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ON SELF-AVOIDING WALKS ON CERTAIN GRIDS

AND THE CONNECTIVE CONSTANT

Rumen Dangovski

Communicated by V. Drensky

Abstract. We consider self-avoiding walks on the square grid graph.
More precisely we investigate the number of walks of a fixed length on
Z × {−1, 0, 1}. Using combinatorial arguments we derive the related gener-
ating function. We present the asymptotic estimates of the number of walks
in consideration, as well as important connective constants.

1. Introduction. By a self-avoiding walk (SAW for convenience) we
shall mean a non-intersecting path on a lattice. In other words, we consider it
as a sequence of points (c0, c1, . . . , cn), where ci = (xi, yi), such that ci 6= cj for
all different i and j, and |xi − xi−1| + |yi − yi−1| = 1 for 1 ≤ i ≤ n. Usually,
the SAWs that we are going to consider start from the point (0, 0). Otherwise,
we shall mention explicitly the starting point. The interest in SAWs comes from
their applications in physics and chemistry. Finding the number of SAWs with
a fixed length on the lattice Z × Z remains a difficult to approach problem in
combinatorics.
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Let us denote with an the number of walks of length n, where the points
(xi, yi) in the SAWs have the property yi ∈ {0, 1}. Such walks are situated on
Z×{0, 1}. Zeilberger [6] found a formula for an in terms of generating functions.

Theorem 1.0.1 (Zeilberger [6]). The following relation holds:

an = 8fn − σn,

where

σn =

{

n, if n is even,

4, if n is odd ,

and fn is the n-th Fibonacci number.

Later Benjamin [2] and Nikolov [5] presented purely combinatorial proofs
of the formula for an. A more complicated problem was to consider the same grid
Z×{0, 1} with restrictions to the left and to the right. Jointly with Kalina Petrova
in [3], we found an exact formula for the number of walks, wabn, in Z × {0, 1},
where the points (xi, yi) in the SAWs have the property −a ≤ xi ≤ b. As a
consequence, we estimated this number asymptotically and derived the following
result:

Proposition 1.0.1 (Dangovski and Petrova [3]). The following state-

ments hold:

lim
n→∞

wabn

qn
= 0,

lim
n→∞

wa∞n

qn
=

1√
5

(

4 − 2

q2a+2

)

,

lim
n→∞

w∞∞n

qn
=

8√
5
,

where a = const, b = const, and q =
1 +

√
5

2
.

The problem of finding the number of SAWs on the lattice Z × Z can be
restated using the following definition.

Definition 1.0.1. Let Wr denote the set of sequences C = (c0, c1, . . . , cn)
of pairwise different points ci = (xi, yi) in the plane, n ∈ N0, such that xi, yi ∈ Z

and yi ∈ [−r, r] for 0 ≤ i ≤ n, c0 = (0, 0), and |xi − xi−1| + |yi − yi−1| = 1 for

1 ≤ i ≤ n.
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Indeed, when r → ∞ a SAW in Wr is actually considered in the lattice
Z × Z. It is of interest to study Wr for small values of r (see also [6]) in order
to obtain a connection with finding the asymptotic value of the number in the
general case. In this paper we present the generating function for the number
of SAWs of length n in W1. We derive a classification of the walks by using
combinatorial arguments. More precisely we find a connection between these
SAWs and SAWs with more convenient properties and analyze the latter.

Definition 1.0.2. Let cX(n) denote the number of self-avoiding walks of

length n starting at the origin on a given lattice X. We call µX = limn→∞ cX(n)
1
n

the connective constant for the lattice X.

