[18]).

Definition 9. For s € R and p,q € [1, 00|, we write

1
11 gt gy = 150 F gy + (D218l peen)?) "

Jj=1
The Besov space B;jg(Rd) associated with the Dunkl operators is defined by

BybRY) = {1 € SR+ [1fll gyt ey < -

We give now another definition equivalently for the Besov space B;jg (R9).

Proposition 14. Let s € R, p and q two elements of [1,0], the space
B;jl,;(]Rd) is the set of f € S'(RY) werifying

1
. 1 . dt P
17113 gy = 1 0 ¥ llug ey + (/0 =0 ¢t“LZ<Rd>>q7) =

Theorem 5. i) We assume that f € S'(R?) and 0 ¢ supp Fp(f). Then
forall s in R and 1 < p,q < oo we have

28,k (md s,k (mpd
[ €By(RY) <= f € By (R?).
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ii) For all s >0 and 1 < p,q < 0o, we have
(15) ByFRY) = BSE(RY) N LY (RY).

On the other hand the norm of f in Byh(RY) is equivalently to 11 2p may +
1135
iii) For all s <0 and 1 < p,q < oo, we have

(16) ByF(RY) = Byi(RY) + Ly (RY).
Moreover the norm of f in B;jg(Rd) is equivalently to

inf {11 lg @ + 1 F2llsye g : £ = 1+ fo-

Proof. i) If Fp(f)(§) = 0 in a neighborhood of { = 0 and if f € BZ:’;(Rd),
then Spf being a finite sum of the form Z So(A;f) belongs to LF(R?). Thus
J
f € Byn(RY). Conversely, if f € Byh(R?) then A;f = Aj(Sof) if j < 0. Thus
1
Ajf € LP(R?) for all j and since <Z(2js||AijLz(Rd))q>q, is a finite sum,
7<0
I € Byg(RY).
ii) In order to prove (15), we first note that it is obvious that for all s € R

Byk(®RY) N IE(RY) € ByR(RY).

Conversely, if f € B;jg(Rd), then HAijLi(Rd) < CHSOfHLIZ(Rd) for j < 0. Thus
ifs>0

1
q
(Z(QJSHAjfﬂLg(Rd))q) < ClSof Iz e

j<0
then f € BZ:’;(Rd).

iii) We assume that s < 0. If f belongs to B{Z:’;(Rd), we put

fi=frp o= /f*m—
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This gives that

1fillzp ey = I *0 Xl Lpray < CllF Nl gk gay-

Moreover Lemma 2 implies that

1
1 L adt)”
||f2”8§1§(Rd) < C</0 <t Ilf *D ¢t”L§(Rd)> 7) < C”f”B;:’;(Rd).

Conversely, let f = fi + fo, where f; € LY(R?) and f5 € BZ:’;(R”[). By
relation (5) we obtain

11l gt gy < CILAl g

On the other hand there exists ¢ > 0 such that x *p ¢, = 0 for ¢t < ¢, this gives
that

& dt
f2xp x = / (f2 %D de %D X);-
Hence
> dt
1f2 %D Xz ey < Clixllpy e ; I£2 %D ¢tll Ly meay
RV Jdt
< Clixliz: gay (t [f2 %D ¢tHL§;(Rd)) e
1
o at\?
< Clixllzy e (/c £ 7) 1 f2ll gk ay-

The inequalities

1

ro dt
(] 120 g™ F) " < el
is immediately. We obtain then
1£2ll g5 ey = CllP2lg sy

This gives then the result. O
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5. Application.

