ДВОЙСТВЕННОСТЬ В ВАРИАЦИОННЫХ ЗАДАЧАХ С ФИКСИРОВАННЫМИ КОНЦАМИ

Митко М. Цветанов

1. Пусть $\underset{\forall}{ }$ и $\geqslant /$ - вещественные линейные пространства, находящиеся в двойственности относительно (канонической) билинейной формы
 дана функдия $f(x)$, принимающая значения в расширенной области вещественных чисел, т. е.

$$
f(x) \in[-\quad,+\infty] .
$$

С функцией $f(x)$ мы связываем два множества

$$
\begin{gathered}
\operatorname{dom} f \quad\{x \in \mathfrak{X}: f(x)<-\}, \\
\operatorname{det} f \quad\left\{(x, i): f(x) \leq \lambda, x \in \operatorname{dom} f, \lambda \in R^{1}\right\} \subset \mathfrak{X} \times R^{1}
\end{gathered}
$$

называемые соответственно эффективной областью определения и надграфиком (или эпиграфом) функции f.

Мы назовем функцию f выпуклой, если $\operatorname{det} f$ выпукло, и замкнутой (полунепрерывной снизу), если $\operatorname{det} f$ замкнуто в $\mathfrak{+} \times R^{1}$.

Функцию f называют собственной (или нетривиальной), если $f(x)$ $>$ - для всех $x \in \ddagger$ и $f(x)<\sim$ по крайней мере для одного $x \in \ddagger$. В дальне. йшем мы будем рассматривать только нетривиальные функции.

Двойственной по Юнгу, или преобразованием Юнга функции f, называют функцию f^{*}, определяемую формулой

$$
\begin{equation*}
\left.f^{*}(y) \quad \sup _{x}[x, y\rangle-f(x)\right] . \tag{1}
\end{equation*}
$$

Для любой функции f функция f^{*} выпукла и замкнута.
Нз (1) следует важное неравенство

$$
\begin{equation*}
f(x)+f^{*}(y) \geqq x, y \tag{2}
\end{equation*}
$$

называемое неравенством Юнга.
Если

[^0]то（1）и（2）принимают，соответственно，вид

$$
\begin{gather*}
f^{*}\left(y_{1}, y_{2}\right) \sup _{x_{1}, x_{2}}\left[x_{1}, y_{1}+\cdot\left\langle\left\langle x_{2}, y_{2}\right\rangle-f\left(x_{1}, x_{2}\right)\right|,\right. \\
f\left(x_{1}, x_{2}\right)-\cdot f^{*}\left(y_{1}, y_{2}\right) \cdot\left\langle x_{1}, y_{1}\right\rangle+\left\langle x_{2}, y_{2} \vdots\right.
\end{gather*}
$$

для всех $x_{i} \in \underset{\mathcal{Z}_{i}}{ }, y_{i} \in \mathcal{M}_{i}, i \quad 1,2$.
При условии，что $x_{2} A x_{1}$ ，где $A: \mathfrak{x}_{1} \quad \mathfrak{x}_{2}-$ линейный оператор и $A^{*}: ソ l_{2} \rightarrow ソ l_{1}$－его сопряженный，т．е．《 $\left.\left\langle A x_{1}, y_{2}\right\rangle\right\rangle\left\langle x_{1}, A^{*} y_{2}\right\rangle$ ，то

$$
\left.f\left(x_{1}, A x_{1}\right)+f^{*}\left(-A^{*} y_{2}, y_{2}\right)-x_{1},-A^{*} y_{3}+\left\langle A x_{1}, y_{2}\right\rangle\right\rangle 0
$$

для всех $x_{1}\left(\right.$ Ł $_{1}, y_{2}\left(\mathcal{H}_{2}\right.$ ，откуда следует，что

$$
\begin{equation*}
\inf _{x \in{\underset{C}{1}}^{x_{1}}} f(x, A, x)+\inf _{y \in Y_{2}} f^{*}\left(-A^{*} y, y\right) \equiv 0 \text {. } \tag{3}
\end{equation*}
$$

При некоторых условиях（они рассматриваются подробно в［3｜）до－ казывается，что в（3）имеет место равенство．

В［3］，между прочим，доказано，что если рассматривается задача о нижней грани выпуклой замкнутой функции $f\left(x_{1}, x_{2}\right)$ при условиях，что $x_{2} A x_{1}, x_{1} \in X$ ，где $X \subset \mathfrak{x}_{1}$－некоторое выпуклое замкнутое множество，и существует точка $\left(x_{0}, A x_{0}\right) \in \operatorname{dom} \widetilde{f}, x_{0} \in X$ ，в которой функция f непрерывна，а

$$
\tilde{f}\left(x_{1}, x_{2}\right) \quad f\left(x_{1}, x_{2}\right) \cdots \delta_{x \succ \varkappa_{2}}\left(x_{1}, x_{2}\right)
$$

（называемая при этих ограничениях на $f N$－функцией），то справедливо следующее соотношение：

$$
\inf _{x} \tilde{f}(x, A x)+\min _{y} \widetilde{f}^{*}\left(-A^{*} y, y\right) \quad 0 .
$$

Основные понятия теории двойственности выпуклых функций изло－ жены в обзорной статье［1］，где имеется и подробная библиография．