Cutting a SAW in two parts we obtain two separated SAWs, but when
contracting two walks we do not always maintain the self-avoiding property.
Hence cX(n + m) ≤ cX(n) · cX(m) and Fekete’s lemma shows that the con-
nective constant exists and is finite. Duminil-Copin and Smirnov [4] derive

µH =
√

2 +
√

2, where H is the hexagonal lattice (see also [1]). It is shown

in [3] that µZ×{0,1} =
1 +

√
5

2
. Here we present µZ×{−1,0,1} along with other

asymptotic estimates.
Let sn denote the number of SAWs of length n in a given set S (the

notations of the number and the set are obviously connected). We shall consider
the ordinary generating function for the sequence sn,

GS(t) = G(sn; t) =
∞
∑

n=0

sntn.

In the proofs we use the notions as follows: u-move for an upward move, d-move

for a downward move, l-move for a move to the left and r-move for a move to
the right. A sequence of the letters u, d, l and r is a SAW, which starts from
(0, 0) (we may consider the start as a fixed point that is specified if needed) and
follows the directions in the string. If a direction x ∈ {u, d, l, r} is repeated k
times we write xk. We consider connected SAWs as one (the beginning of a walk
in a given set is the end of a walk in the previous set). We say that two SAWs
are avoidable if they do not share same points. Unions of the form X(i) ∪ Y(j),
where X and Y are avoidable SAWs, are treated as one with a beginning – the
one of X at y-value i (if connected i is not necessary) and end – the one of Y (Y
starts at y-value j).

The author has used computer calculations to suggest some of the formu-
las, presented in this paper. The classifications of the sets, further in the project,
have been obtained via exhaustive search.
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2. Self-avoiding walks on Z × {−1, 0, 1}. In order to find the
generating function for the number of SAWs on Z × {−1, 0, 1} of a given length
we note a connection with simpler walks. Actually, we consider special sub-walks
and we remind that not all of them start from the origin.

2.1. Generating function for T -walks. To simplify a walk we need to
add some restrictions. In the walks of the following type we set a restriction for
the x-coordinates and add the special property that the first and the last point
of the walk have the same x-coordinate.

Definition 2.1.1. Let T denote the set of SAWs (c0, c1, . . . , cn), ci =
(xi, yi), such that n ∈ N0, c0 = (0,−1), cn = (0, 1), and xi ≥ 0, yi ∈ {−1, 0, 1}
for 0 ≤ i ≤ n.

To find the generating function for T we need some basic results.

Definition 2.1.2. Let T ′ denote the set of SAWs (c0, c1, . . . , cn), ci =
(xi, yi), n ∈ N0, where c0 = (0,−1), yn = −1 and xi ≥ xi−1, yi ∈ {−1, 0} for

1 ≤ i ≤ n.

Definition 2.1.3. Let T ′′ denote the set of SAWs (c0, c1, . . . , cn), ci =
(xi, yi), n ∈ N0, where y0 = 1, cn = (0, 1), and xi ≤ xi−1, yi ∈ {0, 1} for

1 ≤ i ≤ n.

Definition 2.1.4. Let T1 denote the set of all pairs (t′, t′′), where t′ ∈ T ′

and t′′ ∈ T ′′, such that t′ and t′′ are avoidable.

Definition 2.1.5. Let T ′′
1 denote the set of all pairs of SAWs s =

(s0, s1, . . . , sn), si = (xsi
, ysi

), r = (r0, r1, . . . , rm), ri = (xri
, yri

), where n,m ∈
N, such that ysi

= 1, s0 = (0, 1), xsi
= xsi−1 + 1, for 1 ≤ i ≤ n, r0 = (0,−1),

yrn = −1, xri
≥ xri−1 , yri

∈ {−1, 0}, for 1 ≤ i ≤ m, and xsn = xrm .

We remind that the coefficient of tn in GS(t), which we denote with
[tn]GS(t) is actually the number of SAWs with length n in the given set of SAWs
S, which generates the formal power series GS(t).

Proposition 2.1.1. The following identity holds:

GT ′′

1
(t) =

1 − t2 + t4

1 − 2t2 + t4 − t6
.

