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1. INTRODUCTION

In the classical mechanics, the generalized momentum of a particle is
related to its velocity by the following relation [I]:

(1) mv=p—i A(r).

In order to find the operator v in quantum mechanics, we have to
commute the vector r with the Hamiltonian. A simple calculation gives:
(2) mu=p—  A(r)
which is analogous to the classical expression (1).

For the operators of the velocity components, the following expressions
are valid:

ieh

{'Z'n 'z'y} = mic H:r
l.t'h

(3) {‘v)" ?J:} mic H“
ieh

{'l’:, 'z'x} mc Hy:

where H,, H,, H. are the projections of the magnetic field H. From egs. 3)
it is obvious that the velocities 7y, 7y, v, do not commute in a magnetic field.
Now according to the definition of the operator of angular momentum:

(4) T rxp
one can determine the generalized operator of angular momentum:
(5) L 7~ (E— i— .‘T(r)),

This operator when multiplied in Q:w' gives the operator of the magnetic
moment [2, 3], i. e.
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(6) m L.

2mc

2. PROPERTIES OF THE OPERATORS L, L,, L,
The relation (3), because of (4) is written as:
(7) [ T-° rx<Am.

Operators L,, L,, L, are now defined as follows:

. d
® Le= ik {m-- i+ he A=A}
9) L —~—tk{ v x(;i : (xA zA,)}-
. a ie
(10) Le=—ib{x 5 —y $+;(yA,—xAy)}»

where A,, A,, A, are the projections of the vector potential A.
The commutators of the above operators are:

(11) LLy—L,L=ikL.+ik =(r.H),
(12) LL.—L.Ly=ikL +ikh 5 x(r.H),
(13) Lli—L,L. ikLy+ik - 3(r.H).

It is noticeable that the new operators L,, L,, L, do not form a lie group.
According to the total angular momentum operator /2, we now define
the total generalized angular momentum operator:

(14) [3=L2+ L2+ L2
After some algebra, eqs. (14) and (8), (9), (10) give:

= d \2 ad Jd \2 ad d \?
(15) p=—# |y 5 —25) +(25?—x5) +(x 5 ~yax)

+2“li {(Z(J'Ay-}-xAx) (K340 AL) 5+ (Hx At 2A) —(x3+2)4,) ooy

+(x(zA.+yAy) ——( Y +29A,) ai L xA:+yA,+ zA,}

fi—z{xy( + ox )+xz(d£cz+ 0z )+yz(o:z +0y )

() e ) ()

’W {(2A)—YAY+(xA— AN+ (yA,— 5 A} I

+

162



The case of a uniform external magnetic field H parallel to the z-axis

is of particular interest. For this case one distinguishes three different gauges
of the vector potential A:

a) A=(—;Hy, -;Hx,o),
(16) b) A (—Hy,O0,0),
c) A (0, Hx, 0)

the Operators Ly, L,, L, are, for each one of the three above cases: B:;g:

(0 _d ,.B_)
a) L, —ih {y oz —% gy T ~2—sz,
. Jd d . B

L (0 9 .B ‘
L.~ —ih {x‘d)‘, —Vor g (x2+y2)},

|\~ 9z av |’
(18) L, —ih {z Jox ! J—iByz},
L.=—ik lx% S Ayl sz?} ,
c) L,——ik{y-ddz z szz},

(19) L, —inlz%—x?2)

L. —ih {x 7;} —y .d‘l _iBXQ}

It can be seen that eqs. (18) and (19) can be deduced from egs. (17) by
multiplication from the right by the factors e—'2/>» and e'*?*’ respectively.
Therefore in what follows, only the operators (17) are examined.

