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1. INTRODUCTION

Cs-curves in an Euclidean space of three dimensions were defined by
Upadhyay and Trivedi (1970) as such curves on the surface of reference of a
rectilinear congruence, through a point of which the line of the congruence is
inclined at angles f, ¢ and y respectively with the tangent, principal normal
and binormal towards the curve at that point. Later on these curves were
generalised to a subspace of a Riemannian space by Rastogi (1970). In this
paper we have obtained the differential equation of Cg-curvesin a subspace
of a Riemannian space by a method different from Rastogi (1970). We have
also proved that union curves, hyper-asymptotic curves and hypernormal
curves are particular cases of Cs-curves in a subspace of a Riemannian
space.

2. PREREQUISITES

Let a Riemannian space V, with coordinates x‘, i- 1,..., n, and metric
tensor g; be immersed in a Riemannian space V, of coordinates y-,
a-=1,..., m, and metric tensor a.s; then we have [Weatherburn (1957)]

2.1 8 =0, Y5 Y%,
where semi-colon followed by indices denotes tensor derivative with regard

to x’s.

Let N,» v=n-+1,..., m, be the contravariant components in y’s of a
system of m—n mutually orthogonal unit normals, to the subspace V,, then
we have

(2.2) ANy Nij= 0,
and
(2.3) Ao yis N5 =0,

Let, 1 be the contravariant components in the y's of a unit vector in
the direction of the curve of the congruence 4, then it can be ex-
pressed as
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(2‘4) ul = ttl ,V + 'tl :'ll .

14

If 0,,; is the angle between 1} and N, then

(25) cos 0,.,; Coq
and
(2.6) 1 —t,1| ti[:‘ZCOSa 9,,[ .

If ¢“ and p' are the contravariant components of the curvature vectors
in V,, and V, respectively, then

(2.7) g yip'+ Dk, N2,
where

dx’ dx’
(2.8) R, =8, dis %‘s— .

Let n¢, r=3,..., m, be the contravariant components of the m—2 unit
binormals of a curve C in V,, and E;" be their components in V,. This
vector n7, can be expressed as

(29) ne=LE ¥+ M, N
Let y,, be the angle between 57 and M, then from (2.9) we obtain
(2. 10) le =COS Ysr|
and
(2.11) L=siny,,.

Hence equation (2.9) can be written as

(2.12) ny =siny,, y“ + = 7 cos vor) Ny

3. C5-CURVES IN A RIEMANNIAN SPACE

In a Riemannian space we define Cs-curves as the curves for whicp
the contravariant components 1y, of the vector tangential to the curve of
the congruence 41, are inclined at angles ¢,, v, and g, to the tangent
vector, to the first curvature vector and to the binormals of the curve.

Consider a geodesic surface determined by the vector wjy (which lies
in another geodesic surface determined by the tangent vector dy* /ds and
the first curvature vector g in V,,) and % r=3,...,m. If Agl is a unit

vector of this geodesic surface, we can express it as follows:
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(3.1 A =ax dy 'ds+b, g +cony,
where a., b, and ¢, are to be determined.

Comparing equations (2.4) and (3.1) and using (2.7) and (2.12) we
obtain

{
(3.2) oy +2Cn|N2;~(a,, %4— b, p'+c, siny,, )y;,.

+<b‘l| Zkﬂ -+ Cq 27 cos 7’-'r!) N’(“i.

Multiplying equation (3.2) by a..y? and using equations (2.1) and (2.3)
we obtain

. dx’ . .
(3.3) it =a, g5 +bu gy P+ Cy - SiN 8y &L

Let the angles between lgi and dy°/ds be ¢, , between l‘;! and g¢ be
v, and between ).gl and nfl be x,, then we have from (3.1)

(3.4) aaﬂlg[dyﬁ lds =cos @, ==a,,
(3.5) Aopdo.q" =K, .cosy, =b, . K2
and

(3.6) aaﬂlg| 18| ==COS 2y 7= Cq1
where we have used

(3.7)a a.pdy*lds qgf =0,
(3.7)b Aap 4415, =0,

(3.7)c Qap dy°ldsnf =0

and

(3.8)a A.pdy?lds dyflds =1,
(3.8)b a.p9°9’ =K,

and

(3.8)c Qapriy 1 =1

Putting values of a,, b, and ¢, from (3.4), (3.5) and (3.6) in (3.3) and
multiplying it by g/*, summing on i we get

(3.9) P* cos y, — Ko(t* —cos ps dx*[ds — g, cos 2, .8iny,,)=0.

Equation (3.9) is the differential equation of Cs-curves in a subspace

of a Riemannian space. _ )
In the next section we shall consider some particular cases.
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4. PARTICULAR CASES

From equation (3.1) we san easily obtain

(4.1) 1-a}+ 04 Ka+ch
which by virtue of (3.4), (3.5) and (3.6) yields
(4.2) 1--cos? g, +-cos? y 4 cos® »,
Case 1. For »,- n/2, equation (4.2) gives
(4.3) COS yy =Sin g, .
Putting x.;==a/2 and cos y, =sin ¢, in (3.9) we obtain
(4.4) pF—K, cosec w,,(tf‘—cos @, d=*/ds) =0,

which is the differential equation of union curves in a subspace of a Rieman-
nian space [Rastogi (1971)).
Case II. For y, =n/2, equation (3.9) yields

(4.9) Ko(t* —cos pudxt [ds— gk . cos zv . sin y,r) =0.

