ИЗВЕСТИЯ НА МАТЕМАТИЧЕСКИЯ ИНСТИТУТ BULLETIN DE L'INSTITLT DE MATHÉMATIQUES Том (Tome) XV^{\prime}

ПРИЛОЖЕНИЕ НА МЕТОДА НА ХАРАКТЕРИСТИКИТЕ ПРИ РЕШАВАНЕ УРАВНЕНИЯТА НА ХИДРАВЛИЧНИЯ УДАР

ИєанС. Иванов

Уравненията на хидравличния удар в най-общ вид с отчитане влиянието на съпротивлението по дължината на тръбопровода представляват сложна система диференциални уравнения с частни производни от първи ред и обикновено в литературата се дават в следния вид [1]:

$$
\begin{equation*}
\frac{d V}{d x}-V_{d x}^{\partial V}-g_{d x}^{\partial H}+k V^{2} \quad 0, \tag{1}
\end{equation*}
$$

$$
\frac{\partial H}{\partial t}-\begin{array}{lll}
a^{2} & \partial V \\
g & \partial x
\end{array}-v \begin{array}{ll}
\partial H & 0,
\end{array}
$$

където
$\checkmark V(x, t)$ и $H \quad H(x, t)$ са скоростта и налягането на водата в тръбопровода;
a е скоростта на разпространение нđ вълните на хидравличния удар без отчитане влиянието на скоростта, с която се движи водата;
$k \underset{2 D_{\text {p }}}{\lambda}$ коефициент, характеризиращ загубите по дължината на тръбопровода на единица диаметър;
i- коефициент на загубите по дължината на тръбопровода;
$D_{\text {тр }}$ - диаметър на тръбопровода;
g-- земното ускорение;
x - разстоянието до източника, създаващ смущения на водата в тръбопровода (фиг. 1).
Системата (1) не е хомогенна, т.е. $k V^{2} 0$. Тя не може да се преобразува в линейна система чрез замяна на ролята на независимите и зависимите променливи, което затруднява нейното решаване. В системата (1) търсените функции са V и ${ }^{(1)}$. Тъй като уравненията в (1) са две, то на пръв поглед задачата за определяне на хидравличния удар чрез решаване на (1) при определени начални и гранични условия не представлява трудност. Нека решим системата (1) при дадени начални условия $V\left(x, t_{0}\right), H\left(x, t_{0}\right) 0 \quad x \leq L_{\tau р}$ и гранични условия $V(0, t)$ и $H\left(x \quad L_{\text {тр }}, t\right)=H_{0}$, прилагайки метода на характеристиките. Известно е, че към разглеждане на характеристиките довежда задачата на Коши, която в нашия случай се формулира по следния начин. В равнината (x, t) трябва да се намерят

непрекъснатите и еднозначни функции $V(x, t)$ и $H(x, t)$, удовлетворяващи (1) и началните и граничните условия на поставената задача.

Движението на течността в напорните тръбопроводи, което се характеризира с уравнения (1), има вълнообразен характер. Границата,

Фиг. 1

която отделя една вълна от друга, преместваща се в ограничено пространство на напорния тръбопровод съвместно с вълните, се нарича фронт на вълните (фиг. 2). По дължината на тази граница първите производни на V и H относно x и t нарушават своята непрекъснатост, но предполагаме, че заедно с това те си остават ограничени. Нека фронтът на вълните, който се премества в пространството с изменение на времето t, аналитично се представя с уравнението

$$
\begin{equation*}
x=\varphi(t) . \tag{2}
\end{equation*}
$$

Ако проследим движението на една вълна в тръбопровода, като за целта се движим по дължината на тръбопровода по същия закон, както фронтът на вълните $q(t)$, то в периода на нашето движение ще наблюдаваме измененията на скоростта и налягането на движещата се течност в тръбопровода. Тези изменения се изразяват аналитично, както следва:
(3)

$$
d V=\frac{\partial V}{\partial t} d t+\frac{\partial V}{\partial x} d x
$$

$$
d H=\frac{\partial H}{\partial t} d t+\frac{\partial H}{\partial x} d x,
$$

където $d x=\varphi^{\prime}(t) d t$.
По дължината на фронта на вълните първите производни на V и H относно x и t са свързани също така с уравненията от системата (1), следователно от (1) и (3) намираме

| $\frac{\partial H}{}$ | D_{2} | $\left.\left\|\begin{array}{ll}\frac{d x}{d t}+V & \frac{d V}{d t}+k V^{2} \\ a^{2} & \frac{d H}{d t} \\ \hline d x & D\end{array}\right\| \begin{array}{ll}d x \\ d t \\ d t & g \\ a^{2} & d x \\ g & d t\end{array}\right]$ |
| :--- | :--- | :--- | :--- |$;$