2．В［4］рассматривалась，среди других，задача классического вариа－ ционного исчисления，состоящая в отыскании нижней грани функционала

$$
\begin{equation*}
F\left(x_{1}, x_{2}\right) \int_{t_{0}}^{t_{1}} f\left(t, x_{1}(t), x_{2}(t)\right) d t \tag{4}
\end{equation*}
$$

при условиях，что

$$
\begin{equation*}
\left.x_{j}=\left(x_{j}^{1}, x_{j}^{2}, \ldots, x_{j}^{n}\right), j \quad 1,2, \quad x_{1}^{i} \in C \mid t_{0}, t_{1}\right], x_{2}^{i} \in C\left[t_{(n}, t_{1}\right], \tag{5}
\end{equation*}
$$

$$
i \quad 1,2, \ldots, n, \quad x_{1}\left(t_{0}\right)-x^{0}, x_{1}\left(t_{1}\right)-x^{1}, \quad x_{2}(t) \frac{d}{d t} x_{1}(t)
$$

и функция f предполагалась выпуклой по совокупности переменных $\left(x_{1}, x_{2}\right)$ для всех $t \in\left[t_{0}, t_{1}\right]$ и непрерывной по совокупности $\left(t, x_{1}, x_{2}\right)$ на
$\left\lceil t_{0}, t_{1}\right\rceil \times R^{n} \times R^{n}$. Там же доказано, что двойственный к (4) функционал, задаваемый формулой

$$
\begin{aligned}
& F^{*}\left(\alpha, \mu_{1}, \mu_{2}\right) \sup _{x_{1}, x_{2}}\left[\left\{, x_{1}\left(t_{0}\right)\right\rangle+\int_{t_{0}}^{t_{1}}\left\langle x_{1}(t), d \mu_{1}(t)\right\rangle\right. \\
& \quad+\int_{t_{0}}^{t_{1}} x_{2}(t), d \mu_{2}(t) ;-\int_{t_{0}}^{t_{1}} f\left(t, x_{1}(t), x_{2}(t) d t\right]
\end{aligned}
$$

имеет эффективную область определения $\operatorname{dom} F^{*}\left\{\left(\kappa, \mu_{1}, \mu_{2}\right): \mu_{1}\right.$ и μ_{2} - абсолютно непрерывны,

$$
\begin{equation*}
\left.\mu_{1}\left(t_{0}\right) \quad \alpha, \mu_{1}\left(t_{1}\right) \quad 0 \text { и } \int_{t_{0}}^{t_{1}} f^{*}\left(t,-\mu_{1}(t), \mu_{2}(t)\right) d t<\quad\right\} \tag{6}
\end{equation*}
$$

(Здесь функция f^{*} - двойственна к функции f, т. е.

$$
\left.f^{*}\left(t, y_{1}, y_{2}\right) \quad \sup _{x_{1}, x_{2}} \mid x_{1}, y_{1}+x_{2}, y_{2}-f\left(t, x_{1}, x_{2}\right)\right]
$$

где , есть обыкновенное скалярное произведение в R^{n}.) Далее, при условиях (5) и при обозначениях - $\mu_{1}(t) \quad \dot{\mu}_{2}(t) \quad y(t), x_{1}(t) \quad x(t)$ попучено соотношение
(7) inf $\int_{x}^{t_{1}} f(t, x(t), \dot{x}(t)) d t \quad \max _{y}\left[x^{1}, y\left(t_{1}\right)-x^{0}, y\left(t_{0}\right)-\int_{t_{0}}^{t_{1}} f^{*}(t, y(t), y(t)) d t\right]$,

где максимум справа берется по всем абсолютно непрерывным на отрезке $\left[t_{0}, t_{1}\right]$ функциям $y(t)$.

Одна из важнейших лемм, на которых опирается доказательство соотношения (6), следующая:

Лемма 1. Пусть в пространстве $C^{\prime}\left|t_{0}, t_{1}\right|$ задан функционал

$$
\begin{equation*}
F(x) \int_{t_{0}}^{t_{1}} f(t, x(t)) d t \tag{8}
\end{equation*}
$$

где подынтегральная функция f предположена выпуклой по x для всех $t \in\left[t_{0}, t_{1} \mid\right.$ и непрерывной по (t, x) на $\left[t_{0}, t_{1} \mid \times R^{1}\right.$. Тогда двойственный к (8) функционал, задаваемый формулой

$$
\begin{equation*}
F^{*}(\mu) \quad F^{*}(\alpha, \mu) \quad \sup _{x}\left[a x\left(t_{0}\right)+\int_{t_{0}}^{t_{1}} \dot{x}(t) d \mu(t)-\int_{t_{0}}^{t_{1}} f(t, x(t)) d t\right] \tag{9}
\end{equation*}
$$

удовлетворяет условию: если $F^{*}(\mu)<$, то μ - абсолютно непрерывная функция (мера).

Теперь мы докажем одну лемму, которая является обобщением леммы 1 и понадобится нам в дальнейшем.

Введем сначала необходимые обозначения.
Пусть в пространстве $\left.C^{k} \mid t_{0}, t_{1}\right] k$ раз непрерывно дифференцируемых на отрезке $\left[t_{0}, t_{1}\right]$ функций $x(t)$ задан функционал

$$
F(x) \quad \int_{t_{\mathrm{c}}}^{t_{1}} f(t, x(t)) d t
$$

где функция f выпукла по x для всех $t \in\left[t_{0}, t_{1}\right]$ и непрерывна по совокупности (t, x) на $\left[t_{0}, t_{1}\right] \times R^{1}$.