P r o o f. One can see that a SAW in T ′′
1 is a chain of mini-walks L of type

uri
(−1) ∪ ri

(1) or of type riu(−1) ∪ ri
(1), i ≥ 1. Since the type of the next step of
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the walk is determined from the previous one, we conclude that

(2.1) GL(t) = Guri
(−1)∪ri

(1)
(t) =

∞
∑

j=1

t2j+1 =
t3

1 − t2
.

A walk in T ′′
1 can start with r ∪ r(1) or with u. In the first case we need an even

number of walks of type L and in the second – an odd one in order to set the
y-value of the last point −1. The walk may finish with two straight lines of type
ri ∪ ri

(1). Hence,

(2.2) T ′′
1 =

{

L2i
(

rj ∪ rj
(1)

)

, where i ≥ 0, j ≥ 0,

uL2i+1
(

rj ∪ rj
(1)

)

, where i ≥ 0, j ≥ 0.

Thus,

GT ′′

1
(t) = GL2i(t)G

rj∪r
j

(1)
(t) + tGL2i+1(t)G

rj∪r
j

(1)
(t)

=
∞
∑

j=0

(GL(t))2j 1

1 − t2
+ t

t3

1 − t2

∞
∑

j=0

(GL(t))2j 1

1 − t2

=
1

1 − ( t3

1−t2
)2

1

1 − t2
+

t4

(1 − t2)2
1

1 − ( t3

1−t2
)2

and after simplification the proof is completed. �

Proposition 2.1.2. The following identity holds:

GT1(t) =
(t − 1)(t + 1)(2t4 − t2 + 2)

(2t2 − 1)(t4 + 1)
.

P r o o f. By considering all of the possible cases, we note the following
classification of the set:

(2.3) T1 =















(

ri ∪ driu(1)

)

T ′
1, where i ≥ 1,

T ′′
1 T ′

2,

∅.

In the classification T ′
1 is the set of SAWs in T1 with beginning

(

r ∪ r(1)

)

and
T ′

2 is the set of walks in T ′
1 that do not start with T ′′

1 . We should note that
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T ′
1 is a chain of repeated mini-walks Tm of the form ri+1 ∪ rdriu(1), i ≥ 1, or

(

r ∪ r(1)

)

T ′′
1

(

ri+1 ∪ rdriu(1)

)

, i ≥ 1, that can end in
(

r ∪ r(1)

)

T ′′
1 . The classifi-

cation of T ′
2 is the same, but a walk in it should begin with ri+1 ∪ rdriu(1), i ≥ 1.

In other words:

GT ′

1
(t) = GTm

j (t)
(

G∅(t) + Gr∪r(1)
(t)GT ′′

1
(t)

)

,(2.4)

GT ′

2
(t) = Gri+1∪rdriu(1)

(t)GTm
j (t)

(

G∅(t) + Gr∪r(1)
(t)GT ′′

1
(t)

)

,

GTm(t) = Gri+1∪rdriu(1)
(t) + Gr∪r(1)

(t)GT ′′

1
(t)Gri+1∪rdriu(1)

(t),

where j ≥ 0, i ≥ 1.
Thus, from (2.4) we derive that

GTm(t) =
(

G∅(t) + Gr∪r(1)
(t)GT ′′

1
(t)

)

Gri+1∪rdriu(1)
(t)

=

(

1 + t2
1 − t2 + t4

1 − 2t2 + t4 − t6

) ∞
∑

j=3

t2j

=
t6

−t6 + t4 − 2t2 + 1
,

GT ′

1
(t) =

1

1 − GTm(t)

(

1 + t2
1 − t2 + t4

1 − 2t2 + t4 − t6

)

=
(t − 1)(t + 1)

(2t2 − 1)(t4 + 1)
,

GT ′

2
(t) = Gri+1∪rdriu(1)

(t)G
T

j
m

(t)
(

G∅(t) + Gr∪r(1)
(t)GT ′′

1
(t)

)

+ G∅(t)

=
t6

1 − t2
(t − 1)(t + 1)

(2t2 − 1)(t4 + 1)
+ 1

=
t6 − t4 + 2t2 − 1

(2t2 − 1)(t4 + 1)
.