The total operator L2, for the considered case takes the following form:

9 boow {(Y T R PR R Er Vo)

—iB(x*+y*+ z“”(" de“ ~ Vg ) B (g yra z?)(x*+y2)} '

Operators [, and [? commute, i. e.
(21) L3, —1,13- 0

as it can be easily proved. Consequently these operators have a common
set of eigenfunctions.
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In spherical coordinates, these operators are written as

(22) l.=—ik J

02 0 1 B .
(23) L= —n? {O,) Fotgd oty dor- zBr? -, r smh‘)}
The Schrodinger equation

he :
(24) o — [ An~E- Vinju) 0

for the symmetrical vector potential takes the form

@) Te=iBlxf -y Y E vy =T eyl o

If the potential energy V(r) depends only on the distance r, then the
above equation, in spherical coordinates, takes the following form

(26) 70 b E Vemo) o

Equation (25) for V(r)==0 can be solved exactly in cartesian coordinates
Landau [4] and Jannussis [5], and in cylindrical coordinates Dingle
[6]. The same equation can not be solved exactly in spherical coordinates.
Equation (26) will be investigated in the following section concerning the
case of a rotator in a magnetic field.

3. THE ROTATOR IN A UNIFORM MAGNETIC FIELD

The moment of inertia will be:
(27) [ My

where M, is the mass of the rotator and r, is the distance from the rota-
tion center.
The Schrodinger equation (26), in this case, and for V(r) 0, becomes:

(28) — L2y(ro, #, @)+ 21Ey(ry, 9, ¢)--0
or
o= 0 1 o0 .,2 &# B’ . )
(29) (01‘)‘ + Ctg a9 *sihﬂ? dq-r‘ “leo 0,;‘2 - 4 740 sin? 7?)V’(rm 1, Q')
+ 2 E‘l’(’o: ", q))=0
h2

The solution of the above equation is of the form
(30) y(Foy 9, @) =€emPuy(r,, 9).

The function u,(r, @) is a solution of the following differential equation:
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g d 2 B .
31 {d#‘-""dg',b?-s_i’:i 0 4 r(‘, sind 9 mBrg~L i: E}u,,,({)):o

which for cos#- z, takes the form:
d2u, duy, ‘ g2V m- B o
(32)  (1-2% dz: —22 dz +[(”IB E h* )rg ez g fg(]—z-)}um 0.

The above differential equation is known as the spheroid differential equa-
tion [7]. Its regular form as given in |7] is as follows:

2 du du [ I“: o 2
(33) (1 29y 22 0 (i1 5200 z-))u:O.
Comparison of equations (32) aid (33) vields:

- ; . 'ZM‘, ’ 2 ) 2
(34) i (B E)r(,, wg m B

Therefore the problem can be considered as solved, becausc the theory of
spheroid functions is already known in the literature and the eigenvalues
A are given in a form of power series of s,

Thus one has:

N oA, Brof 2 m 1)2 m +3)
(35) (rnB-~ w Elrdgn T 2B
1 [(1 m o )l myd+m —1)+ m)
2 A-J)2A- 1R 2A+1

U-—m +1)d=—m 25d4+ m +D) (. m +2)l(82'8)2
- (2A41(A43F 20 5) J\ 4

and the eigenvalues of the energy are the following:
h'-‘H‘-’rg

, h: ‘ [, 2 m l)(2m+3)}
/t(,H”l—?‘E 2 IR l)“f N ‘1 —- (Zi-lmml——

e R (B3 f-- my O moad+ m hd+ m)
(36) T4\ 4 ) \ (20--3) (2 —-1¢ Q2+1)
Uz m +D(—m A9+ m + D+ m +2)
T T @) (AR Q2AF5)
h
where '""=21eﬂ,c
(

The above result can also be applied to a diatomic molecule, when /
is replaced by the moment of inertia about the axis of rotation through the
center of mass (center of rotation).

4. SOLUTION OF EQUATION (26) BY USE OF THE PERTURBATION METHOD

Equation (26), as it has been said, cannot be exactly solved in spheric-
al coordinates. As this equation describes several physical problems, we
think that it is worth to examine here several forms of the dynamic
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energy V(r). Eq. (26) has been already negotiated for the case of the hyd-
rogen atom by many authors; but some of their theoretical results do not
agree to the experimental ones [8], as e. g. in diamagnetism.