5.1. Paraproduit algorithm associated with Dunkl operators. In
this section, we are going to study how the product acts on homogeneous Besov
spaces associated with the Dunkl operators. This is could be well useful in non-
linear partial differential-difference equations. Let us consider two temperate
distributions u and v in &', x(R?), and we write

u = ZAPU and v = ZAqv.
PEZL qEZ
Formally, the product can be written as
uy = Z Apulgv.
P,q€L
Now we introduce the paraproduct operator associated with the Dunkl operators.
Definition 10. We define the homogeneous paraproduct operator Il,:

S'hi(RY) — 8 1 (RY) by

Myu = Z(Sq_g a)Aqu,

q>1

where u € Sk (RY); {Aja} and {Aqu} are the homogeneous Littlewood-Paley

decompositions and Sya = E Apa.
p<q—1

Let R indicate the following bilinear symmetric operator defined by
R(u,v) = Z Apulgv, forall u,v € S’hyk(Rd).
lp—q|<1
Obviously from Definition 10 it is clear that
wv = Iyv + yu + R(u,v).
The following theorems describe the action of the homogeneous paraproduct and
remainder on the homogeneous Besov spaces associated with the Dunkl operators.

Theorem 6. Let 1 < p,r < oo and s € R.
1) If s > 0 then II is a bilinear continuous from L$°(RY) x ;zf(Rd) to
Bk (RY) and there exists a positive constant C such, that

+1
1T 2 e ety sy ey B3ty < ©°F
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1 1 1
2) Ift < 0 and 1 < ryri,r9 < 00 are such that — = — + — and

r ™ )
d+2 . .
+ 7, then I1 is a bilinear continuous from B&ﬁrl (R%) x stlﬁQ(Rd)

0<s+i<
to B;,Jrrt’k(Rd) and there exists a positive constant C' such that

Cs+t
Wl oy, e gy < 5

Theorem 7. Let (s1,52) € R? and 1 < p,p1,p2,7,71,72 < 00. Assume

that

1 1 1 1 1 1 1 1 1
-<—+—, —-=—+4—<1 and 51+52>(d+27) —t ——— .
p DN b2 ron 2 b1 b2 P

Then the remainder R maps Ba-F, (RY) x B2k (R?) in BZ};Z’k(Rd) and there exists
a positive constant C' such that
CS1+82+1
”RH 551,k d 559,k a 25,2k g S )
L(Bpl,rl (R )Xvspz,rg(R ):Bp. 7 (R4)) 81+ S92
1 1

. 1
with $12 = s1 + s2 — (d +27) (—+—__)_
pr p2 P

Corollary 2. 1) Let s > 0 and p,r € [1,00]. Then Bax(R%) N L (RY) is
an algebra and there exists a positive constant C' such that

ool . oy < Cllul e e 12l g gy + 0]y el g -

d+2
2) Moreover, for any (s1,s2), any p2 and any ry such that s;+sg > 2y
p1
d+2
and s1 < i ry, we have
4!

luvllgse, @ay < Cllullgsnr @ayllvllgszs gay +lllgsar @ayllvllgsns g

d—+2
where s = s1 + $9 — + 7.
P1
3) Moreover, for any (si,s2), any pa and any (ri,7m2) such that
d+ 2 d—+2
51+ S2 > + 7, 51<ﬂ, — 4+ — =1, we have
P P reo T2

Fevlsg, ) < O ey, o gt oy + ezt oy 10y e |-
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4) Moreover, for any (si1,s2), any (p1,p2,p) and any (r1,72) such that

d—+2 1 1 1
55 < + 7, s1+ s2 > (d+ 27) —+———) and p > max(p1,p2), we have
P b1 p2 P
HUUHB;}T,Q k(Rd) = CH“” S1 k Rd)”v” 52 k vy (RY)"
. 1 1 1
with s12 =51+ 83— (d+27) | —+ — — = | and r = max(ry,72).
pr p2 P
5) Moreover for any (s1,s2), any (p1,p2,p) and any (7’1,7"2) such that
d+2 1 1 1
55 < , S1+82 > (d+27) <— + — —— |, p > max(p1,p2), and —+— =1,
p] pr p2 P T2
we have
vl g2 gy < Ol g 0l

Proof. The prove of these results used the same method as in [20]. O

Remark 2. In the classical case, a similar result can be found in [5, 8, 9],
where the authors used another methods that we can not adapt at the moment.