From (2.3) we have that GT1(t) = Gri∪driu(1)
(t)GT ′

1
(t) + GT ′′

1
(t)GT ′

2
(t) + G∅(t).

Hence,

GT1(t) =
∞
∑

j=2

t2j (t − 1)(t + 1)

(2t2 − 1)(t4 + 1)
+

1 − t2 + t4

1 − 2t2 + t4 − t6
t6 − t4 + 2t2 − 1

(2t2 − 1)(t4 + 1)
+ 1,
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and the statement follows from the properties of the geometric series. �

Proposition 2.1.3. The following identity holds:

GT (t) =
t2 + t4

1 − 2t2 + t4 − 2t6
.

P r o o f. Considering all the possible constructions leads us to the follow-
ing classification:

(2.5) T =



















































T ′ru2lT ′′,

T ′ri+1uliulT ′′, where i ≥ 1,

T ′ruriuli+1T ′′, where i ≥ 1,

uriuli, where i ≥ 1,

riuliu, where i ≥ 1,

u2,

where T ′ and T ′′ are avoidable (Fig. 1 gives an example of a SAW in T ).

Fig. 1

Now we have that:

Gru2l(t) = t4, Gri+1uliul(t) =
∞
∑

j=3

t2j =
t6

1 − t2
,(2.6)

Gu2(t) = t2, Gruriuli+1(t) =

∞
∑

j=3

t2j =
t6

1 − t2
,

Guriuli(t) =
∞
∑

j=2

t2j =
t4

1 − t2
, Griuliu(t) =

∞
∑

j=2

t2j =
t4

1 − t2
.

From (2.5) and (2.6) it follows that

GT (t) = Gu2(t) + Griuliu(t) + Guriuli(t) + Gru2l(t)GT1(t)

+ Gruriuli+1(t)GT1(t) + Gri+1uliul(t)GT1(t) − φT ,
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where φT is the generating function for the duplicates we obtain when calculating
the generating function for T1. One can see that the walks ru2l, ri+1uliul and
ruriuli+1 (for i ≥ 1) are counted twice, so

φT = Gru2l(t) + Gri+1uliul(t) + Gruriuli+1(t) =
t4 + t6

1 − t2
.

Hence, we obtain

GT (t) =

(

t4 +
2t6

1 − t2

)

(t − 1)(t + 1)(2t4 − t2 + 2)

(2t2 − 1)(t4 + 1)
+

t2 + t4

1 − t2
− t4 + t6

1 − t2
,

from which the result follows. �

2.2. Generating function for R-walks. Here we present another type
of walks that have a restriction. Finding their generating function would help us
consider the general problem.

Definition 2.2.1. Let R denote the set of SAWs (c0, c1, . . . , cn), ci =
(xi, yi), n ∈ N0, where c0 = (0,−1), xi ≥ 0, and yi ∈ {−1, 0, 1} for 0 ≤ i ≤ n.

We need to divide these walks in simpler ones.

Definition 2.2.2. Let R′ denote the set of SAWs (c0, c1, . . . , cn), ci =
(xi, yi), n ∈ N0, where c0 = (0,−1), xi ≥ xi−1 ≥ 0, and yi ∈ {−1, 0, 1} for

1 ≤ i ≤ n.

Definition 2.2.3. Let R′′ denote the set of SAWs (c0, c1, . . . , cn), ci =
(xi, yi), n ∈ N0, where c0 = (0,−1), xi ≥ 0 and yi ∈ {−1, 0, 1} for 0 ≤ i ≤ n,

such that there exists j < n with the property that xr ≥ xr−1, for 1 ≤ r ≤ j,
xj+1 < xj and xr < xj, for j + 2 ≤ r ≤ n.

