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Let © be a bounded domain in the n-dimensional Euclidean space with
a sufficiently smooth boundary 002. By G(x; ¥), x=(X1, . . -, Xu), Y=(Y1s - ¢+ Yn),
is denoted the Green function of the problem

dU=/, =2 _l‘..._}-ﬁ'q..
‘ —dxf

I o0=0,

In this paper we shall study the spectrum of the operator

, o*u
] = X. —_— .
(1) Tu ;[G(t,y) % dy

Our problem is coming from the investigationof Sobolev |1} on the
movement of a body with cavity filled by perfect liquid. It has been consi-
dered already in [2, 3].

§1. H{(Q) are, as usual, the Sobolev’s spaces which consist of all the
functions having square summable generalised derivatives of order s in Q.
Let us denote by HY(®) the set of functions of Hy(2) vanishing on the boun-
dary 0Q.

Expression (1) defines a linear operator 7 mapping continuously (£
into itself. One can easily see that (1) may be written in the following form :

(2) Tu= [ %;?— u(y)dy, u¢HYQ).
. 1

We used the fact that u(y) vanishes on the boundary. Now it is clear from
(2) that T is a singular integral operator.

Let us remember on some definitions [4, 5]:

Suppose A is a closed operator in a Banach space. A is called an ope-
rator of Fredholm’s type if the following conditions are fulfilled:
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1. The dimension of KerA4, the latter being the set of zeros of A, is
finite.

2. Im A, i. e. the range of A, is closed.

3. The codimension of Im A is finite.

The essential spectrum of A is defined as the set of points Zon
the complex plane for which A--i is not an operator of Fredholm’s type.

Theorem I. The spectrum of the operator 7 is identical to its essen-
tial spectrum both coinciding with the interval [0,1].

Proof. First of all there is no point of the spectrum besides of the
fnterval [0, 1]. Indeed, let for instance 1<<0. We perform the following trans-
formation

(3) x'1=\/i_]__/1L Xy, x'2=71.3x2, cee x:l=\/;1_;.. X

In this way € is transformed into a new domain £, and the function
nix,, ..., x,) € Hy(Q) into uL(v , X)) € Hoy(¢2;). We denole by 0, the opera-
tor transforming u into u,.

Let
v=(T—=Mu, u,veH Q2
Applying to both sides the operator 1, we obtain

V= -— —Zidu.
.\I
By means of (3) the last equation is transformed into
1~ 1 - ~
2(1—1) v, — ; A v, = 1u,.

Inverting the -operator .l one obtains
(4) 0= 0(T—2)~0-19,= [ G(x': ) 0, dy' —
A— Y v 7 }'—)-(l'—l). ZACAZER B ayl‘f y

where Gi(x'; y') is the Green function of the Dirichlet’s problem for the
lLaplace’s operator in ;. From (4) it can be seen that (7—7)~! is bounded.
Hence 1 does not belong to the spectrum.

Now we shall prove that every point i¢[0, 1] belongs to the essential
spectrum of 7. For this purpose we consider the boundary problem

o0°u

s ,—idu=F,
X
(5) ‘

ou=f

and define the operator 7> mapping HY(£2) into 1(£2

“) d°u
470 = (;-vz---)..m, ue HyL?
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It is easy to sec that problem (5) is not an elliptical one [G], hence the
operator 7, is not of Fredhol’s type (ellipticity is necessary for 7; to be
of Fredholm’s type |7]).

Moreover from this follows that 7'—2Z is also not of Fredholin’s type.

Let us prove for instance that if Im7’; is not closed then Im(7—1) is not
. H
closed too. Indeed, let f,,(lm/j,«,, In _;f. We denote

Cu= A*lfn == f G(x s y)fn( y) dy
H() )
Then ¢, ¢ Im(T'—A)CH,and ¢, —%A—‘fz @. AsIm(T—2)isclosed,so ¢ ¢ Im(7—2).
Hence

f=dp e Im(T—2)=Iml(T—2)=Im 7,

and this was to be proved.

Thus every point of the interval [0, 1] belongs to the essential spectrum
of T.