Двойственный к F функционал задается формулой

$$
\begin{align*}
& F^{*}(\mu) \quad F^{*}\left(\alpha_{0}, \alpha_{1}, . \quad \alpha_{k-1}, \mu\right) \quad \sup _{x}\left[\frac{\sum_{i=1)}^{k-1} a_{i} x^{(i)}\left(t_{0}\right)}{t_{0}}\right. \tag{10}\\
&\left.+\int_{t_{0}}^{t_{1}} x^{(k)}(t) d \mu(t)-\int_{t_{n}}^{t_{1}} f(t, x(t)) d t\right]
\end{align*}
$$

где $\alpha_{1,}, \alpha_{1},$. ., α_{k-1} - постоянные, а 11 -регулярная мера (которую мы, для определенности, будем считать непрерывной справа).

Выражение

$$
\begin{equation*}
x,{ }^{\prime \prime} \quad \sum_{i=1}^{k-1} a_{i} x^{(i)}\left(t_{l_{1}}\right)-\int_{i_{1}}^{t_{1}} x^{(k)}(t) d_{l \prime}(t), \tag{11}
\end{equation*}
$$

как известно, есть обıий вид непрерывного линейного функционала, заданного на $C^{k}\left[t_{0}, t_{1}\right]$. (В дальнейшем мы, для простоты, будем писать вместо $C^{k}\left[t_{0}, t_{1}\right]$ и $C\left[t_{0}, t_{1} \mid\right.$ просто C^{k} и C соответственно).

Мы уже готовы приступить к формулировке и доказательству леммы.
Лемма 2. Если $F^{*}(\mu)<$ то $\mu^{(k)}$--абсолютно непрерывная функция (мера).

Доказательство. Пусть, для определенности, $F^{*}(\mu)>0$. Докажем сначала, что μ - абсолютно непрерывна.

По неравенству Юнга

$$
\begin{equation*}
\sum_{i=-1}^{k-1} x_{i} x^{(i)}\left(t_{0}\right)+\int_{t_{1}}^{t_{1}} x^{(k)}(t) d \mu(t) \leqq F(x)+F^{*}(\mu) . \tag{12}
\end{equation*}
$$

Рассмотрим линейный функционал (11). Допустим, что мера μ не абсолютно непрерывна. Тогда она состоит из двух составляющих: μ_{1} и μ_{2}, где μ_{1} - абсолютно непрерывная часть, а $\mu_{2}=\mu$ - μ_{1} - сингулярная часть и функция скачков. Притом по допущению $\mu_{2}=0$ (μ_{2} сосредоточена на множестве A меры нуль) и, следовательно,

$$
\int_{t_{0}}^{t_{1}} x^{(k)}(t) d \mu(t) \quad \int_{t_{0}}^{t_{1}} x^{(k)}(t) d \mu_{1}(t)+\int_{A} x^{(k)}(t) d \mu_{2}(t) .
$$

Для любого $\varepsilon>0$ множество A можно покрыть системой интервалов Λ общей длиной $\nu(\Lambda)<\varepsilon$.

Обозначим $M \max \quad i f(t, x)$, где $N>0$ - произвольное фик${ }_{x}^{x} \cdot N$
сированное число. Обозначим через X множество

$$
\left.\begin{array}{rllll}
X & \left\{x_{\uparrow} C^{k}:\right. & x^{(k)}(t) & \leftrightharpoons N & \text { при } t \in A, \\
x^{(i)}(t) & 0 & \text { при } & t \in-1, & i
\end{array} 0,1,2 \ldots, k\right\}
$$

(очевидно, что для любого $x \in X \quad x(t) \leqslant N)$. Пусть $f(t, 0 ; 0$ для всех $t \in\left[t_{0}, t_{1}\right]$.

Поскольку мера μ непрерывна справа и регулярна, то можно считать, что $t_{0} \bar{\in} A$ и, следовательно, $x^{(i)}\left(t_{0}\right) \quad 0, i \quad 0,1, \quad k$. Тогда

$$
\begin{gathered}
x, " \int_{t_{0}}^{t_{1}} x^{(k)}(t) d \mu_{1}(t)-\int_{A} x^{(k)}(t) d \mu_{2}(t) \\
\because F(x)-F^{*}(\mu)=M \varepsilon+F^{*}(\mu)
\end{gathered}
$$

и

$$
\begin{align*}
& x,!-\sup _{x \in X} \int_{t_{0}}^{t_{1}} x^{(k i}(t) d \mu_{1}(t)+\sup _{x \in X} \int_{A} x^{(k)}(t) d u_{2}(t) \tag{1.3}\\
&-\varepsilon N\left(\mu_{1}\left(t_{1}\right)-u_{1}\left(t_{0}\right)\right)+N \operatorname{Var} \mu_{2 A} \leq F^{*}(\prime \prime)+M \varepsilon .
\end{align*}
$$

Отсюда, сделав предельный переход $\varepsilon \quad 0$, получаем
$N \operatorname{Var} \mu_{2 A} \quad F^{*}(\mu)$.
Но, ввиду произвольности N, если предположить Var μ_{2} а 0 , то левую сторону (13) можно сделать произвольно большой, в то время как правая остается фиксированным числом.