5.2. The slowly hypoellipticity. In this subsection we treat differential
difference equations, given by replacing the Laplacian A in a differential equation
with the Dunkl-Laplacian Ay, and consider some basic properties of the solutions
in homogeneous Dunkl-Besov spaces. Though the process is a standard way, we
sketch their proofs to understand the essential parts.

We consider the linear equation

(17) —Apu+ Z ¢ jTiuTiju+cu=0
1<i,j<d
with ¢; ; € R and ¢ > 0.

Theorem 8. We assume that W = Z3. If u is a solution of (17) such
that u belongs to Bf:g(Rd)ﬁWkl’oo(Rd), where Wkl’oo(Rd) = {f e D'(RY): T;f €
LERY), j=1,... ,d}, then u belongs to B’ff(Rd) N LL(RY) for allm € N and
in particular, u € E(RY).

Proof. If uin Bl 2(IRd) then each Tyu € By’ k(Rd) Therefore, it follows

from Corollary 2, (1) that ¢; j;T;uTju € Bilg(Rd) ﬂLzo(Rd). Hence, we can deduce
that
—Apu+cu € Bl k(Rd)
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Since the operator —A, + ¢l is isomorphism from Bik(R?) in B> (R?) for all
s € R and (p,q € [1,00]?), it follows that u € Bi’lg(Rd) By iteration we deduce

that u € Bi‘;zk(Rd) for all n € N. Then it follows from the Proposition 10 that

.p— 427
u € B;Q 2 +2’k(Rd). On the other hand, the Sobolev imbedding theorem (see

[20], Theorem 4.3) yields that

. . d
3 (RY) = Bys(RY) — C TR RY) i s>+ 5.

There by, the desired result follows. O

5.3. Dunkl-Schrodinger equation.

Notations. We denote by:
1

1
p' conjugate of p € [1,00] given by — + — = 1.
p D
Zi(t) the group of isometries on Li(Rd) generated by the skew-adjoint
operator i\ i.e. Ty(t) = ek,
For any interval I of R (bounded or unbounded) and a Banach space X,
we define the mixed space-time L?(I, X') Banach space of (classes of ) measurable

functions w : I — X such that |lul|zq(7,x) < o0, with

1
ooy = ([ e la) ", 1< g < o0,
I
ullierx) = esssuplu(t,.)lx.
tel

Similarly, we shall write C'(I, X), for 1 < r < oo the space of functions
from I into X such that the map

t=ult, )l

is continuous.
Proposition 15 ([22]). Ifp € [2,00] and t # 0, then Zy(t) maps Li/(Rd)
continuously to L} (R?) and

1

(e[t [2rHe) 5™

(18) IZk (D)9l 2 ety < 5 91l 2" ay-
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Corollary 3. Ift # 0, then

||Ik(t)9”7-z;k(Rd) < )Hg”?-z;’k(Rd) Jor all g€ H;k(Rd)a

1_1
G
where s € R and p € [2,00]. Moreover

1
(i)'

HIk(t)gHB;:Z;(Rd) < - HgHB;}kq(Rd) for all g€ B;:’;(Rd)7

where s € R and p € [2,0].
Proof. Fix ¢t # 0 and let u(t,.) = Zx(t)g. Given v € S(R?) it is easy to
see that

(19) Fp' wFp(ult,.) = Tu(t)(Fp' (vFp(9))-

In particular, it follows from (18) that

_ 1 B
|Fp (vFp (ult, N 2p ey < (c2|t|27+d)(%*%-) HFDl(U.FD(g)HLi/(Rd),
k
2 <p<oo

The result follows immediately from the above estimate and the definitions of the
homogeneous Dunkl-Sobolev and Dunkl-Besov norms. O

d+ 2y

Definition 11. We say that the exponent pair (q,r) is -admissible

d+2
if g7 > 2, (qm +2 ’y) # (2,00,1) and

1 d+2y d+2y
20 - < .
(20) q+ 2r = 4

If equality holds in (20) we say that (q,r) is sharp -admissible, otherwise

+ 2y

we say that (q,r) is nonsharp -admissible. Note in particular that when

d + 2y > 2 the endpoint
2d
P= 27ﬂ
d+2vy—2
d+2

s sharp -admissible.
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In the follows, we recall the result proved in [22].
Theorem 9 (Strichartz-type Schrodinger estimate).