§2. In §1 we saw that the essential spectrum of the operator 7 does not
depend on the domain . The more detailed structure of the spectrum and
particularly the exislence of eigenvalues depends on the domain. It is proved
in {2, 3] that if Q is an ellipsoid or a cylinder, the spectrum consists of an
everywhere dense set of eigenvalues of infinite multiplicity. Now we are
going to construct some domains for which the operator 7 has not eigenva-
lues at least on some subinterval of [0, 1].

Suppose that for some 0<i<1 and some u¢ HY(L)

Tu—u=0.
Then it follows

(6) o~ 1du=0, u/3=0.

X1

Let us perform the substitution

1 1 1
(7) x’=T::'::x , x'=>—:r‘x PRIPR x' = - X,

V27" T2y nJor 7"
In this way the function u(x,,..., x,)is transformed into tf,-,(x{. ..+ X)), the
domain Q into a new €; and (6) into

o, 0%, 0%,
8 ,,Al_-‘_l'__.. .——-—/'z u =U.
®) ax? oxg 0x)? 0, “yo0,=0

Thus # satisfies the wave equation and vanishes on the boundary of Q,.In
order {o prove that / is not an eigenvalue it is sufficient to prove that from

(8) 1 -0 follows. This latter means the uniqueness of the solution of the
Dirichlet’s problem for the wave equation in Hy(Q), called in what follows
shortly “uniqueness”.
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l-‘ir§t of all we shall consider the two-dimensional case, moreover let Q
be a triangle. The domain €, is also a triangle for every 7¢(0, 1. We shall

show the uniqueness for an arbitrary triangle, from which follows that 7" has
no eigenvalues.

Fig. 2

So, let 2 be an arbitrary triangle. At least one of the angles of £ must
lie inside of a characteristic angle (an angle determined by two characteris-
tics of the wave equation). Indeed, let us draw the three straight lines pa-
rallel to the sides of the triangle through the origir of the coordinate system
(Fig. 1). As there are two characteristic angles whereas three straight lines,
at least two of the latter must be inside of one of the characteristic angles.

Let /2 be an arbitrary point in the triangle. We¢ draw through /7 the
characteristics as shown in Fig. 2. Suppose now u: H) satisfies the wave
equation. Then the following relations hold
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u(P) +-u(Py) = u(A,) -u(By),
(9) u(Py) t-u(Py) = u(Ay)+ u(By),

u(P,_)+-u(P,)=u(A)+u(Bn).

The right-hand sides of (9) are equal to zero because u vanishes on the
boundary of . Let us multiply the first equation of (9) by {-1, the second

one by —1, the third one again by -i-1, and so on and add them together.
We then obtain

(10) u(P)+(—1)"'u(P,)=0.

Obviously P, converges to Aand as u is continuous by virtue of the Sobolev’s
Imbedding Theorem from (10) follows u(P)=0. Thus the uniqueness is proved.

We can proceed in a similar way in the three dimensional case. Let us
consider the cone ( enclosed by the surfaces (Fig. 3)

wy: xX3—(14a?)(x3-+-x2)=0,

(()2: X1=}l

Fig. 3

where a and % are arbitrary constants. Q lies inside of the characteristic
cone of the wave equation

-2 2 2
X7 -x5—x;=0.

We shall prove the uniqueness for such arbitrary cones.
Let P be a point of €. Let this point coincides with the vertex of a

characteristic cone. We denote by o the part of w, cut off by the charac-
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teristic cone and reversely by ¢ the part of this latter cut off by w, (Fig.3).
Then the following relations are fulfilled:

2 2 —

” yi—r2=0 on o,
. 1 .

2. 2 ,2) — ’
T (ry | ¥)=0 on o,

where », are the direction cosines of the normal of the surfaces in question.
Next we use the identity

0 [ou\2 0 [0u\2 0 [O0u\?
2 IR Bhded 2
0= 2()\1 i dx, (dxg) " ox, (dx:,) +0x1 (dx,)
_22_(011 ()11‘_2-0 (_3};0_11_ )
0xy | 0xy dx._,) Oxy\0x, dx;,)

Integrating over the domain ¢ enclosed by ¢ and ) one obtains

ou S (/0 2, [Oun\2 ou\2 du du ou Ou
= ud) = —__ o B Bt ’oe— v, Idadiihbed)
() [ 2 - ‘l j {I (d"‘l ) _i (().V-_;l\) ! (d.(;{) ] ! 1 2 () g i () \ 2 a."] d.t‘;;}dw

nnl—|>1}

"1 J ‘ ou 2 du 2y, ou (2 . du ou ou ou l
! 2 202 9 yoy . '
, " l‘(q)\‘._.) ' (u‘.\‘_.;) ]” I (0,\‘1) ()2 ! l“) Ty 0, il 2 vy Ay " JJ den