For . =-n/2, equation (4.2) gives cos g, =sin ¢, and since K,50, there-
fore the equation (4.5) reduces to

(4.6) £} —cosec @, .cosec y.,(t -—dx*/ds cos @«)) =0,

which is the differential equation of hyper-asymptotic curves in a subspace
of a Riemannian space |Rastogi (1971)].

Case Ill. For ¢,=n/2, equation (4.2) yields cos vy, =siny,, which
when substituted in (3.9) gives rise to

4.7 PF—Kj cosec y, (¢4 — &k cos g, . sin7,7)==0.

Equation (4.7) is the differential equation of hypernormal curves in a sub-
space of a Riemannian space Rastogi (1971).

Case IV, For p¥=-0, equation (3.9) yields (4.5).

Thus we have:

Theorem (4.1). For a geodesic in V,, Cs-curves satisfy one of the
following :

i) the curve is a geodesic in V,,,

i) the curve is a hyper-asymptotic curve.
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BbPXY Cs-KPUBHTE B EINHO IOANPOCTPAHCTBO
HA PUMAHOBO ITPOCTPAHCTBO

C. PacrormH

(Pesrr.ue)

[Tpe3 1970 r. ¥Ynapxuait u Tpusenun nedunupaxa Cs-KpUBa B TPHMEDPHO
eBKJIMJI0BO NPOCTPAHCTBO KaTO TaKaBa KpHBa BBPXy OasHcHaTa NOBBPXHHHA
Ha eflHa KOHIPYEHLHsA NpaBH, B MPOM3BOJHA TOYKA HA KOATO NpaBaTa Ha KOH-
rpyeHLHATa Mpe3 Ta3d TOYKA CKJIOYBA BraM 0, ¢ W y CHOTBETHO C JAONHpa-
TesqHara, r1aBHaTa HopMana H OMHOpManaTa K'bM KpHBara B TasH Touka. [lo-
kbcHO (1970) Pacrorn HanpaBH 06001eHHe Ha Te3H KPHBH B cJydas HA NOJ-
NPOCTPAHCTBO HAa PHMaHOBO MPOCTPaHCTBO. B Tasu pabora e moayuyeno aude-
peHuHanHo ypaBHeHHe HAa Cs-KDHBHTE B MOJANPOCTPAHCTBO Ha PHMAHOBO NpoO-
CTPaHCTBO Ype3 MeTOA, pasiuued oT To3n Ha Pacroru (1970). Cbwo Taka
e J0Ka3aHO, Y€ CbeIHHHTEeNHHUTe KDHUBH, XHUNepP-aCHMINTOTHYHHTE KPHBH H
XHIePHOPMAJIHUTEe KPHBH Ca 4acTHH cayyau Ha Cs-KpPHBH B NMOANPOCTPAHCTBO
Ha PHMaHOBO MPOCTPAHCTBO.

O Cs-KPHBBIX B T[IOANPOCTPAHCTBE
PHMAHOBOI'O NMPOCTPAHCTBA

C.Pacrormu

(Pe3rome)

B 1970 r. Ynanxuait u TpuBeau onpenenunn Cs-KpPHBYIO B Tpexmep
HOM €BKJIHJOBOM NPOCTPAHCTBe KaK KPHBYIO Ha 6asHCHOH NMOBEPXHOCTH OMHOM
KOHFPYSHIMH NPSAMBIX, B [IPOH3BOJbHOH TOYKe KOTOPOH NpaAMas KOHTPYSHIIHH,
npoxoAsnIlas vuepe3 3Ty TOYKY, o6pasyeT yraH 0, ¢ H y COOTBETCTBEHHO C
KacaTe/NbHOH, r/JaBHOH HOPMaablo W OHHOPMAaNbIO K KDHBOH B STOH TOUKe.
[Toaxxe (1970) Pacrors camenan o6061leHHe STHX KPHBHIX IJA8 cayyas B
NOANPOCTPAHCTBE PHMAHOBOro npocTpaHcTBa. B srToit pab6ore noayyeso aud-
¢pepenuuanbHoe ypasHenue Cs-KPHBHIX B NOANPOCTPAHCTBE PHMAHOBOrO MpO-
CTPAHCTBA NO MeTOAY, OTJM4yHOMYy oT Meronaa Pactoru (1970). Takxe 6mao
HAOKa3aHO, YTO COEeIHHHTEJbHble, THNEPaCHMNTOTHYECKHE M THIIePHOPMAJIbHbIE
KpHBblE ABJAAIOTCA YacTHbIMH cayyasMH Cs-KpUBBIX B NOAMPOCTPAHCTBE pPH-
MaHOBOrO NpPOCTPAHCTBA.
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