Анализът на равенство (4) показва, че съществуват две възможности:

1. $D: 0$, т. е. по дължината на линията $x \quad q(t)$ съществуват строго определени и единствени стойности на производните $\frac{\partial V}{\partial x}$ и $\frac{\partial H}{\partial x}$, зависещи само от скоростта V и налягането H, чиито изменения наблюдаваме, движейки се по закона $c(t)$.
2. $D=0$, т. е. $x \quad \varphi(t)$ съгласно погоре даденото определение се явява фронт на някакви вълни и по дължината на тази линия съществуват две различни стойности на другите производни на V и H относно x и t, които се отнасят към движещите се вълни, отделени една от друга с фронта $q(t)$ (фиг. 2). Погоре предположихме, че по дължината на фронта първите производни на V и H не са непрекъснати, но остават ограничени. Тогава числителите в уравнения (4) трябва да бъдат равни на нула по дължината на линията $x \quad q(t)$, откъдето следва, че необходимите условия линията $x \quad \varphi(t)$ да е фронт на вълните са

$$
\begin{equation*}
D=0, \quad D_{1} \quad 0, \quad\left(5^{\prime}\right) \quad D_{2} \quad 0 . \tag{5}
\end{equation*}
$$

Фиг. 2

Система (5) дава възможност, от една страна, да се определи скоростта на фронта на вълните $\left|\frac{d x}{d t}\right|$, а от друга, да се намерят аналитични изрази за определяне и построяване характеристиките на уравнението (1) в равнините $V H$ и $t x$.

От първото уравненне от системата (5) $D=0$, решено по отношение на $\frac{d x}{d t}$, можем да намерим величината

която характеризира скоростта на фронта на вълните. Понеже фронтът на вълните е непрекъснато свързан с вълните на удара и се премества по дължината на тръбопровода заедно с тях, то (6) характеризира и скоростта на ударните вълни (със знак плюс, движещи се по посока на положителните стойности на x-- положителни или прави вълни, и сьс знак минус, движещи се по посока на огрицателните стойности на x отрицателни или обратни вълни), т. е. понятието скорост на вълните на хидравличния удар и скорост на фронта на вълните са абсолютно идентични.

От второто уравнение на (5), като заместим стойностите на ${ }_{d t}^{d x}$ от (6), получаваме диференциалните уравнения на характеристиките:

$$
\left.\begin{array}{c}
d x+V \quad a, \tag{7}\\
d t \\
D_{1}-0, \\
d x+V \\
d t-a, \\
D_{1}
\end{array}\right) .
$$

Диференциалните уравнения на характеристиките (7) и (8) дават закона, по който се изменяг скоростта и налягането на водата по дължината на тръбопровода (фронта на вълните $\varphi(t)$). Тях ще използуваме, за да решим поставената задача за хидравличния удар.

Въз основа на свойствата на характеристиките решаването на (7) и (8) посредством способа на крайните разлики се свежда до решаването на

$$
\Delta x \quad(a-V) \mathrm{It}
$$

$$
\begin{array}{rl}
I V \quad \underset{a}{g} & 1 H-k V^{2} .1 t, \tag{9}\\
\Delta x & -(a-V) \mathrm{tt}
\end{array}
$$

$$
\begin{equation*}
1 V-{ }_{a}^{g} 1 H-k V^{2} \mid t \tag{10}
\end{equation*}
$$

Характеристиките, които се определят с помощта на уравнение (9), ще наречем първо семейство характеристики, а с помощта на (10) второ семейство.

Пресичането на характеристиките от първото и второто семейство в равнината (t, x) определят точки, на които съответствуват строго определени сечения от тръбопровода (x) в определен момент от време t. Съответствуващите им точки от пресичането на характеристиките в равнината (V, H) определят скоростта V и налягането H на течността в даденото сечение (x) в момента t.