Lf[{ du 2 ou\?) ou o
—_— e _)_ ;2 ,2 2 h '2—1 '2
-/.r‘ l (\‘)x!) (dx;,) ],' ' ({)r) (' ¥ ) ~h (dr) (’2 ‘ 13)

ll)l
ou du du ou
_QE 52; j’1112 —2 E d—\‘. ):1,13 }d(')
_ 1 |/ ou ou 2 ou du o
_fn [((h‘g ! L o, 12) (dx;, Yi— dtu——ﬂ j (, + )d(u
“ ‘.l

Ju du 2 ou
(dx. L ox, "2) _}‘((fr;: 17 dn )‘dw

'
ml

We used the notation

1 _ 2
1= 1A%

Since u¢ H,(£), all integrals exist in these formulae. The last integral vani-
shes because of the presence of the tangential derivatives of u on o in the
integrand. Since »,>0 holds on ¢ and »,<0 on ) it follows that

1 |/ ou on 2 [ou on N2
[orlla g ms) (dmi= o, 7] o0

o

ou

. . . . 0 ou
thus both of the linear independent inner derivatives d;‘ "1 o vaand 5 o, Ut
2
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1 2 . .
—- 55 vs are equal to zero on o. Therefore the function u is a constant on o
‘1

and as it vanishes along the intersection of o end w,, it is zero on the entire
0. Hence u(P)=0 and the uniqueness is proved.

By means of substitution (7) Q is transformed into a cone £, deter-
mined by the surface

X —(14a) A 4+ 1) =0,
Obviously @, lies inside of the characteristic cone if and only if

_ 1+a?
(11) 0sis e

/

consequently there are no eigenvalues in the interval (11).

Yu. M. Berezansky [8] proposed to construct some domains where the
problem of Dirichlet for wave equations has a weak solution, the solvability
being stable against little deformations of the domain. It is easy to see that
for such domains the spectrum of 7 contains interval without eigenvalues.
In what follows we describe briefly this method applied to our case.

Let us introduce the notations

—g—-zu__gz—u-_---. ‘1 promend PRI [ —
b= dr ~ C’o 20 1% boe =1
Suppose that u ¢ Hy(¢ )satlshes the equallon Lu=0 and vanishes on the
boundary. Let A,(x),..., An(x), A(x) be real sufficiently smooth functions.
Integrating by part the following identities may be proved [8]:
(12) 0=f ( VAk +A,,) dx
Q2 k=1
_f n . \g‘)Ak 2 24 ou + y y OAk .y OA/ ou ﬁ dx
- Z I\ i 0%, '5?_ ( ) ( 7 9%, "dxk)dx 0,
Q =t =1 4 ;k—
J¥k
+j( )ugdv-{-fN? N Ay, S’c,v?
o k=1 j=!

where », are the dlrectxon cosines of the normal of the surface 02, N{Misa
function such that 0 ? — N,—v: holds on 9. (As u/sn=0, Ny(x) exists.) Let
us choose the functlons Ax(x) and A(x) so that the quadratic form

13 Vv’ ‘Mk _/‘___ Ouy? ﬁ(__ 04, OA) du Ou

( ) ,I-; ( y 0 j 2A )(6\'/) ‘jél C 04(/ Oxk 0xj dxk

is strictly positively definite and the inequality

(14) YC]—FZO

J=1 J
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is fulfilled. Furhermore we delermine the domain £ so that on dQ

n n

(1-)) ‘27 Akl’k ‘2?(:]]'3\0.
ko1 J=1

As a consequence of (12--15) for such a domain u 0 holds. Moreover if
little alterations of £ and Ayx) are made the positive definiteness of (13)
and the inequalities (14), (15) so consequently the uniqueness remains valid.

As seen from (7) £2,=£ when i=1'2, so when Z lies in a sufficiently
small neighbourhood of 1/2, ©, differs little from £ and the uniqueness
holds. This means that there are no eigenvalues in a sufficiently small neigh-
bourhood of i=172.