Definition 2.2.4. Let R′′′ denote the set of SAWs (c0, c1, . . . , cn), ci =
(xi, yi), n ∈ N0, where c0 = (0,−1), xi ≥ 0 and yi ∈ {−1, 0, 1} for 0 ≤ i ≤ n,

such that ∃ j < k ≤ n with the property xr ≥ xr−1, for 1 ≤ r ≤ j, xj+1 < xj and

xk > xj.

From the definitions we have that R = R′ +R′′ +R′′′. So, we need to find
the generating functions of these three sets in order to find GR(t).

Proposition 2.2.1. The following identity holds:

GR′(t) = − t3 + t2 + 1

t4 + t3 − t2 + 2t − 1
.
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P r o o f. One can see that a walk in R′ is a chain of mini-SAWs (c0, c1, . . . ,
cn), ci = (xi, yi), such that xi ≥ xi−1 for 1 ≤ i ≤ n, where yi ∈ {−1, 0} for
1 ≤ i ≤ n − 1 and y0 = y1 = −1, yn = 1, or yi ∈ {0, 1}, for 1 ≤ i ≤ n − 1 and
y0 = y1 = 1, yn = −1, in the set BL. Since the type of the next BL-walk is
determined from the previous one, we have the following classification:

(2.7) BL =



























rT ′ru2,

rT ′ruriu, where i ≥ 1,

ru2,

ruriu, where i ≥ 1.

A walk in T ′ is a cluster of mini-walks L′ of type riu or uri (i ≥ 1). Since the
type of the next mini-walk is determined from the previous one, we have that

(2.8) GL′(t) = Griu(t) =

∞
∑

j=2

tj =
t2

1 − t
.

A T ′-SAW can start with r or with u. In the first case we would need an even
number of walks of type L′ and in the second – odd, in order to set the y-level of
the last point −1. The walk may finish with a straight line of type ri. Hence,

(2.9) T ′ =

{

(L′)2irj, where i ≥ 0, j ≥ 0,

u(L′)2i+1rj, where i ≥ 0, j ≥ 0.

Thus,

GT ′(t) = G(L′)2i(t)Grj (t) + tG(L′)2i+1(t)Grj (t)

=

∞
∑

j=0

(GL′(t))2j 1

1 − t
+ t

t2

1 − t

∞
∑

j=0

(GL′(t))2j 1

1 − t

=
1

1 − ( t2

1−t
)2

1

1 − t
+

t3

(1 − t)2
1

1 − ( t2

1−t
)2

.

From the last observation we obtain

(2.10) GT ′(t) =
−1 + t − t3

−1 + 2t − t2 + t4
.
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Now using (2.7) and (2.10) we continue with the following calculations:

GBL(t) =

(

t3 +
t4

1 − t

)(

1 + t
−1 + t − t3

−1 + 2t − t2 + t4

)

to obtain

(2.11) GBL(t) =
t3

−t4 + t2 − 2t + 1
.

After exhaustive search, we present the classification of R′:

(2.12) R′ =















R1,

BLE(BL)i, where i ≥ 0,

BLE(BL)itR1, where i ≥ 0,

where BLE are ’extended’ BL-walks, i.e., BLE = {u2}+ {uriu}+ BL, for i ≥ 1
and R1 is the set of SAWs (c0, c1, . . . , cn), ci = (xi, yi), such that xi ≥ xi−1, for
1 ≤ i ≤ n, x0 = −1 and yi ∈ {−1, 0} for 0 ≤ i ≤ n (Fig. 2 contains an example
of a SAW in R′). Now we can easily see that

(2.13) GBLE(t) =
t2

−t4 + t2 − 2t + 1
.