¥ _admissible pairs. If u is a

Suppose that d > 1 and (q,7) and (q1,71) are
solution to the problem

ou(t,r) —ilpu(t,z) = f(t,z), (t,z) € I x R?
{ Ujt=0 = g

for some data, g, f and an interval I of R (bounded or not), then

(21)

(22) llull pagr,or r(Re)) T HUHC 1,L2(R4)) <C (HgHL2(Rd) + Hf” Na (Rd))) :

In practice, we use the integral formulation of (21)

(23) uwm:nwwwféawﬁv&@w

which is essentially equivalent. In the follows, we note by ®; the operator defined
by

t
(24 B(f)t0) = [ Tt~ 5)f (s, a)ds,
0
The estimate of Theorem can be generalized to various spaces involving Dunkl
operators and Dunkl transform.
Corollary 4. Let I be an interval of R (bounded or not).

(1) If (¢,r) and (q1,71) are M admissible pairs, then there exits a constant
C such that

IN

||Ik(')9”Lq(R7H7S_k(Rd)) C”gHHf_k(Rd)v
HQk(f)HLq(L’}—.{i’k(Rd)) ~ CHfHLq,l(I’Hillyk(Rd))

2
’y—admissible pairs, then there exits a constant

d+
(2) If(q,r) and (q1,71) are
C independent of I such that

HI’“()QHL(I(R,Bif(Rd)) -~ CHgHLllll (I’Bs}kZ(Rd)y
1

IN

H(I)k(f)HLq([,Bi:;“(Rd)) ”fHqu 1, Bs k (Rd))
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Proof. (1) Using

() (Fo €1 Fo(9))) = 7o' (1E1°)F (Zu(t)g) )

we deduce the result.

(2) Using the homogenous Littlewood-Paley decomposition associated
with Dunkl operators, it is easy to establish similar estimates in homogeneous
Dunkl-Besov spaces. O

5.4. Generalized heat equation. The generalized Dunkl heat equation
reads

ult, ) — Hpull, ) = x T o0) x R4
(25) { Oy (t, ) Ak (t, ) f(t7 )7 (t, ) e [07 ) R
Ujt=0 = g.

Résler in [24] introduced the generalized heat semi-group Hy(t) for the Dunkl-
Laplace operator

Adrk<tv$»y)f(y)wk(y)dy if t>0

f(z) if t=0,

Hi(t)f(x) :=

where I'j, is the generalized heat kernel defined by

Fk(tv z, y) =

Ck _ L+ llw) 2 x
e t K y

4 - =
(41)+ 3 NoTMNGT]

In practice, we use the integral formulation of (25)

); x,yeRd,t>0.

(26) ult,) = Hy(t)g(x) + /O Hy(t — 8)f (s, 2)ds.

Theorem 10. Let s be a positive real number and (p,7) € [1,00]%. A
constant C exists which satisfies the following property. For u € B;?s’k(Rd), we
have

@7) O ull ek gy < || 18 He@ul g ey

< 525 .
LT(R"',%) = CHUHBP% 7k(Rd)

For proof this result we need the following lemma.
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Lemma 3 ([23]). There exist two positive constants x and C' depending
only on ¢ such that for all1 <p <oo, 7 >0 and j € Z, we have

—K 2.’7'
1A (Hi(r)w)llp ey < Ce™™ TN Ajull gp (ga).-

Proof of Theorem 10. Using Lemma 3, the fact that the operator
A; commutes with the operator Hy(t) and the definition of the homogeneous
Dunkl-Besov (semi) norm, we get