Итак, допущение, что μ_{2} =0, привело нас к противоречию, следовательно, μ - абсолютно непрерывная мера, что дает нам возможность написать

$$
\begin{equation*}
\sum_{i=0}^{k-1} a_{i} x^{(i)}\left(t_{0}\right)+\int_{t_{0}}^{t_{1}} x^{(k)}(t) d \mu(t) \sum_{i=1}^{k} a_{i} x^{(i)}\left(t_{0}\right)+\int_{t_{0}}^{t_{1}} x^{(k)}(t) \dot{\mu}(t) d t \tag{14}
\end{equation*}
$$

и согласно (12)

$$
\begin{equation*}
\sum_{i=0}^{k-1} a_{i} x^{(i)}\left(t_{0}\right)+\int_{t_{n}}^{t_{1}} x^{(k)}(t) \mu(t) d t<F(x)+F^{*}(, \mu) \tag{15}
\end{equation*}
$$

Неравенство (15) с учетом ограничений, наложенных на f, дает, что функционал (14) ограничен в топологии пространства C на множестве A^{k} функций с непрерывными производными k-го порядка, плотном в C, поэтому он однозначно продолжается до непрерывного линейного функционала на C, т. е. существует такой непрерывный линейный функционал

$$
\varphi(x)=\int_{t_{0}}^{t_{1}} x(t) d z(t),
$$

заданный на пространстве C, что для всех $x \in A^{k}$ справедливо

$$
\begin{equation*}
\sum_{i=0}^{k-1} a_{i} x^{(i)}\left(t_{0}\right)+\int_{t_{0}}^{t_{1}} x^{(k)}(t) \mu(t) d t \int_{t_{0}}^{t_{1}} x(t) d z(t) . \tag{16}
\end{equation*}
$$

Используя неравенство (12), можно доказать, что мера z абсолютно непрерывна. Доказательство мало отличается от доказательства абсолютной непрерывности меры μ, и мы его приводить не будем.

Абсолютная непрерывность меры z дает нам возможность записать (16) следующим образом:

$$
\begin{equation*}
\sum_{i=0}^{k-1} a_{i} x^{(i)}\left(t_{0}\right)+\int_{t_{0}}^{t_{1}} x^{(k)}(t) \dot{u}(t) d t \int_{t_{0}}^{t_{1}} x(t) z(t) d t . \tag{16'}
\end{equation*}
$$

Обозначим $z(t) \quad \varphi^{(k)}(t)$. Тогда

$$
\begin{gather*}
\int_{t_{0}}^{t_{1}} x(t) \varphi^{(k+1)}(t) d t \quad x(t) q^{(k)}(t){ }_{t_{t_{0}}}^{t_{1}-} \int_{t_{0}}^{t_{1}} x(t) \varphi^{(k)}(t) d t \quad x(t) q^{(k)}(t) \tag{17}\\
-\dot{x}(t) \varphi^{(k-1)}(t)+\quad+\left.(-1)^{k-1} x^{(k-1)}(t) \dot{x}(t)\right|_{t_{0}} ^{t_{1}} \\
+(-1)^{k} \int_{t_{0}}^{t_{1}} x^{(k)}(t) q(t) d t .
\end{gather*}
$$

Поскольку (16) и (17) выполнены для всех $x \in A^{k}$, то отсюда следует, что

$$
\begin{equation*}
\varphi^{(k)}\left(t_{0}\right)=-\alpha_{0}, \quad \varphi^{(k-1)}\left(t_{0}\right)-a_{1}, \ldots, \quad r\left(t_{0}\right) \quad(-1)^{k} \alpha_{k-1}, \tag{18}
\end{equation*}
$$

$$
\varphi^{(i)}\left(t_{1}\right)-0, \quad i \quad 1,2, \ldots, k, \varphi(t)(-1)^{k} \dot{\mu}(t) .
$$

Но, поскольку $q k$ раз дифференцируема (непрерывно), то и μ будет k раз непрерывно дифференцируема и $\mu^{(k)}$ - абсолютно непрерывна (это мы коротко будем обозначать $\mu \in B^{k}$), и функционал (x, , ; принимает вид

$$
\langle x, \mu\rangle=\int_{t_{0}}^{t_{1}} x(t)\left[(-1)^{k} \mu^{(k+1)}(t)\right] d t
$$

Только что доказанная лемма дает нам возможность записать равенство (10) следующим образом :

$$
F^{*}(\mu)=\sup _{x} \int_{t_{0}}^{t_{1}}\left\{x(t)\left[(-1)^{k} \mu^{(k+1)}(t)\right]-f(t, x(t))\right\} d t .
$$

Нам надо еще установить, чго имеет место равенство

$$
\begin{equation*}
\sup _{x} \int_{t_{0}}^{t_{1}}(\quad) d t \int_{t_{0}}^{t_{1}} \sup _{x}(\quad) d t . \tag{19}
\end{equation*}
$$