Понеже заменяме диференциалите с крайни разлики, търсим приблизителното разположение на тези възлови точки в равнината (x, t) или (V, H) и съответните стойности на величините H, V, t и x в тези точки. Например, ако знаем стойностите на тези величини в точките i и $i+1$,

Фиг. 3

Фиг. 4

можем да намерим стойностите им в нова точка m, използувайки характеристичните уравнения (9) и (10), както следва:

От уравненнята $1 x \quad(a-V)$ it и $1 x \quad-(a+V)$ it в равнината (t, x) може да съставим следната система:

$$
\begin{align*}
& x_{m}-x_{i}=\left(a-V_{i}\right)\left(t_{m}-t_{i}\right), \tag{11}\\
& x_{m}-x_{i+1} \quad-\left(a-V_{i+1}\right)\left(t_{m}-t_{i+1}\right),
\end{align*}
$$

откъдето определяме x_{m} и t_{m} в точка m (фиг. 3).
С помощта на уравнения (11) определяме приблизително мястото на точката m в равнината (x, t), т. е. те дават възможност приблизително да определим стойностите на x_{m} и t_{m}. Точността на получените резултати можем да увеличим, като използуваме осреднените стойности на скоростта V :

$$
\begin{gather*}
x_{m}^{\prime}-x_{i}=\left(a-\frac{V_{i}+V_{m}}{2}\right)\left(t_{m}-t_{i}\right) \tag{12}\\
x_{m}^{\prime}-x_{i+1}-\left(a+\frac{V_{i+1}+V_{m}}{2}\right)\left(t_{m}-t_{i+1}\right)
\end{gather*}
$$

където V_{m} е скорост, съответствуваша на x_{m} и t_{m} в равнината (V, H); $x_{m}^{\prime}, t_{m}^{\prime}$ - подобрени стойности.
Положението на точката m в равнината (V, H) определяме от другите две уравнения на системите (9) и (10):

$$
\begin{equation*}
V_{m}-V_{i}+k V_{i}^{2}\left(t_{m}-t_{i}\right) \quad \frac{g}{a}\left(H_{m}-H_{i}\right), \tag{13}
\end{equation*}
$$

$$
V_{m}-V_{i+1}+k V_{i+1}^{2}\left(t_{m}-t_{i+1}\right)=-{ }_{a}^{g}\left(H_{m}-H_{i+1}\right),
$$

откъдето намираме приблизително стойностите V_{m} и H_{m} (фиг. 4). Годо-

брените стойности V_{m}^{\prime} и H_{m}^{\prime} определяме аналогично на x_{m}^{\prime} и t_{m}^{\prime} по формулите

$$
V_{m}^{\prime}-V_{i}+k\left(\frac{V_{i}+V_{m}}{2}\right)^{2}\left(t_{m}^{\prime}-t_{i}\right) \quad \underset{a}{g}\left(H_{m}^{\prime}-H_{i}\right),
$$

$$
V_{m}^{\prime}-V_{i-1}+k\binom{V_{i-1}+V_{m}}{2}^{2}\left(t_{m}^{\prime}-t_{i+1}\right)-{ }_{a}^{g}\left(H_{m}^{\prime}-H_{i}\right) .
$$

С помощта на (11), (12), (13) и (13') и началните и граничните условия можем да решим поставената задача. В това се състои същността на метода при решаване уравненията на хидравличния удар, когато се отчита влиянието на загубите в тръбопровода по дължината му.

Методът дава възможност чрез решаването на системата (1) да се определи влиянието на загубите върху големината на хидравличния удар с отчитане и без отчитане влиянието на триенето по дължината на тръбопровода.

Проверка на метода можем да направим, като решим уравненията на хидравличния удар, без да отчитаме влиянието на хидравличните загуби от триене в тръбопровода. Уравненията на хидравличния удар получаваме от (1), като премахнем члена $k V^{2} 0$:

$$
\begin{align*}
& \frac{\partial V}{\partial t}-V \frac{\partial V}{\partial x}-g_{\partial x}^{\partial H} \quad U \tag{1.1}\\
& \frac{\partial H}{\partial t}-V \frac{\partial H}{\partial x}-\begin{array}{ccc}
a^{2} & \partial V & 0 \\
g & \partial x & 0
\end{array}
\end{align*}
$$

На уравнения (1.1) съответствуват уравненията на характеристиките, записани в крайни разлики:

$$
\begin{align*}
& 1 x \quad(a-V) A t, \\
& \begin{array}{lll}
. J V & g \\
a & i H
\end{array} \tag{14}\\
& \text {. } x \quad-(a+V) \mathrm{lt} \text {, } \\
& I V-{ }_{a}^{g} \quad 1 H . \tag{14'}
\end{align*}
$$

Както се вижда, те се отличават от уравнения (9) и (10) по това, че имат различни изрази (съставни уравнения) за определяне на зависимите характеристики. Макар и да имат абсолютно еднакви независими характеристики, това отличие прави задачата много по-проста, а способът за решаването и - не толкова трудоемък. Гървите две уравнения от (14) и (14') в диференциален вид дефинират съвкупността от точки в равнината (x, t) и показват къде по дължината на тръбопровода и кога (по време t) двете вълни на удара - правата и обратната, се срещат.