HtSHk(t)UHL:Z (Rd) < CHUHB;%s,k(Rd) Z t522j56_lﬂt221 Crj
JEL

where (¢, j);jez denotes, as in all this proof, a generic element of the unit sphere
of I"(Z). In the case when r = oo, the required inequality comes immediately
from the following easy result: for any positive s, we have

(28) supZtSQQJS —w2% < o
>0 =7

In the case r < oo, using Holder inequality and inequality (28) we obtain

> rs r dt
/0 t ||Hk(t)u”L£(]Rd)_

T $92j5 —kt22 $92js, — K22 @
<Ol [ (Sere®) (S )

JEL JEZ
°° : L\ dt
< CHUH;_zS’k(Rd) / (ZtSQZJsethZJC:J)?.
" 0 \jez

This gives directly the result by Fubini’s theorem.

In order to prove the other inequality, let us observe that for any s greater
than —1, we have

1 o0 11
Ajiu=——— 3 (—=Ag) T Hi (1) Ajudt.
J T(s+1) /0 ( k) k( ) J

Then Lemma 3, Proposition 5 and the fact that the operator A; commutes with
the operator Hy(t), leads to

> S i(s —Kt227
(29) [Ajull e gay < C/O 222D e || Hy () A | pp ey dt.
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In the case r = oo, we simple write
> 52) 1) —rt22
|| rp ey < sup () ullrr pa e
Ajullppray < C(supgso || Hi(t)ul| 1o ey i 92 (5H1) g =Rt2% gy

y
< €25 (supyg 1l Hel(t)ull gy e )-

In the case r < co, Holder’s inequality with the weight e—rt2% gives

> 50927(s —Kkt2% '
(/0 #5921 (s+1) g—rit2% HHk(t)AjuHLz(Rd)dt)

SCsz(rU/ t822j(5+1)€*m§221HHk(t)AjuHTL'z(Rd)dt-
0

Thanks to (28) and Fubini’s theorem, we infer from (29) that

N ) dt
S 2B Ajulp ey < C / Rl ey 3
JET ’

The theorem is proved. O

5.5. Sobolev embedding Theorem. The main results of this subsec-
tion are in sprit of the classical case (cf. [2, 9, 10, 16, 19]).

d+2
Theorem 11. Let p € [1,00] and let s € R such that 0 < s < T fy,
,

then we have the continuous embedding
ByF(RY) — LR (RY),

(27 +d)

where P = m

Proof. Let f be a Schwartz class, we have

f(2)] <) 1A £ ().
JEZ
Fix N € Z. Then
D 18,7 € 30 27 sup (21, £ (@) < 27 Hia),

j2N Jj2N
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where H € Li(R?), as f € B (RY)

> 2718, f (@)))"

J

H sgp(QSj\Ajf(ff)’)‘ LT(Rd)

LR

On the other hand,

S 1A @) < 3 276 TN qup(26- A f(w)]) < 0276 EING (),
j<N j<N J

d+2
where G € LP(R?), as f € Biooo’ (Rd) by a Proposition 10. Finally,

+2v

f@)l<o(2t%

W G(x) + 2_SNH(1:)>.
We optimize on N, and
f(2)] < CH# (2)G' 5 (@),

so that
||f||Lp &) < ClHILr ray HGHLoo (RY)* -

We did slightly better the following

d+2
Theorem 12. Let p € [1,00] and let s € R such that 0 < s < T ’y,

then we have

1—T
ey < O oy WV
(27 +d)

where P = m

d+2
Theorem 13. Let 1 <p <ooand0 < s < gl be given. There exists

a positive constant C such that for all function f € Hz’k(Rd) we have

1 6
(30) I < O el s

9
and q p(d +2v)

where 0 = -
+ 2y T d+ 2y —ps’
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Proof. By density we can suppose that f belongs to S(R?). It is easy
to see that

f= /0 T Hy A ft

and decompose the integral in two parts:

A 0o
/= /0 Hy(t) A St + /A Hy(O) O fat,

where A is a constant to be fixed later.
On the other hand, by Theorem 10

C
[ Hi(0) Ak f | oo ray < wﬂfﬂlgzw

2y
P ’k(Rd

Therefore after integrating we get

> 1(g_d
[ O e < 43

il IS S

OOOO

On the other hand, denoting g = (—A;)2 f, we have
1 1—s
Hiy(t) A f = mﬂ R (—tLg) " 2g

We proceed as in [20], we prove

[ Hyo(t)(—tA)' "2 g(x)| < C(s) My (g) ()

where My(g) is a maximal function of ¢ associated with the Dunkl operators (cf.
[26]).
This leads to

A
/0 Hk<t>Akf<x>dt] < CAS My(g)(a).

In conclusion, we get

|7 msu@al < ot + a5 d*—”’k(m))’

and the choice of A such that

d+2~y
A Mi(g)@) =11l —
(R

OO
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ensures that

00 1—
[" mesu@al < c(nw@) 11T,
0

Boo,oo?  (RY)

p(d+27)
d+ 2y —ps
orem 6.1 of [26] i.e. (the maximal function Mj, is bounded of L (R?) into itself
forg>1). O

Finally taking the LZ norm with ¢ = , end the proof thanks to The-

Theorem 14 (Precised Sobolev inequality). Let 1 < p < g < oco. For all
function f such that Vi f € LY(RY) and such that f € B k(]Rd) we have

(31) 1z ey < CIVRSN T2 a1l M a
YT BZB:k (Rd)?

0
where Vi.f .= (T0f,...,Taf), 0 = P and 3 = T
q —

Proof. Firstly we recall the following result

Lemma 4. Let (a;)jez a sequence and let s = fs1 + (1 — 0)sy with
0<60<1ands+#si. Then for all r,r1,79 € [1,00] we have

(32) 127%a;]lir < €127 aj i, 1127°2 a5 15".

We apply now this Lemma for the dyadic blocs A;f with s =0, 51 =1,
so = —fF and r =r1 = 2 and r9 = co. We obtain

[4

(33) (me ) <c(Zz?ﬂAjf(x)r?)2<§£2-ﬁj|Ajf<x>r)1‘9.

JEZ JEZ

Thus by Holder’s inequality we deduce that

H( \Aijf
JEZ

L] (®)

10

e (o)

JEL

1-9
. d)(51€1p2 gy e mey) -
LP(RY) ]
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Finally by using the characterization theorem of Lebesgue spaces via the Little-
wood-Paley decomposition associated to the Dunkl operators we obtain the re-
sult. O

Theorem 15. Let 1 < p < q < oo. For all function f such that
fe HSI (Rd) nto[?ég(Rd) we have

(34) £l , ey = CHfHeﬂ (e 1l . (ay’

where@zg,s:esl—(l—e)ﬁ with B >0, =8 < s < s71.
q
Proof. It suffices to prove that

(35) (=) 2

L(RD) < C”f”LP Rti)”ﬂ B B a1 k(Rd)'

Indeed we use the following identity

s 1 8
(36) (o) b fe) = oo [ A O f@),
I'(3) Jo
with § =81 — s> 0.
Let T be a parameter when will be choose later

T
(61 (20 E @) = = [ A @t +
) Jo

r

L)/Toot%—lﬂk(t)f(m)dt.

r
We proceed as in [20] we obtain
| Hyp () f ()] < CM(f)().