Fig. 2

A walk in R1 is again a chain of L′-walks, but here we are interested in
the type of the first L′-walk. The classification of the set is the following one:

(2.14) R1 =



































u,
ri, where i ≥ 0,

riu(L′)jrk, where i ≥ 1, j ≥ 0, k ≥ 0,

uri(L′)j , where i ≥ 1, j ≥ 0,

uri(L′)jt, where i ≥ 1, j ≥ 0.
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Hence, from (2.8) and (2.14) we obtain that

(2.15) GR1(t) =
−t − 1

t2 + t − 1
.

Now, from (2.12), (2.11), (2.13), (2.15), we proceed with

GR′(t) = GBLE(t)
1

1 − GBL(t)
(1 + tGR1(t)) + GR1(t)

to complete the proof. �

Remark 2.2.1. One can notice that the set T ′ is very similar to T ′′
1

(the only difference is the straight line in the second set). Therefore, obtaining
the generating function for T ′ is analogous to obtaining the function for T ′′

1 .

Proposition 2.2.2. The following identity holds:

GR′′(t) =
t3(1 + 3t + 3t2 + 3t5 + 5t6 + 3t7 + t8)

(1 + t + t2)(2t2 − 1)(1 + t4)(t4 + t3 − t2 + 2t − 1)
.

P r o o f. One can see that the set R′′ is similar to R′, but we can once
change the x-direction of the points. This way we obtain a combination of two
type of walks – one with a straight x-direction and one with a straight and
backward x-directions, restricted to the left and to the right. Let us consider a
SAW C = (c0, c1, . . . , cn), ci = (xi, yi) ∈ R′′ with the existing j < n such that
xr ≥ xr−1, for 1 ≤ r ≤ j, xj+1 < xj and xr < xj , for j + 2 ≤ r ≤ n. We take
m := minj<i≤n{xi} and remove all the points ci with xi ≥ m from C. The result
is a new SAW C ′. Let BT denote the set of SAWs C − C ′ where C ∈ R′. By
considering all the possible cases we note the classification of BT :

(2.16) BT =































































T − {u2},
rT ld,

riT lidri−1, where i ≥ 2,

riT ldli−1, where i ≥ 2,

riT ldli−1urj, where i ≥ 3, 1 ≤ j ≤ i − 2,

riuli, where i ≥ 1,

riuliurj, where i ≥ 1, 1 ≤ j ≤ i.
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From (2.16) we have that

GBT (t) = GT (t)
(t3 − t2 + 1)(t6 − t3 + 1)

(t − 1)2(t + 1)(t2 + t + 1)
+

t3

1 − t2
+

t5

(1 − t3)(1 − t2)
− t2,

which leads us to

(2.17) GBT (t) =
t3(−3t8 − t7 + t6 + 3t5 − 2t4 − 2t3 + t2 + 3t + 1)

(t − 1)(t2 + t + 1)(2t2 − 1)(t4 + 1)

We note the following classification of the set (Fig. 3 gives an example of a SAW
in R′′):

(2.18) R′′ =



























BT,

T ′rBT,

BLE(BL)irBT, where i ≥ 0,

BLE(BL)irT ′rBT, where i ≥ 0.

Fig. 3

Now, from (2.18), (2.17), (2.11), (2.13) we calculate that

GR′′(t) = GBT (t)
−1 + t

−1 + 2t − t2 + t3 + t4
,

from which the statement follows. �

Proposition 2.2.3. The following identity holds: GR′′′(t) =

t6(−1 − t − t3 − 2t4 − 2t5 + 4t6 + 4t7 − t8 − 3t9 + t10 + 3t11)

(−1+2t2)(1+t+t2)(1+t4)(−1+2t−t2+t3+t4)(−1+t+2t3+t4+2t5+2t6)
.