Уравнението $d x(a-V) d t$, решено съвместно с уравнението на контура $d x-d x_{k}$ дава съвкупността от точки, определящи този момент от време, когато правата вълна на удара, дошла до края на тръбопровода ($x_{k}-L_{\text {гр }}$), се отразява и преминава в обратна ударна вълна. Уравнението
$d x--(a+V) d t$, реи 'но сьвместно с линията на контура, преминаваща през центъра на раві іната ($x \quad 0$), дава съвкупността от точки, лежащи на същата контурна ১ єния $x \quad 0$, които определят момента от време, когато обратната вълна пристига до източника на смущения (началото на тръбопровода). На тези вътрешни и контурни точки в равнината (x, t) съответствуват строго определени точки в равнината (V, H), мястото и положението на които се определя посредством уравненията

$$
\begin{align*}
& d V={ }_{a}^{g} d H \\
& d V-\int_{a}^{g} d H \tag{15}
\end{align*}
$$

Тъй като в уравнения (11) и (12) фигурира скоростта V, то мрежата на характеристиките $x(\alpha)$ и $t(\beta)$ се строи точка по точка съвместно с мрежата на характеристиките $V\left(a^{\prime}\right)$ и $H\left(\beta^{\prime}\right)$. Мрежата на характеристиките $V\left(a^{\prime}\right)$ и $H\left(p^{\prime}\right)$ строим, като използуваме уравнения (15) в крайна разлика, които, след като сме подбрали подходящия определящ интервал $\mid x$, се записват така:

$$
\begin{array}{cc}
V_{m}-V_{t} & \frac{g}{a}\left(H_{m}-H_{i}\right), \tag{16}\\
V_{m}-V & \underset{a}{g}\left(H_{m}-H_{i+1}\right),
\end{array}
$$

където H_{i}, H_{i}, V_{i} и V_{1}, са напор и скорост в сеченията i и $i+1$ в момента от време t_{i} и t_{i+1}. Тези величини са винаги известни - или са предварително зададени, или се определят от предидущите операции. Това дава вьзможност посредством уравнения (16) да определим V_{m} и H_{m} - координатите на точка m в равнината (V, H).

С помощта на (12) и (16), решени съвместно с уравнението на основното гранично условие, се изчислява ударът в сечението $A(x \quad 0)$ и в някои други сечения по дължината на тръбопровода, определящи се от големината на избрания интервал $1 x$. Въз основа на (12) и (16) можем да намерим изрази за определяне координатите на граничните точки, които лежат върху контурната линия $A D$ (фиг. 5). Тъй като тя има координата $x \quad 0$, положението на граничните точки $A_{t}(x \quad 0) k_{i}$ (фиг. 5) върху нея се обуславя с координатата $t_{k_{i}}$, която се определя въз основа на второто уравнение от системата (12):

$$
\begin{array}{ll}
t_{k_{i}} & x_{m_{i}^{\prime}-x_{k_{i}}}^{a+V_{m_{i}^{\prime}}}+t_{i}, \tag{17}
\end{array}
$$

където $x_{\kappa_{i}} 0, x_{m_{i}^{\prime}}$ и $t_{m_{i}^{\prime}}$ са координати на точката m_{i}^{\prime} и те са известни или се определят отпреди.

Положението на точката $A_{t}(x \quad 0)$ в системата $V H$ се определя с помощта на второто уравнение на (16) и уравнението на основното гранично условие :

$$
\begin{equation*}
V_{k_{i}}-V_{m_{i}^{\prime}}-\frac{g}{a}\left(H_{n_{i}}-H_{m_{i}^{\prime}}\right), \tag{18}
\end{equation*}
$$

$$
V_{k_{i}}=F\left(t_{k_{i}} ; H_{k_{i}}\right),
$$

където $V_{k_{i}}$ е скоростта на потока в сечението $A(x=0)$ в момента $t_{k_{i}}$, която се намира от зависимостта на основното гранично условие ; $V_{m_{i}^{\prime}}$ и $H_{m_{i}^{\prime}}$ са съответно скоростта и напорът в точката m_{i}^{\prime} които са известни или получени в предидущите изчисления.

Фиг. 5

Ще покажем със сдедния пример непосредственото използуване на метода на характеристиките при определяне на хидравличния удар.