We may write eq. (26) in the form

K 2 0 | 42

(37) et oot =0
with
02 1 a2 . d
(38) A=t G5+ g age — " oy
and
h2 g
(39) W(r)= V(1) + gar 2

If we consider the term E;f- cos?# as a perturbation, then the solution

of (37) will be given in a form of series, as:

(40) v voD+ 5 )+ valn) +
(41) E=E+5E+(% VBt
Inserting (40) and (41) in (37) we have
(42) {d‘f‘; F7 o T e E=WODl w0 =0,
43) [t 7 ot t e Eom WNlwi(r)+ (G Ev-trocosd)ur) 0,
0

A9 AT S B WDlvart (5 ME 4 cos* 9w,

+ 2 Ewn=0,

Equation (42) has a solution of the form
(45) yo(r)==F(r)eime Y | m(%),

where Y, () are the spherical harmonics and F{(r) fulfills the following dif-
ferential equation

(46) |Gat7 gt (EortuHm—g SN0 m—vin)\ Ry =0
Equation (46) for
(47) rA(r)=f(r)

takes its regular form
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h: &£f I+ M
(48) ot o+ (Go— V= PA0ED M 00 o,
where
(49) €o=Eo+uHm, and o, 1

L 2Mc
The above equation (48) can be solved exactly for the cases of
(50) Vin=" wir
(spherical harmonic oscillator) and
(51) vin %

Here we will examine the case of the spherical harmonic oscillator. For
M

|4 9 w?r?, equation (48) is written
‘ h: d&if M o MU+
(52) o ae (S @r="ouiR)r o

where it has been put
(53) D=+ wl.

The normalised eigenfunctions of egs. (52) or the F(r) are known [9, 10},
and are

1-1 1Q,r°
AMOQNIA T(a+1) \121 (MQy 0\"7 720 4y (MO
G Ao ("5 (merrian) 7 (Catr) e Li-ie(5en)
with the corresponding eigenvalues
(55) Go = Qo2+ L-+3/2).

Consequently, the unperturbed eigenfunctions are the following
{1 MQr*

MO\ Tin+1) VW21 (MQuE\TT T oh g, (M2 €7
(56) O(r) ( o) {r‘m,m} ?('—h“"“) e Lf, 1/2("7{ )J‘Q:aylm(e).

The energy E, is given by the integral

o 27

(57) ?,4 o J- f f r? cos? ¥ sin 972 drdedhy (riwy(r)
and
< _ Mas
Rz (AMQ\1?  [(n+1) b g (MOerE\EE [y [ MOy )
(58) E’=“W( no) Fa+I+379), ¢ '( h ) L, ( [ )d'

B

. { c0s? 3 Yy m(9) Y (9) sin ¥d9.

0
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The above integrals can be calculated easily by known methods [2],
and we will have

. 3\ h 2B42-1-2m?
(59 Ex——g;;(2"+’*-"2):m.»; @FN T

Consequently the eigenvalues of the energy up to the first term are
the following

2
3 1 op (220421-1—-2m*
(60) E=—uHm+hQ(2n-+1+ ){1 ~5p (o o )},

where u=
If we put 2n+l+1=N 1,2, . then eq. (60) is written as

B 1\f 1 @7 (22420—1—-2m2\)
(61 E= ‘“H’””Q(N*"z‘)l‘“ o a-trara |
and I<N-1.
The case Q=wi.e. V(r) 0,0 0, yields

_ 1 1 22420-1-2m?)
(62) E= -—ﬁco/_m+h(,)L(N+ b){l_ 2 (2 -1¥2+3) ‘
Especially for the evaluation of the eigenvalues it is preferable to use

the method of development in spherical harmonic functions. For the solution
of (37) we put

1
(63) W)= X Rim(Neim Y m(1)
iom m=—I

and by use of the recurrence relation of the spherical functions [2] we
obtain the following differo-differential equation for the radial function Rym(r)

64) (& B2h2 2421 —2m? A U+ 1))
i l‘“+’1’ {g‘ V= ( T @A+ (2A+3) )’2 M ‘,R"m(’)

B2r2 {({+2P—m* {(L+ 1P —m?)} (12— m‘){(l-—l)"‘ m’}

+ 4_{ el aRelss) R 2”‘(')+l ATl 1Rz~ 3y '"(’)[“0
with
(65) & =E+uHm.