On the other hand we use Theorem 10 and the fact that f belongs to Bo_oﬁ 0—031,k(Rd)
we deduce that
|Hi(t) f(2)] < Ct™

T (RY)”

Thus by applying the preceding estimates on the rlght part of (37) we obtain

Cs
F(g) (f)( )+ F(g) B B ot k(Rd)

1l ==k gy \ 51
o (Ml
( My(f)(z) ) 7

(38)  |(=A) 2 f(x)] <

We fix now
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we obtain

Ch+Cy

‘(_Ak)_%f(x)’ < (M( ) (@ ) Hf\B b5tk (Ray’

Thus we deduce that

Ch1+Cy

I(3)

_2
I(=8)72 fllg ey < M5 (A 3 e 111 —6 ok

Rd)’
For conclure we used the Theorem 6.1 of [26]. O

Corollary 5 (Precised Gagliardo-Nirenberg inequality). Let 1 < p < ¢
such that p (1 + > <gq. Then, if Vif € LZ(]RUZ) and f € LZ(]RUZ) we have

d—+ 2y

(39) ||f||Lq(Rd) < C”f”Lr Rd)”vk’fHLP(Rd

where r = (% — 1) (d+ 27).

Proof. We apply Theorem 15 with s =0 and s; = 1, then 8 = P

q—p

d+2
i and we apply the Propositions 11 and 10, we have the following inclusions

Li(RY) € BYL(RT) € B (RY).
Hence we infer
”f”g;ol?é’g(Rd) < C”f”g?:(’fo(Rd) < C/HfHLZ(Rd)'
Thus the result is immediately. O

. Theorem 16. Let 1 < ¢,r < oo. For all function f belongs to
HL(RY) () LE(RY) we have

(40) 1155 ey < C|l £l SI Rd)HfHLq(Rd),
1
where—zg-l- gcmdezl—i.
P q r S1
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Proof. We decompose f as in the follow
f=8if+Id=S;)f.
We proceed as in [20] p.21 we prove that
[9j(= L) ()] < C2°My(f)(x)

and

(Id — S;)(— )% f(z)] < C2HE DM (—Ag) ) ().
Thus

(—2)3 f(2)] < CP M (f)(2) + C27IC )M ((—=L8) 7 f) ().

2 o << L)% f)()
Mi(f) ()
we infer that

(=A1)7 f(2)] < CIMR(F)(@)])' 75 [Mi((—L0) 2 ()]

Applying Hélder inequality, we obtain

Choosing j such that

1-
1F1lzs , may < ClMECHI g Rd)HMk(( ki fHLq (Rd)*

For conclure we used the Theorem 6.1 of [26]. O
For any measurable function f on R we define its distribution and re-
arrangement functions

dfr(A) = mk({!f! > A}), fils) = inf{)\ L dpr(\) < s}.
For 1 <p< oo and 1 < g < oo, define
© 1 ds\ g
([ s it a<o

1
sup s? f7(s) if ¢g=o00
s>0

”f”Li’q(Rd) =

The generalized Lorentz spaces Li’q(Rd) is defined as the set of all measurable
functions f such that || f[|zza(ga) < oo.
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It is easy to see that LPP(RY) = LP(R?) and that generalized Lorentz
spaces can be derived from Lﬁ(Rd) spaces by the real interpolation method. In
particular, when 1 < p < oo we have LP?(R?) = [L}(RY), L3°(R%)]p 4, with

1
-=1-6.
p
Theorem 17. Assume that W = Z3. Let q € [1,00] and let s € R such

2y +d
that 0 < s < i , then we have
(41) 1fllzeagay < clfl’ Taizn, ||f||Bs ket

By ¢ (R

2

where p = M
2v+d—qgs

Proof. Let f be in S(R?), we have

o 24\
oy =2 | 3 (1r0) "5

For A > 0, we put f = fia+ fa,a with f1 4 = A"29(A) «p f, and foa =
AT2Y¢(A.) xp f. We proceed as [27, 28], we prove

(12) | A B Al g dA < U,

0 Booq © T (RY)
and
(43) | AT el A < I

For all A > 0, we have

{mzA}c@ﬁm>2}U{mm>;}

We take now A = A(A) such that

A
Hfl,AHLgo(Rd) -

Then we deduce from the choice of A, that then

A
dyr(A) = dp, 4,k (§> :
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By Bienaymene-Tchebytchev inequality, we have

A _
s (3) < N2 gy

Moreover

> ad\
HfH%II:Q(Rd) - p/() Xl(df,k()\))p7

< p/ooo AN (A) <df2,Awk (%)) ’ dA.