Нека тръбопроводът $A B$, показан схематично на фиг. 6 , има характеристики: дължина $L_{\text {тр }} 400 \mathrm{~m}$, диаметър $D_{\text {гр }}-1 \mathrm{~m}$, скорост на ударните вълни без влияние на скоростта на водата а 1000 ms , статически

Фиг. 6. Изчнслителна схема към задачя 1
напор $H_{0}=100 \mathrm{~m}$, скорост на водата до момента на неустановения режим $\left(V_{A}\right) t_{0}=V_{0}=5 \mathrm{~m} / \mathrm{s}$ - начална скорост на потока в тръбопровода;
T_{s} - време за пълното затваряне на затворното устройство (което може да бъде дюза, направляващ апарат и др.).

Да се определи величината на хидравличния удар в сечението $A\left(\begin{array}{ll}x & 0\end{array}\right)$.

В случая скоростта на потока в сечението $A(x \quad 0)$ приемаме, че се изменя по закона за основното гранично условие на активните турбини с линейно изменение на отвора, т.е.

$$
\left(\begin{array}{lll}
V_{A}
\end{array}\right)_{t} \quad\left(\begin{array}{ll}
1 & t \tag{19}\\
T_{s}
\end{array}\right)^{\prime} V_{0} V_{0} \sqrt{ } H_{A},
$$

където H_{A} е напор в сеченията $A(x \quad 0)$ с отчитане на хидравличния дар.

Условията $x \quad L_{\text {тр }} 400 \mathrm{~m}$ и $t \quad T_{s} 0,8 \mathrm{~s}$ определят в равнината (x, t) контура $A B C D$, в който се изменят характеристиките $x(\alpha)$ и $t(\beta)$.

За удобство и нагледност данните за определяне на хидравличния удар се дават във вид на таб́лица (табл. І). В първата колона се фиксират моментите от време, за които се определя положението на точките $0,1,2,3,4$ в контура на системата $x t$ и VH. С $0,1,2,3,4$ се фиксират номерата на сеченията по дължината на тръбопровода, отстоящи едно от друго на разстояние $1 . x$. В първия хоризонтален ред на таблицата за момента t_{0} се нанасят началните стойности на V_{0} и H_{0} в съответните сечения. [Іоложението на сєчението (точката) в контура $A B C D$ в момента t, след началния момент на неустановеното движение се определя от стойностите на x и t за положението на сеченията $A(x \quad 0)$ и $2(x \quad 200 \mathrm{~m})$ в момента $t_{0} \quad 0$, т. е. от (11) намираме

$$
\begin{array}{rl}
\left(x_{1}\right)_{t_{1}} 0 & (1000-5)\left(t_{1}-0\right), \\
\left(x_{1}\right)_{t_{1}} & 200
\end{array}--(1000-5)\left(t_{1}-0\right) .
$$

Оттук координатите на точката $l\left(x_{1} ; t_{1}\right)$ са $x_{1} 99,5 \mathrm{~m}$ и $t_{1} \quad 0,1 \mathrm{~s}$. Значенията на скоростта на потока ($\left.V_{1}\right)_{t_{1}}$ и налягането $\left(H_{1}\right)_{t_{1}}$ в сечението 1 , или положението на точката l в полето на координатната система $V H$, определяме от уравнения (16)

$$
\begin{array}{ll}
\left(V_{1}^{\prime}\right)_{t_{1}}-\left(V_{A}\right)_{0} & \frac{\mathrm{~g}_{\boldsymbol{a}}^{g}}{\boldsymbol{a}}\left[\left(H_{1}\right)_{t_{1}}-\left(H_{A}\right)_{0}\right], \\
\left(V_{1}\right)_{t_{1}}-\left(V_{2}\right)_{0} & -\underset{a}{g}\left[\left(H_{1}\right)_{t_{1}}-\left(H_{2}\right)_{0}\right],
\end{array}
$$

където $\left(H_{A}\right)_{0},\left(H_{2}\right)_{0},\left(V_{A}\right)_{0}$ и $\left(V_{2}\right)_{0}$ са съответно напор и скорост на потока в сеченията $\boldsymbol{A}(\boldsymbol{x} \quad 0)$ и $2\left(x_{2} \quad 200 \mathrm{~m}\right)$ в момента $t_{0} 0$.

Тъй като $\left(V_{A}\right)_{0} \quad\left(V_{\mathbf{q}}\right)_{1,}, V_{0} 5 \mathrm{~m} \mathrm{~s}$, а $\quad\left(H_{A}\right)_{1,1} \quad\left(H_{2}\right)_{0} \quad H_{0} \quad 100 \mathrm{~m}$, то от горната система $\left(V_{1}\right)_{t_{1}} \quad 5 \mathrm{~m} / \mathrm{s},\left(H_{1}\right)_{t_{1}} \quad 100 \mathrm{~m}$.