Но справедливость этого равенства установлена в [4] в случае, когда $x \in C$, т. е. при меньших ограничениях, откуда и следует, что (19) имеет место. Следовательно,

$$
\left.F^{*}(\mu) \int_{t_{0}}^{t_{1}} \sup _{x}\left\{x\left[(-1)^{k}, \mu^{(k+1)}(t)\right]--f(t, x)\right]\right\} d t \int_{t_{0}}^{t_{1}} f^{*}\left(t,(-1)^{k} \mu^{(k+1)}(t)\right) d t .
$$

Замечание. Лемму 2 можно, очевидным образом, обобщить на с.лучай, когда $x_{\ell} C_{n}^{k}$, т. е. $x\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
3. Рассмотрим теперь задачу о нижней грани функционала

$$
\begin{equation*}
F\left(x_{1}, x_{2}, x_{3}\right) \int_{t_{c}}^{t_{1}} f\left(t, x_{1}(t), x_{2}(t), x_{3}(t)\right) d t \tag{20}
\end{equation*}
$$

где подынтегральная функция f предполагается выпуклой по совокуп ности переменных (x_{1}, x_{2}, x_{3}) для всех $t \in\left[t_{0}, t_{1}\right]$ и непрерывной по совокупности $\left(t, x_{1}, x_{2}, x_{3}\right)$ на $\left[t_{0}, t_{1}\right], R^{1} \times R^{1} \times R^{1}$ при условиях, что $x_{1} \in C^{2}$ $x_{2}, C^{1}, x_{3} t C$,

$$
\begin{equation*}
x_{i}\left(t_{0}\right) \quad x_{i}^{\prime \prime}, x_{i}\left(t_{1}\right) \quad x_{i}^{1}, i \quad 1,2, \quad x_{j}(t) \quad \underset{d t^{j-1}}{d^{j-1}} x_{1}(t), \quad j \quad 2,3 . \tag{21}
\end{equation*}
$$

Двойственный к (20) функционал имеет следующий вид:

$$
\begin{aligned}
& F^{*}\left[\left(a, \beta, \mu_{1}\right),\left(\because, \mu_{2}\right), \mu_{3}\right] \sup _{x_{1}, x_{2}, r_{2}}\left[\alpha x_{1}\left(t_{1}\right)+\beta \dot{x}_{1}\left(t_{1}\right)-\int_{t_{1}}^{t_{1}} x_{1}(t) d \mu_{1}(t)-\gamma x_{2}\left(t_{0}\right)\right. \\
& \left.\quad+\int_{i_{0}}^{t_{1}} x_{2}(t) d \mu_{2}(t)+\int_{t_{0}}^{t_{1}} x_{3}(t) d \mu_{3}(t)-\int_{t_{0}}^{t_{1}} f\left(t, x_{1}(t), x_{2}(t), x_{3}(t)\right) d t\right] .
\end{aligned}
$$

Используя лемму 2 , мы получаем, что
$\operatorname{dom} F^{*}\left\{\left(a, h, \gamma, \mu_{1}, \mu_{2}, \mu_{3}\right): \mu_{1}, \mu_{2}, \mu_{3}\right.$ - абсолютно непрерывны и

$$
\begin{gathered}
\mu_{1}\left(t_{0}\right) \quad \beta, \mu_{1}\left(t_{0}\right) \quad-a, \mu_{2}\left(t_{0}\right) \quad \varkappa_{1} \mu_{1}\left(t_{1}\right) \quad \mu_{1}\left(t_{0}\right) \quad \mu_{2}\left(t_{1}\right) \quad 0 \quad \text { и } \\
\left.\int_{t_{0}}^{t_{1}} f^{*}\left(t, \mu_{1}(t),-\mu_{2}(t), \mu_{3}(t)\right) d t<\quad\right\} .
\end{gathered}
$$

Здесь

$$
\begin{equation*}
f^{*}\left(t, y_{1}, y_{2}, y_{3}\right) \quad \sup _{x_{1}, x_{2}, x_{2}}\left[x_{1} v_{1}+x_{2} y_{2}+x_{3} y_{3}-f\left(t, x_{1}, x_{2}, x_{3}\right)\right] . \tag{22}
\end{equation*}
$$

Из равенства (22) получаем

$$
f\left(t, x_{1}, x_{2}, x_{3}\right)+f^{*}\left(t, y_{1}, y_{2}, y_{3}\right) \geqq x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}
$$

для всех $x_{i}, y_{i} \in R^{1}, i-1,2,3$ (неравенство Юнга). Проинтегрируем это неравенство на отрезке $t_{0}=t \leqq t_{1}$:

$$
\begin{gather*}
\int_{t_{0}}^{t_{1}} f\left(t, x_{1}(t), x_{2}(t), x_{3}(t)\right) d t+\int_{t_{0}}^{t_{1}} f^{*}\left(t, y_{1}(t), y_{2}(t), y_{3}(t)\right) d t \tag{23}\\
\int_{t_{0}}^{t_{1}}\left[x_{1}(t) y_{1}(t)+x_{2}(t) y_{2}(t)+x_{3}(t) y_{3}(t) \mid d t\right.
\end{gather*}
$$

На самом деле это и есть

$$
\begin{equation*}
F\left(x_{1}, x_{2}, x_{3}\right)+F^{*}\left(y_{1}, y_{2}, y_{;}\right) \quad \int_{t_{0}}^{t_{1}}\left[x_{1}(t) y_{1}(t)+x_{2}(t) y_{2}(t)+x_{3}(t) y_{3}(t)\right] d t \tag{24}
\end{equation*}
$$