P r o o f. In this type of walks we can change the direction of the x-
coordinates (from increasing to decreasing and back to increasing) without bound-
ing the walks to the left of a given x-level (like in R′′). Because of the restrictions
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of the lattice, this is only possible in the following construction riuliuri+1, i ≥ 1.
Therefore, a SAW in R′′′ is a chain of repeated mini-walks S, which start with
r then having increasing x-coordinates, and finishing with a construction of the
type riuliuri+1. More formally, the classification of S is the following one:

(2.19) S =



























ri+1uliuri, where i ≥ 1,

rT ′ri+1uliuri, where i ≥ 1,

rBLE(BL)irj+1uljurj, where i ≥ 0, j ≥ 1

rBLE(BL)irT ′rj+1uljurj, where i ≥ 0, j ≥ 1.

Now, from (2.19), (2.10), (2.11) and (2.13) we have that

GS(t) =
t6

1 − t3
+

t7

1 − t3
GT ′(t) + GBLE(t)

1

1 − GBL(t)

(

t7

1 − t3
+

t8

1 − t3
GT ′(t)

)

,

which leads us to

(2.20) GS(t) = − t6

(1 + t + t2)(−1 + 2t − t2 + t3 + t4)
.

In SE we shall consider the walks in S that should not always start with r.
Hence,

(2.21) GSE(t) = − t5

(1 + t + t2)(−1 + 2t − t2 + t3 + t4)
.

After observing the S-walks, we can continue with the classification of R′′′ (Fig.
4 shows an example of a SAW in R′′′):

(2.22) R′′′ =















SE(S)i, where i ≥ 0,

SE(S)irR′, where i ≥ 0,

SE(S)irR′′, where i ≥ 0,−φR′′′ ,

Fig. 4
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where φR′′′ is the set of walks that we have counted in R′′ and R′′′.
The set φR′′′ has the following classification:

(2.23) φR′′′ =



























riuliuri, where i ≥ 1,

T ′ri+1uliuri, where i ≥ 1,

BLE(BL)iri+1uliuri, where i ≥ 1,

BLE(BL)irT ′ri+1uliuri, where i ≥ 1.

Now, from (2.22), (2.23), (2.10), (2.20), (2.21), Proposition 2.2.1 and
Proposition 2.2.2 we have that

GR′′′(t) = GSE(t)
1

1 − GS(t)
(1 + t (GR′(t) + GR′′(t)))

− t5

1 − t3
− GT ′(t)

t6

1 − t3
− GBLE(t)

1

1 − GBL(t)

t6

1 − t3

− GBLE(t)
1

1 − GBL(t)
GT ′(t)

t7

1 − t3

and after replacing with the known generating functions and simplifying, we
obtain the result. �

From these observations, we derive the main result in this subsection.

Proposition 2.2.4. The following identity holds:

GR(t) =
1 + t + t3 + 2t4 + t5 − 4t6 − 2t7 + t8 + 2t9 − t10 − t11

(−1 + 2t2 − t4 + 2t6)(−1 + t + 2t3 + t4 + 2t5 + 2t6)
.

P r o o f. We have already mentioned that R = R′ + R′′ + R′′′. Here we
shall present the argumentation about that. First, we shall note that:

• R′ ∩ R′′ = ∅, because if r′ ∈ R′, r′′ ∈ R′′, we have that BT /∈ r′, BT ∈ r′′;

• R′ ∩ R′′′ = ∅, because if r′ ∈ R′, r′′′ ∈ R′′′, we have that S /∈ r′, S ∈ r′′′;

• R′′ ∩ R′′′ = ∅, because if r′′ ∈ R′′, r′′′ ∈ R′′′, we have that S /∈ r′′, S ∈ r′′′.

Now, if c ∈ R and the x-coordinates of c are increasing, then c ∈ R′, otherwise
c ∈ R′′ + R′′′. Hence,

GR(t) = GR′(t) + GR′′(t) + GR′′′(t)
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and from Proposition 2.2.1, Proposition 2.2.2 and Proposition 2.2.3 the result
follows. �

2.3. Generating functions of W1-walks and asymptotic estimates.

To find GW1(t) and the number of self-avoiding walks in Z×{−1, 0, 1} respectively
we are going to make a connection between the set W1 and the sets T and R.