Положението на сечението 3 в контура $A B C D$ в момента t_{1} след началния момент на неустановеното движение намираме, използувайки стойностите на x и t, определяци положението на сечението $2(x-200 \mathrm{~m}$) и $4(x=400 \mathrm{~m})$ в момента $t_{0} 0$, т. е. от (11) получаваме

$$
\left(x_{3}\right)_{t_{1}}-200-(1000-5)\left(t_{1}-0\right)
$$

Taблина 1

Момент ot -реме	Семения				
	$A(x=0)$	1	2	3	$B\left(x=L_{T p}\right)$
0	$\begin{aligned} & x=0 \\ & t=0 \\ & V=5 \\ & H=100 \end{aligned}$	100 0 5 100	$\begin{array}{r} 200 \\ 0 \\ 5 \\ 100 \end{array}$	$\begin{array}{r} 300 \\ 0 \\ 5 \\ 100 \end{array}$	$\begin{array}{r} 400 \\ 0 \\ 5 \\ 100 \end{array}$
1		$\begin{gathered} 99.5 \\ 0,1 \\ 5 \\ 100 \end{gathered}$		$\begin{gathered} 299,5 \\ 0,1 \\ 5 \\ 100 \end{gathered}$	
2	$\begin{aligned} & x=0 \\ & t=0,199 \\ & V=4,625 \\ & H=133,5 \end{aligned}$		$\begin{gathered} 199 \\ \mathbf{0 , 2} \\ \mathbf{5 , 0} \\ 100 \end{gathered}$		$\begin{gathered} 400 \\ 0,201 \\ 5 \\ 100 \end{gathered}$
3		$\begin{gathered} 99,5 \\ 0,299 \\ 4,648 \\ 135,85 \end{gathered}$		$\begin{gathered} 299,5 \\ 0,301 \\ 5 \\ 100 \end{gathered}$	
4	$\begin{aligned} & x=0 \\ & t=0,398 \\ & V=3,938 \\ & H=214,4 \end{aligned}$		$\begin{gathered} 200 \\ 0,4001 \\ 4.648 \\ 135,85 \end{gathered}$		$\begin{gathered} 400 \\ 0,4 \\ 5 \\ 100 \end{gathered}$
5		$\begin{array}{r} 100,5 \\ 0,499 \\ 3,903 \\ 211,275 \end{array}$		$\begin{gathered} 299,5 \\ 0.5 \\ 4,648 \\ 135,85 \end{gathered}$	
6	$\begin{aligned} & x=0 \\ & t=0,6 \\ & V=2,49 \\ & H=34 \overline{5} \end{aligned}$		$\begin{array}{r} 200,25 \\ 0.599 \\ 3,904 \\ 211,51 \end{array}$		$\begin{gathered} 400 \\ 0,602 \\ 4,296 \\ 100 \end{gathered}$
7		$\begin{aligned} & 99,75 \\ & 0,7 \\ & 2,54 \\ & 349 \end{aligned}$		$\begin{array}{r} 299,6 \\ 0,701 \\ 3,554 \\ 175,70 \end{array}$	
8	$\begin{aligned} & x=0 \\ & t=0,8 \\ & V=0 \\ & H=607 \end{aligned}$		$\begin{array}{r} 199,5 \\ 0,8 \\ 2,199 \\ 313,950 \end{array}$		$\begin{gathered} 400 \\ 0,802 \\ 2,81 \\ 100,00 \end{gathered}$

$$
\left(x_{3}\right)_{t_{1}}-400-(1000+5)\left(t_{1}-0\right)
$$

откъдето $x_{3} \quad 299,5 \mathrm{~m}, t_{1}=0,1 \mathrm{~s}$.
Скоростта на потока (V_{3}) t_{1} и налягането $\left(H_{3}\right) t_{1}$ в момента $t_{1} \quad 0,1 \mathrm{~s}$ определяме с помощта на уравнения (16):

$$
\begin{gathered}
\left.\left(V_{3}\right)_{t_{1}}-\left(V_{2}\right) t_{t_{0}} \quad \stackrel{g}{a}\left[\left(H_{3}\right) t_{t_{1}}-\left(H_{2}\right)\right)_{t_{0}}\right], \\
\left(V_{3}\right)_{t_{1}}-\left(V_{4}\right)_{t_{0}}=-\frac{g}{a}\left[\left(H_{3}\right)_{t_{1}}-\left(H_{4}\right)_{t_{0}}\right],
\end{gathered}
$$

откъдето, като се има пред вид, че $\left(V_{2}\right)_{t_{0}}=\left(V_{4}\right)_{t_{0}}=V_{0} \quad 5 \mathrm{~m} / \mathrm{s}$, а $\left(H_{2}\right)_{t_{0}}=$ $\left(H_{4}\right)_{t_{0}}=H_{0} \quad 100 \mathrm{~m}$, намираме $\left(V_{3}\right)_{t_{1}} \quad 5 \mathrm{~m} / \mathrm{s}$ и $\left(H_{3}\right) t_{1}=100 \mathrm{~m}$.