где $y_{1}=\mu_{1}, y_{2}=-\mu_{2}, \quad y_{3} \quad \mu_{3}$.
Положив $x_{2}(t)=x_{1}(t), x_{3}(t)-x_{1}(t), x_{1}(t) \quad x(t)$, получаем из (23)

$$
\begin{equation*}
\int_{t_{0}}^{t_{1}}\left[x(t) y_{1}(t)+\dot{x}(t) y_{2}(t)+x(t) y_{3}(t)\right] d t \tag{25}
\end{equation*}
$$

Предположив, что y_{1}, y_{2} и y_{3} достаточное число раз дифференцируемые функции (не имея ввиду (24)), мы можем проинтегрировать (25) по частям:

$$
\begin{gather*}
\int_{t_{0}}^{t_{1}}\left[x(t) y_{1}(t)+\dot{x}(t) y_{2}(t)+x(t) y_{3}(t)\right] d t \quad \mid x(t) y_{2}(t)+\dot{x}(t) y_{3}(t) \tag{26}\\
-\left.x(t) \dot{y}_{3}(t)\right|_{t_{0}} ^{t_{1}}+\int_{t_{0}}^{t_{1}} x(t)\left[y_{1}(t)-\dot{y}_{2}(t)+\ddot{y}_{3}(t)\right] d t .
\end{gather*}
$$

Положим в (26) $y_{3}(t)=y(t), y_{2}(t)=2 \dot{y}(t), y_{1}(t)=\ddot{y}(t)$ (если используем (24), это означает, что $2 \dot{\mu}_{3}=-\dot{\mu}_{2}=2 \dot{\mu}_{3}$). Это дает (вместе с (23))

$$
\left.\int_{t_{0}}^{t_{1}} f(t, x(t), \dot{x}(t), \ddot{x}(t)) d t+\int_{t_{0}}^{t_{1}} f^{*}(t, \ddot{y}(t), 2 \dot{y}(t), y(t)) d t \geqq \mid x(t) \dot{y}(t)+\dot{x}(t) y(t)\right)_{i_{0}}^{t_{1}}
$$

для всех $x \in C^{2}$ и $y \in B^{1}$ (т. е. таких, что \dot{y} - абсолютно непрерывная на отрезке $\left[t_{0}, t_{1}\right]$ функция), откуда

$$
\begin{gather*}
\inf _{x \in C^{2}} \int_{t_{0}}^{t_{1}} f(t, x(t), \dot{x}(t), \ddot{x}(t)) d t \geqq \sup _{y \in B^{1}}|x(t) \dot{y}(t)+\dot{x}(t) y(t)|_{t_{0}}^{t_{1}} \tag{27}\\
\left.-\int_{t_{0}}^{t_{1}} f^{*}(t, \ddot{y}(t), 2 \dot{y}(t), y(t)) d t\right] .
\end{gather*}
$$

Как и в [4], доказывается, что при верхних ограничениях на f в (27) супремум можно заменить максимумом.
4. Рассмотрим теперь задачу о нижней грани функционала

$$
\begin{equation*}
F\left(x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right)=\int_{t_{0}}^{t_{1}} f\left(t, x_{0}(t), x_{1}(t), \ldots, x_{n}(t)\right) d t, \tag{28}
\end{equation*}
$$

где функция f выпукла по совокупности переменных ($x_{v}, x_{1}, \ldots, x_{n}$) для всех $t_{\mathrm{t}}\left[t_{n}, t_{1}\right]$ и непрерывна по совокупности ($t, x_{0}, x_{1}, \ldots, x_{n}$) на $\left[t_{0}, t_{1}\right] \times$ $R^{1} \times R^{1} \times \times R^{1}$, при условиях, что $x_{i} \in C^{n-i}$,

$$
i \quad 0,1, \ldots, n-1, x_{n} \in C, x_{i}\left(t_{0}\right)-x_{i}^{0}, x_{i}\left(t_{1}\right) \quad x_{i}^{\prime} i \quad 0,1, \ldots, n-1 .
$$

Для нахождения двойственного к (28) функционала мы будем исходить из двойственной функции, как это сделали выше ((23)-(25)), и использовать лемму 2. Имеем

$$
\left.f\left(t, x_{0}, x_{1}, \ldots, x_{n}\right)+f^{*}\left(t, y_{0}, y_{1}, \ldots, y_{n}\right)-x_{0} y_{0}+x_{1} y_{1}+\quad+x_{n} y_{n}\right) .
$$

Проинтегрируем это неравенство на отрезке $t_{0} \leqq t \leqq t_{1}$:

$$
\begin{gather*}
\int_{t_{0}}^{t_{1}} f\left(t, x_{0}(t), x_{1}(t), \ldots, x_{n}(t) d t+\int_{t_{0}}^{t_{1}} f^{*}\left(t, y_{0}(t), y_{1}(t), \ldots, y_{n}(t)\right) d t\right. \tag{29}\\
-\int_{t_{0}}^{t_{1}}\left[x_{0}(t) y_{0}(t)+x_{1}(t) y_{1}(t)+\quad+x_{n}(t) y_{n}(t)\right] d t
\end{gather*}
$$