Theorem 2.3.1. The following identity holds:

GW1(t) =
N(t)

D(t)
,

where

N(t) = 1 + 3t + 2t2 − 3t3 − 10t4 − 2t5 + 14t6 + 21t7 − 11t8 − 35t9 − 10t10

+ 31t11 + 32t12 − 16t13 − 38t14 + 3t15 + 24t16 + 26t17 − 4t18 + 4t20

+ 4t21 + 4t22

and

D(t) = (1 − 2t2 + t4 − 2t6)2(1 − t − 3t3 − 2t5 + t7 + 2t8 + 2t9).

P r o o f. We consider WX such that WX ∈ W1 and for every wi ∈ WX we
have wi = XYi, where X is a fixed sub-SAW. In other words, WX is the set of
the SAWs in W1 that start with X. We have that W1 = Wu + Wd + Wl + Wr,
but GWu(t) = GWd

(t) and GWl
(t) = GWr(t) by symmetry. Hence (Fig. 5 gives

an example of a SAW in W1),

(2.24) GW1(t) = 2 (GWu(t) + GWr(t)) .

Now, Wu = Wur + Wul + u, but GWur(t) = GWul
(t) by symmetry and it follows

that

(2.25) GWu(t) = 2GWur(t) + t.

We note the classification of Wur:

(2.26) Wur =











urR,

urT l,

urT l2R.
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We have that Wr = ri + Wrjd + Wrju, but GW
rjd

(t) = GW
rju

(t) by symmetry, so

(2.27) GWr(t) =
1

1 − t
+ 2GW

rjd
(t).

Using exhaustive search, we can note the classification of Wrjd:

(2.28) Wrjd =























































































rid, where i ≥ 1,

ridrR, where i ≥ 1,

ridrT lj, where i ≥ 1, j ≤ i + 1,

ridrT li+2R, where i ≥ 1,

ridrT li+2Trj, where i ≥ 1, j ≤ i,

ridlj , where i ≥ 1, j ≤ i,

ridli+1R, where i ≥ 1,

ridli+1Trj, where i ≥ 1, j ≤ i + 1,

ridli+1Tri+2R, where i ≥ 1.

Fig. 5

Now we can calculate the generating functions of Wur and Wrjd, in order
to obtain the result. From (2.24), (2.25), (2.26), (2.27) and (2.28) we derive

GW1(t) = 4
(

t2GR(t) + t3GT (t) + t4GT (t)GR(t)
)

+ 2t + 2
t

1 − t

+ 4

(

t2

1 − t
+

t3

1 − t
GR(t) +

(

1

(1 − t2)(1 − t)
− 1

)

t3GT (t)

)

+ 4

(

t6

1 − t2
GT (t)GR(t) +

t7

(1 − t3)(1 − t2)
(GT (t))2 +

t3

(1 − t2)(1 − t)

)

+ 4

(

t4

1 − t2
GR(t) +

t5

(1 − t2)(1 − t3)
GT (t) +

t6

1 − t3
GT (t)

)

+ 4
t7

1 − t3
GT (t)GR(t).
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We replace with the formulas in Proposition 2.1.3 and Proposition 2.2.4 to obtain
the result. �

The last proposition implies the asymptotic of the number of walks in
Z × {−1, 0, 1}.

Definition 2.3.1. Let w(1)n denote the number of sequences C = (c0,
c1, . . . , cn), ci = (xi, yi), of pairwise different points in the plane such that xi ∈ Z

and yi ∈ {−1, 0, 1} for 0 ≤ i ≤ n, c0 = (0, 0) and |xi − xi−1| + |yi − yi−1| = 1 for

1 ≤ i ≤ n.

Corollary 2.3.1. The following relations hold:

µZ×{−1,0,1} = lim
n→∞

w(1)n

w(1)n−1
= 1/vmin ≈ 1.9146267907190664,

where vmin is the minimal modulus zero of D(t).
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