Като разполагаме с координатите на точката I в $t x$ и $V H$ за момента $t_{1}=0,1 \mathrm{~s}$, определяме положението на точката $A(x=0)$ в $t x$ и $V H$ в момента t_{2}. От второто уравнение на (11) имаме $\left(x_{A}\right)_{t_{2}}-\left(x_{1}\right)_{t_{1}}=$ $-(1000+5)\left(t_{2}-t_{1}\right)$ или от уравнение (17), като знаем, че $\left(x_{A}\right) t_{2}=\left(x_{A}\right) k_{i}=0$, $t_{1} \quad t_{m_{i}^{\prime}} \quad 0,1 \mathrm{~s}$, получаваме $t_{2}=t_{\mathrm{k}_{i}}=0,199 \mathrm{~s}$.

Тогава според уравнения (18) и (19)

$$
\begin{gathered}
\left(V_{A}\right) t_{2}-\left(V_{1}\right)_{t_{1}}=-\frac{g}{a}\left[\left(H_{A}\right)_{t_{2}}-\left(H_{1}\right)_{t_{1}}\right], \\
\left(V_{A}\right)_{t_{2}} \quad\left(1-\frac{t_{2}}{T_{s}}\right) \frac{V_{0}}{\sqrt{H_{0}}} \sqrt{ }\left(H_{A}\right)_{t_{2}},
\end{gathered}
$$

където $\left(V_{1}\right)_{t_{1}} 5 \mathrm{~m} / \mathrm{s}, \quad\left(H_{1}\right)_{t_{1}}=H_{0} \quad 100 \mathrm{~m}, \quad T_{s}=0,8 \mathrm{~s}, t_{2}=0,199 \mathrm{~s}$, намираме $\left(H_{A}\right) t_{t_{3}} \quad 133,5 \mathrm{~m},\left(V_{A}\right) t_{\mathrm{r}}=4,625 \mathrm{~m} / \mathrm{s}$.

С помощта на уравнения (11) и (16), като се знаят координатите на точките l и 3 в момента $t_{1} 0,1 \mathrm{~s}$, определяме координатите на точката 2 в равнината $(x, t) \rightarrow 2\left[\left(x_{2}\right)_{t_{2}}=199 \mathrm{~m} ; t_{2} \quad 0,20 \mathrm{~s}\right]$ и $V H \rightarrow 2\left[\left(V_{2}\right)_{t_{2}}=5 \mathrm{~m} / \mathrm{s}\right.$; $\left.\left(H_{2}\right)_{t_{2}}=H_{0}\right]$.

Положението на точката $4(x 400 \mathrm{~m})$ в равнината (x, t) в момента t_{2} при положение, че знаем координатите на точката $3 \mid\left(x_{3}\right)_{t_{1}} \quad 299,5 \mathrm{~m}$; $t_{1} 0,1 \mathrm{~s}$], опредяляме с помощта на първото уравнение от системата (11):

$$
\left(x_{4}\right)_{t}-\left(x_{3}\right)_{t_{1}}=\left[1000-\left(V_{3}\right)_{t_{1}}\right]\left(t_{2}-t_{1}\right),
$$

откъдето $t_{\mathbf{2}}=0,201 \mathrm{~s}$.
Като се вземе под внимание, че напорът в сечението 4 е постоянен, т. е. $H_{4}(x=400 \mathrm{~m} ; t)=H_{0}$, то от първото уравнение на (16)

където

$$
\left(V_{4}\right)_{t_{2}}-\left(V_{3}\right)_{t_{1}}=\frac{g}{a}\left[\left(100-\left(H_{3}\right)_{t_{1}}\right] .\right.
$$

намираме, че $\left(V_{4}\right)_{t_{2}}=\left(V_{\mathrm{g}}\right)_{t_{1}}=V_{\mathrm{n}}$.
По същия начин (вж. табл. 1) се продължава по-нататъшният ход на решението до момента на пълното затваряне на затворното устройство ($t=T_{s}=0,8 \mathrm{~s}$) или до пълното затихване на процеса в системата.