Положим $x_{i}(t) \frac{d^{i}}{d t^{-}} x_{0}(t), i \quad 1,2, \ldots, n, x_{0}(t) \quad x(t)$. В предположении, что функции $y_{i}(t)$ достаточное число раз дифференцируемы, проинтегрируем правую часть (29) несколько раз по частям:

$$
\begin{array}{ll}
\int_{t_{0}}^{t_{1}}\left[x(t) y_{0}(t)+\dot{x}(t) y_{1}(t)+\right. & \left.+x^{n}(t) y_{n}(t)\right] d t \\
=\mid x(t) y_{1}(t)+x(t) y_{2}(t)+ & +x^{(n-1)}(t) y_{n}(t) \mid t_{0} \\
-\mid x(t) \dot{y}_{2}(t)+\dot{x}(t) \dot{y}_{3}(t)+ & +x^{(n-2)}(i) \dot{y}_{n}(t) t_{t_{0}}^{t_{1}} \\
+\mid x(t) \ddot{y}_{3}(t)+\dot{x}(t) \ddot{y}_{4}(t)+ & +x^{(n-3)}(t) \ddot{y}_{n}(t) \mid t_{t_{1}}^{t_{1}}
\end{array}
$$

$$
\begin{aligned}
& +(-1)^{n-1} x(t) y^{(n-1)}(t):_{t_{0}}^{t_{0}}+\int_{t_{0}}^{t_{1}} x(t)\left[y_{0}(t)-\dot{y}_{1}(t)+\quad+(-1)^{n} y_{n}^{(n)}(t) \mid d t\right. \\
& \left|x(t)\left[y_{1}(t)-\dot{y}_{2}(t)+y_{3}(t)-\quad+(-1)^{n-1} y_{n}^{(n-1)}(t)\right]+\dot{x}(t)\right| y_{: 2}(t) \\
& \left.-\dot{y}_{3}(t)+\quad+(-1)^{n-2} y_{n}^{(n-2)}(t)\right]+\quad-x^{(n-1)}(t) y_{n}(t)_{t_{0}}^{t} \\
& \quad+\int_{t_{0}}^{t_{1}} x(t)\left[y_{0}(t)-y_{1}(t)+y_{2}(t)-\quad+(-1)^{n} y_{n}^{(n)}(t)\right] d t .
\end{aligned}
$$

Далее, в зависимости от n, имеем:
a) n - нечетное число. Тогда под знаком интеграла мы имеем четное число ($n+1$) слагаемые:

$$
\begin{equation*}
\int_{t_{0}}^{t_{1}} x(t)\left[y_{0}(t)-y_{1}(t)+y_{2}(t)-\quad-y_{n}^{(n)}(t)\right] d t \tag{30}
\end{equation*}
$$

Положив $y_{n}(t)-y(t), y_{n-1}(t) \quad y(t), \ldots, y_{n}(t) \quad y^{(n)}(t)$, получаем, что интеграл (30) равен нулю. Внеинтегральное выражение упрощается и принимает вид

$$
\begin{equation*}
x(t) y^{(n-1)}(t)+\ddot{x}(t) y^{(n-3)}(t)+\quad+y(t) x^{(n-1)}(t) t_{t}^{t_{1}} \tag{31}
\end{equation*}
$$

Из этих результатов описанным выше путем получаем

$$
\begin{align*}
& \inf _{x} \int_{t_{0}}^{t_{1}} f\left(t, x(t), \dot{x}(t), \ldots, x^{(n)}(t)\right) d t \max _{y}\left[x(t) y^{(n-1)}(t)+\right. \tag{32}\\
& \left.\quad+x^{(n-1)}(t) y(t){ }_{t_{t_{0}}}^{t_{1}}-\int_{t_{0}}^{t_{1}} f^{*}\left(t, y^{(n)}(t), y^{(n-1)}(t), \ldots, y(t)\right) d t\right]
\end{align*}
$$

и максимум справа берется по всем функциям $y \in B^{n-1}$.
б) n-четное число. В этом случае в подынтегральном выражении имеем нечетное число слагаемых. Для того, чтобы оно равнялось нулю, положим

$$
y_{n}(t)=y(t), y_{n-1}(t) \quad \dot{y}(t), \ldots, \quad y_{1}(t) \quad 2 y^{(n-1)}(t), y_{0}(t) \quad y^{(n)}(t) .
$$

Внеинтегральное выражение в этом случае принимает вид

$$
\left|x(t) y^{(n-1)}(t)+\dot{x}(t) y^{(n-2)}(t)+\dot{x}(t) y^{(n-4)}(t)+\quad+x^{(n-1)}(t) y(t)\right|_{t_{0}}^{t_{0}}
$$

Связь между исходной и двойственной задачами получается следующей:
(33) inf $l(x)=\inf _{x} \int_{t_{0}}^{t_{1}} f\left(t, x(t), \dot{x}(t), \ldots, x^{(n)}(t)\right) d t \max _{y \in B^{n-1}} \| x(t) y^{(n-1)}(t)$

$$
\begin{aligned}
& +\dot{x}(t) y^{(n-2)}(t)+\ddot{x}(t) y^{(n-4)}(t)+\ldots+x^{(n-1)}(t) y(t) t_{t_{1}}^{t_{1}} \\
& \left.-\int_{t_{0}}^{t_{1}} f^{*}\left(t, y^{(n)}(t), 2 y^{(n-1)}(t), y^{(n-2)}(t), \ldots, y(t)\right) d t\right] .
\end{aligned}
$$