As an example let us now describe a domain constructed in [8] in the
way we have explained. Take A,= —x,, Ar=x, k=2, .,n Consider the
four branches of hyperboles x,x,=#4 on the x,0x, plane (Fig. 4) and close
them with curves AA,, AA,, BB, These latter can be arbitrary, the only
restriction on them is the following. Place a hyperbola x,x,=# through an
arbitrary point M of these curves. We then obtain two angles « or f, both

Fig. 4

determined by the coordinate axis (see Fig. 4) and by the tangent of the
curve or by that of the hyperbola, respectively. « and # obey the relation
ﬁ<a<§--

In this way one receives a bounded domain &, on the x,0x, plane.
Consider now a cylinder Q,=0,XE,_, where E,_, means an n—2 dimen-
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sional space built up of all coordinate axes with the exception of Ox,; and

Ox,. Similarly, we construct Q, on the x,Ox, plane with the corresponding
cylinder £,, etc. Let 2 be the intersection of all these cylinders constructed.
€ is bounded, its boundary consists of smooth surfaces of finite number.
The boundness of © follows from that for points 1n £, x, and x,, for
points in Q,, x, and x, etc. are bounded. Choosing the constant % in the
equations of the hyperbola sufficiently small in modulus and the points
A, B, C, D sufficiently near to O we receive a domain Q for which the quad-
ratic formula (13) is strictly positive definite and inequalities (14), (15) are
valid, consequently the uniqueness holds. At the same time this property
remains unchanged in case of small deformations of the domain chosen. As
a consequence, for this domain the spectrum has no eigenvalues in some
neighbourhood of the point 1=1,2.

The author whishes to express his gratitude to A. S. Dynin for stimu-
lating discussions and valuable suggestions, and to E. Nagy for reading the
manuscript and comments.
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& NogswN s~

IMocmsnuaa na 31. XII. 1967 ..

BBPXY CNEKTBPA HA EOUH CHHIYJISPEH UHTErPAJIEH
OINEPATOP

Payo Ienues

Pesome

DNoxasea ce, ye cneKTbPBT Ha omeparopa I CbBNaAa CbC CbIMECTBEHHS
MYy CMeKTBbp M ce C’bCTOM OT BCHYUKM TOukd Ha uurepsana [0,1]. OnepaTopsT
T ce onpenens ot

Tu= [G(x, 3) T dy, we Q)
Q

K'bAETO x=(xlv L) x,,), y=(y1v v ,,Vn) ca TOYkH OT R, G(x’y) ¢ (bynx-
uuATa Ha ['puH oT 3ajavata Ha [lupHxJe 3a ypaBHenuaTa Ha Jlannac B oGaact-
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Ta OCR", a HY(LQ)— npoctpanctso Ha Gyukuuute H,(L2), Kouro ce o6pL-
AT HAa IpaHlIlaTa B HyJa.

[lokazann ca HsikoW 00J1aCTH, 32 KOMTO CNEKTHPBT He CbABPXKA cOOCT-
BEHHTe CTOMHOCTH B HAKOH MOAWHTepBas Ha uHTepBana [0, 1].

O CIEKTPE OIHOIO CHHI'YJ/ISIPHOI'O HHTEI'PAJIBHOI'O
OINEPATOPA

Payo Jlenuyes

Pesro.ue

Iloka3niBaeTcs, YTO CEKTP onepatopa / COBMNANAeT C €ro CYIIeCTBEHHBIM
CrieKTpOM M 3anoJHsieT WHTepBan [0, 1). Onepatop 7T onpenensiercs ¢opmynoii

Tu— [ G(x, y)‘:'—;‘gdy, u¢ HY (),
. oy

re X (X, .. L, X)), Y=« s Ya) TOukH H3 R Gy, y) — yukius puna
satayn Jupuxae ans ypasuenus Jlaunaca B obnacth QCR"; H)YL2) —- npocr-
paucTBo (PVHKUMIT H3 F,(L2), oOpamaiomuxcss B HYJb Ha IPaHulle.

[Tokasanbl HekoTOpBle 06JACTH, AJNs1 KOTOPbIX CHEKTP He COMEPKHT CcOO-
CTBEHHBIX 3HAYeHHH HAa HEKOTOPOM MOJAMHTepBane HHTepsaaa [0, 1].
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