Съгласно условието на частния пример е в сила неравенството $\frac{2 L_{\text {тp }}}{a} \geqq T_{s}$, откъдето следва, че хидравличният удар в тръбопровода за се-

чението $A(x=0)$ има характер на пряк удар. Следователно за същото сечение получените от нас резултати проверяваме по формулата на Жуковски $H-H_{0}=\frac{a V_{0}}{g}$, откъдето, като заместим нашите данни, намираме

$$
H=H_{0}+\frac{1000.5}{9,81}=100+508,5 \quad 608,5 \mathrm{~m}
$$

По метода на характеристиките максималният напор в сечението $A(x=0)$ е $\left(H_{A}\right\rangle_{\mathrm{e}}=607 \mathrm{~m}$, т. е. разликата $11,5 \mathrm{~m}$ е приемлива.

Изложеният по-горе метод има този недостатък, че ако неудачно се подбере определящият интервал $\mid x$, то при построяване мрежата на характеристиките $x(\alpha) ; t(\beta) ; V\left(a^{\prime}\right)$ и $H\left(;^{\prime}\right)$ не се попада изведнъж в точка D (фиг. 5), а около нея. За да се попадие в точка D, трябва да се измени интервалът $1 x$, което изисква да се повторят отново всички изчисления. Това прави метода трудоемък и бавен. Този недостатък не е решавац и може да се избегне лесно, като се подбере подходящият за поставената задача определящ интерва.л $\mid x$. Іонеже " V, то V в (14) и (14') се пренебрегва, поради което имаме възможност ла построим характеристиките $x(\alpha)$ и $t(\beta)$ независимо от зависимите характєристики $V\left(a^{\prime}\right)$ и $H\left(\beta^{\prime}\right)$, а оттук и възможност точно и без много трул да определим $1 x$. Но ако поради точност или някакви други цели в поставената задача не може да се пренебрегне влияниєто на скоростта V влрху скоростта на ударните вълни, горният недостатък се избягва по следния начин: Мрежата на характеристиките $x(\alpha)$ и $t(\beta)$ в равнината (t, x) строим предварително (графично или таблично), пренебрегвайки влиянието на скоростта V в уравнения (11), като по този начин намираме необходимия определящ интервал $1 x$. След като подберем интервала $\mid x$, решаваме поставената задача с отчитане влиянието на скоростта V, както бе показано по-горе. Понеже $1 x$ е определено без влиянието на V, то получените стойности за скоростта и H не са абсолютно точни. Но отклоненията са практически незначителни и почти не се отразяват на големината на удара.

ЛИТЕРАТУРА

1. Мостков, М. А., А. А. Башкиров. Расчет гидравличсского удара. М., 1952.
2. Кривченко, Г. И. Гидравлическй удар и рациональные режимы ресулирования турбин гидроэлектростанции. М., 1951.
3. Гельфонд, А. О. Исчисление конечных разностеи. М.. 1967
4. Егизадов, И. В. Гидроэлектрические силовые установки, ч. III. ј.., 1937
5. Тихонов, А. Н., А. А. Самарскии. Уравнения матсмаиической физики. М., 1966.

Поствпияа на 6. I/I. 1972 г

ПРИМЕНЕНИЕ МЕТОДА ХАРАКТЕРИСТИК ДЛЯ РЕШЕНИЯ УРАВНЕНИЙ ГИДРАВЛИЧЕСКОГО УДАРА

Иван Иванов

(Резюме)

Гидравлический удар в напорных системах математически описывается нелинейной системой дифференциальных уравнений в частных производных первого порядка. В соответствии с физической природой гидравлического удара для решения системы уравнений используется метод характеристик. Оценивается точность метода с помощью существующих решений, в которых не учитывается влияние гидравлических потерь на величину удара. Анализируется использование метода определения величины гидравлического удара посредством фиктивной скорости распространения ударных волн.

AN APPLICATION OF THE CHARACTERISTICS METHOI) FOR SOLVING THE HYDRAULIC SHOCK EQUATIONS

Ivanlvanov
(Summary)
The hydraulic shock in pressure systems is mathematically studied by means of a non-linear system of partial differential equations of first order. In accordance with the physical nature of the phenomenon "hydraulic shock" the characteristics method is used for solving this system. An estimation of the method's accuracy is made, using existing solutions which do not account for the influence of hydraulic losses on the shock's magnitude. The use of the method for determining the magnitude of the hydraulic shock by means of the so called fictious velocity of the shock waves propagation is analysed.