From definitions of A and f2 4,, we deduce

A\ dA
ooy < €] [ 4S040 20 1o (40000(3) )

1)

+/0 A(d+27)(q*1)H1/;( ) *p fH Rd)H@( *p fHLoo Rd)(de a5k (

:Il +127

o | >

)

where

O(Ax) = (Viy(Az), ).
Applying Hélder inequality, we obtain

177
. . A
o [7 a0 @) ([ Al D)

q
(HfHBsde)HfH ey ’“(Rd)> :

ooq

I

IN

IN

Proceeding in an exactly similar manner for I, we obtain

dA
b= o [T A D) 0 flE 0 >*Dfupo<Rd)A)

(/ AQSHf2A”Lq Rd)A) .
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By a simple calculations it is easy to obtain

q
5gc(wmmmﬂm P, ).
(RY)

ooq

Combining our estimates for I and Is we have proved that

q
1—-4
P
114 aggey < € @mﬁmﬁmgjﬁﬂm),

0,49

which is the desired result. O

Corollary 6. Assume that W = Zg. Let s be a real number in the

d+2
interval (0, k)
q

such that, for any function f € BZ;S(Rd), the following inequality holds:

> and let q be a real number in [1,00] There is a constant C

1
IO, 100)} < e o
44 / wr(x)dr | < O )%, f ;
wy ([ ) gl
whereQ:I—dj_SQ’y.

For proof this result we need the following lemma which we prove as the
Fuclidean case.

Lemma 5. Let 1 < pi,ps,qi,qo0 < co. If f € LPV(R?) and g €
LY»®2(RY), then

(45) HngLqu(Rd) S CHf”[/ilvql (Rd)HgHLiZQ’(IZ(Rd),
1 1 1 1 1 1

where = = — + — and - = — + —.
p p1 P2 q q1  q2

Proof of Corollary 6. Let as in the previous theorem 1 < p < oo

d—i—2fy> o1 1 S 1
with — = - . We take g(z) = ——
» "9 drm 9 = s

and s € (0, and apply

(45), in the specific form

1£9ll 2oy < CllFllpageallgllpo a)
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2 2
where r = d—i; 7 and p= % As g LZ’OO(Rd)7 -
| f(x)|? 1
€ q
(/Rd || || 5 wk(l‘)dl‘> < Ol fllzps ey

Combining this with (41), we obtain (44). O
In the follow we prove a special case of Corollary 6 without assume that

W =174

Theorem 18. Let

constant C' such that for all function u € Hik(Rd) we have

d+2 d+2
kgl <s< o be given. There exists a positive

Ju(=)[? 2
(46) /R wi(z)dr < C”u||7{;k(Rd)‘

a ff**

For proof this theorem we need the following lemma, which we obtain by a simple

calculations.

Lemma 6. Let s be a real number in the interval (0,7 + %) Then the

function z — ||z|| 7% belongs to the Dunkl-Besov space Bftjv_Qs’k(Rd).

Proof of Theorem 18. Let us define

ulx 2
L= [ W) @yde = (- 7%, 2),

a |l

Using homogeneous Littlewood-Paley decomposition and the fact that u? belongs
to S’hk(Rd), we can write

L(u) = > (Al 7)), Am(u?)

[n—m|<2
< 03 @A TR AL ),
[n—m|<2
. Sy og k .
Lemma 6 claims that || - |72 belongs to By s (R%). Corollary 2 yields

2 < 2
Il sz S Cluly

Rd)"
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Thus

L) < Cllully, 0
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