5. К тем же самым результатам приходим и в случае, когда требуется найти нижнюю грань функционала (4) (соответственно (28i) при условии, что x - абсолютно непрерывна (соответственно $x \in B^{n-1}$). Точнее говоря, лемма 1 и лемма 2 справедливы и для этого случая. Доказательство последнего утверждения мы проводить не будем, поскольку оно совпадает с доказательством леммы 2 (соответственно с первой ее частью). Отметим только следующее: если в (8) $x \in A C$, то в линейном функционале

$$
a x\left(t_{0}\right)+\int_{t_{0}}^{t_{1}} x(t) y(t) d t,
$$

представляющем собой общий вид линейного непрерывного функционала заданного на $A C$, где $\alpha_{=}^{\prime} R^{1}, y^{\prime} L^{\infty}, y(t)$ при верхних ограничениях на f удовлетворяет условию: если $F^{*}(y)<0$, то $y\left(A C\right.$ и $y\left(t_{n_{1}}\right)-a, y\left(t_{1}\right) \quad 0$.

Связи между основными и двойственными задачами имеют соответственно вид (7), (32) и (33).

Отметим, что в доказательстве леммы 2 мы получили, что $\mu\left(t_{1}\right) \quad \mu\left(t_{1}\right) \quad \mu^{(k)}\left(t_{1}\right) \quad 0$, не накладывая при этом на x никаких ограничений. Однако для задачи с фиксированными концами мы получили, что двойственная есть задача со свободными концами.

Задачами, подобными (4)-(5), занимался в последнее время американский математик P. T. Рокафеллар, в предположениях, что $x \in A C$, $x^{\prime} L^{\prime}$, существование функции $l\left(x\left(t_{1}\right), x\left(t_{1}\right)\right)$, находящейся вне интеграла, и при использовании введенного им понятия нормального выпуклого функционала [2].

ЛИТЕРАТУРА

1. Иоффе, А. Д., В. М. Тихомиров. Двойственность выпуклых функций икстремальные задачи. - Успехи матем. наук, 23. 1968, №6, 5-116.
2. Rockafellar, R. T. Conjugate convex functions in optimal control and the calculs of variations. - J. Math. Analysis and Applic., 32. 1970, No. 1, 174-223.
3. Цветанов, М. М. ДвоАственность в экстремальных задачах.-Укр. матем. ж., 23, 1971. № 2, 201-218.
4. Цветанов, М. М. Двойтвенность в задачах вариационного исчисления и оитимального управления. - Изв. Мат. инст. БАН, 13, 1972, 277-317.

Поступила 24. II. 1972 г.

ДВОЙНСТВЕНОСТ ВЪВ ВАРИАЦИОННИ ЗАДАЧИ С ФИКСИРАНИ КРАИЩА

Митко Цветанов
(Резюме)
Разглежда се задачата за намиране инфимума на интегралния функционал

$$
I(x)=\int_{t_{0}}^{t_{1}} f\left(t, x(t), \dot{x}(t), \ldots, x^{(n)}(t)\right) d t
$$

(с фиксирани краища) при $x \in C^{n}\left[t_{0}, t_{1}\right]$ - пространство от функции с непрекъсната n-та производна. Прилага се методът на двойнствеността и се получава, че при някои условия, наложени на f, двойнственият функционал

$$
J(y)=\int_{t_{0}}^{t_{1}} f^{*}\left(t, y^{(n)}(t), \alpha y^{(n-1)}(t), y^{(n-2)}(t), \ldots, y(t)\right) d t
$$

(със свободни краища) достига минимум за някое $y_{0} \in B^{n-1}\left[t_{i, 1}, t_{1}\right]$ - пространство от функции с абсолютно непрекъсната ($n-1$)-ва производна, а $\alpha=\frac{(-1)^{n}+3}{2}$ и

$$
\inf _{x \in C^{n}} I(x)+\min _{y \in B^{n-1}} J(y) \quad 0
$$

DUALITY IN VARIATION PROBLEMS WITH FIXED ENDPOINTS

Mitko Cvetanov

(Summary)
The problem of finding the greatest lower bound of the integral functional

$$
I(x) \quad \int_{i_{0}}^{t_{1}} f\left(t, x(t), x(t), \ldots, x^{(n)}(t)\right) d t
$$

(with fixed endpoinds) is considered; x is an element of the space $\left.C^{\prime \prime} t_{0}, t_{1}\right]$ of the functions with continuous derivative of n-th order. The duality method is applied and it is found that under certain conditions imposed on f the dual functional

$$
J(y) \int_{t_{0}}^{t_{1}} f^{n}\left(t, y^{(n)}(t), u y^{(n-1)}(t), y^{(n-2)}(t), \ldots, y(t)\right) d t
$$

(with free endpoints) reaches its minimum for some y_{0} in the space $B^{n-1}\left[t_{0}, t_{1}\right]$ of the functions with absolutely continuous derivative of $(n-1)$-th order:

$$
\text { a } \frac{(-1)^{n}+3}{2}
$$

and

$$
\inf _{i \in G^{n}} l(x)+\min _{y \in A^{n-1}} J(y)>0
$$

[^0]: * ПІодробно об этом см. [1].