The above equation for the case of the spherical harmonic oscillator,
becomes

[
(66) lire 0 (675 @2t my =g 30 ) Rumtr)
Bert | /{([+ 2B - mE(I + 1E—mt (I=maY{(+17—m) }_
T airnearas R nF Y ayar—t—s) Re-am (D) =0,
where
A2 42— 1 —2m2
(67) Q%1 m)-- w"*‘“’i(l" A=) (2A+3) )
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We consider as zero order approximation of (66) the solution of the
equation

@ 2M M h? (141
(68) {W+F(€°—7 o, my— 5 ))}Ri‘flfo-

The solution of the above equation is the following:
%1 —-M.Q(l.m)r

(69) R™ (r, (1@_!_41;_@)1/4( Iint1) ‘)‘/?(M:.uz,m)rg)z e g

nim h Fn41+32) T

h
Mext, m
N ARRY:: L m
Ln ( h ,2)
with the corresponding eigenvalues

(70) €, hod,m)(2n+ 1+ 3)

The above zero-order eigenvalues contain the eigenvalues (60), as one
2

can see by development of the function £(/, m) in respect to -»20;5—,_,- Up to
@ (l)L

first-order approximation one takes the relation (60).

Furtheron, the study of (66) by the simple method of perturbations or
of successive approximations, yields the following eigenvalues of the energy
up to the first-order approximations, i. e.

(JJ2
L

(71) C=Coth )l
where
(F28 “mty (1R -m2y )/ (F—m2){l—1F—m*)
(72) 6l l/ (2041321 3R2045) hy- QISR 2AFTR2A+3) ly
and
I 7 3
{3 i 7 s 9
(73) 1 _2“; ark2m) w2 m Lr("_f_"*iv)r_("“‘*?)‘
3) h= ( u«l,}ET') ( T ood.om r(n+1n
\nﬂ n\(n \on+ny ym _!_)(Alf?,_n_rﬁh)m( N O+2. m) n+n. Misn « 7)
) (A T e
3 -1 1 3
=g X=2.m)\ 2 Taf,  d=2mN\ T2/ (3 ( _L)
(74) £, 2 7 ’!‘Mm"”) ‘(H o 2em) [/r(n 3 (nsl—g
n
Y in\in V1 . Xl--2, my\m .(!([—2._’7'71‘)-)"!“’”: .( 4 _3_\)
‘2 (n )(m)y M(_l)ﬂ('”s-«lfm)‘) (1 T, m) F\l=mtnats
nl'"’-o 1 2

with (X(I, m) is given by (67). _
Tlﬁ'ab)ove gmethody i(s the most indicated for the calculation of the
eigenvalues, because the method of the perturbations leads to difficult
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calculations concerning the eigenvalues. One can see that by comparison of
the two methods. The zero-order approximation of the second method, con-
cerning the eigenvalues, gives new and satisfactory results. The eigenvalues
(75) E- —ho, m+hQ(l, m)(N—{— %)

with I<N—1, |m|</, describe the levels of the energy.
The higher-order approximation terms contribute only very little to the
energy. Tais statement seems true from the behaviour of the function

.j *'“wg 212 ‘;[ _')__2
( =0\ ]— 2L 2B+20-1-2m
(76) Al m)= 120y 1 2 (2-1)(2+3)
with Q2-==w24-wl.
. 2012421 —1—-2m?
The function "iil—l)(“Ql-_}:S)—
every value of / and m.

stays always smaller than ; for almost
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BBHPXY HAKOU CBOMCTBA HA OIMNEPATOPWTE
HA OBOBLUEHUS BIJIOB MOMEHT

A. fluycuc, Il. Ktenac

(Pesonme)

B craruAra ce pa3rnexnaT HAKOM CBOHCTBa Ha onepaTropuTte Ha 06oGiie-
HHS 'BrJI0B MOMeHT. Te3H onepaTopd ca NPOMNOPLHOHAAHM Ha OMNepPaTOPHTE Ha
MarHMTHHA MOMEHT.
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O HEKOTOPbBIX CBOACTBAX OINEPATOPOB OBOBLIEHHOIO
YrJlioBOro MOMEHTA

A fuycuc, I[1. Ktenac

(Pe3swome)

B cratbe paccmMaTpHBalOTCS HEKOTOpHE CBOHCTBAa OnepaTopoB 060O6IIEH-
HOro yriaoBOro MOMEHTA. b’xasusaercn, YTO 3TH OMNepaTopnH NPONOPUHOHAABHH
oneparopaM MarHHTHOrO MOMEHTA.
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