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1 INTRODUCTION

Accident data 1s often well fitted by a negative binomial distribution.
It is well known that two explanations, one in terms of accident proneness,
the other involving contagion, can be given for the occurrence of such a
distribution. It is, however, sometimes said that we can decide between
these explanations if complete information about the accidents is available—
by this | mean that the time of everv accident for each person in the sample
is known. In this paper it is shown that one cannot, even with complete
information, decide between the two explanations; that no experiment
which involves increasing the risk of accidents for some subjects and not
for others will help us to decide: and, moreover, that there are not just
two explanations but an infinite number.

2. BASIC MODELS

Statisticians are naturally tempted to describe the occurrence of acci-
dents in terms of a Poisson process. Call this Model 1 it is assumed
that accidents occur at rate /iw, where /. refers to some property of the
person at risk, u refers to the danger of the situation in which accidents
occur. The distribution of the number of accidents in a given time 7 then
has p. g.f. E(z")~ exp{iuT(z—1)}, a Poisson distribution.

Factory accidents did not conform with this model. Greenwood and
Yule [4] therefore proposed Model 2:it is assumed that Model 1 holds
for any given individual but that individuals may have different i values;
since 4 is proportional to the expected number of accidents in unit time it
can be thought of as measuring accident proneness. If the distribution of 4
in the population at risk can be described by the probability density

ckit-Vexp (—4ic) I'(kR)
the p.g.f. for the distribution of acciCents in time 7 is E(E(z%/4)) which is
cMc—uT(z--1))-* It is converient to absorb ¢ intou and so replace c by 1.

McKendrick [7] was, it seems, the fi_rst to point out t.hat the same
distribution could be obtained from a contagion model, a particular form of
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which is Model 3: it is assumed that a person who has had n accidents
in time (0, f) has a probability ]T“:' udt (independent of the times of the

preceding accidents) of havirg another in (¢, f —d¢). All members of the po-
palation have the same chance, kudt of an accident in (0, dt).
e

By replacing u by u(f), u’ by C) ,u(t)dt, in each model we can
allow for temporal fluctuations in the danger of the accident situation. In
effect, we change the time scale, transforming ¢ to U(7) 1, say.

Itwin (6], “Ashton [2) and Arbous and Kerrich [1] give summa-
ries of previous work on accident data and list a large number of refe-
rences.

3. EQUIVALENCE OF MODELS 2 AND 3

Suppose we know that a given person has n accidents at times ¢,
0<t, < <t,<T. The probability of such a result is

for Model 2 Hexp iu(t;—1t;_y)iudt; exp { —iu T—1t,)}
+ut; 1 k+i——l 1 +ut, \k n
for Model 3 n( Tt ‘ L+, udt,( | +ul )

(¢, is to be taken as 0).
These expressions may be rewritten as

(n! dt, dt, T-"YiuTy exp. +ul)n!
and

n

(n! dt,...dt,T=n Ty (1 +ul)y= (571 )

where the first bracket gives the probability that accidents occur at the
specified times given that there are n accidents in all. Thus the distnibu-
tion of ¢,,..., ¢, conditional on n accidents in time 7, is the came n
each case — it is, in fact, the distribution of the order statistic for a sam-
ple of n from a uniform distribution on (0, 7). Consequently, we can only
hope to distinguish between the two models by reference to the total num-
ber of accidents sustained by each person in the sample. If, however, the
observed distribution of the total number of accidents is consistent with a
negative binomial distribution, we may equally well explain this result in
terms of Model 2 or in terms of Model 3.

If therefore we have the detailed accident records of individuals cover-
ing a period of time 7 we can use these to check that the distribution of
accidents at any time ¢ (¢<T)has a p.g.f. of the form (1—ufz-+ut)=* If
this is not true then neither model fits the data, if it is true then both mo-
dals fit and the observed distribution of the total number of accidents must
be used to estimate u# and k.
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4. DIFFICULTIES OF EXPERIMENTAL COMPARISON

Since in Model 2 the accident proneness of an individual is constant,
whereas i1 Model 3 if a person lias one accident he is more likely to have
another, we might think of tryving to compare the two models experiment-
ally by choosing two groups of peop'c at random, one group to act as
control and the other to be cxposed to greater risk of accident. Suppose
that, for the control group, us) 1 throughout the period (0, 7) and that
for the ecxperimental group w(¢) w on (T, T, u(f; ou on (O, T )a>1,
02T <T). On Model 2 the distribution of accidents during (T, T) is the
same for each group and has p. g f.

[T w(T T)x1 o)) *

The same is true on Model 3; for consider the distribution of accidents
in (T,, T) wiven that r have occurred in (0, 7). The p.g. f. is [1+ua(T—
Toil-+ul ) (1 2 * r and the unconditional p.g.f. for the number of
accidents n (7, 7)) is obtained by taking the expectation of this expres-
sion with respect to r. Since

L(zF )y 21 uTl(1—=2) %

we find on substitution that the required p.¢.i. is |1 w(7 - T)(1—2)]4,
as for Model 2.

5. TRUE OR FALSE CONTAGION

It is clear that, provided we have data which fit a negative binomial
distribution, we cannot  distinguish  between true contagion (Model 3) and
false contagion or accident proneness (Model 2) by any statistical treat-
ment. There may be other reasons for choosing one model rather than the
other; such reasons must be described in terms of prior information or
prior belief. Bates andi Nevman [3], for example, considered the two
models for the case u(f) « '(1 at~ '—1 and asserted, in effect, that the
value 1 for « had a high prior probability if Model 2 held and a low prior
probability if Model 3 held. This would lead one to accept Model 2 if «
were close to 1, and to reject it otherwise.

6. OTHER MODELS

There is no mathematical difference between the two models, the differ-
ence lies in their meaning. Model 2 means that people differ (in respect
of accident proneness) in ways which remain fixed; they do not modify
their behaviour through experience. We may call this an interpretation in
terms of heredity or nature. o )

Model 3 means that people are alike to begin with, they differ subsg-
quently because they have changed through experience. We may call this
an interpretation in terms of environment or nature.
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Neither interpretation is easy to accept. An interpretation involving
both nature and nurture would seem much more reasonable. We can rea-
dily provide a suitable model by using the following result (Gurland |5])

It we have a p.g. f. of the form

. P\
(1) Eek)=( 25 )" PtQ
and it &, itself has a distribution given by
. Py k

(2) Ew) (4 ) PorQe
then the mixed distribution has p. g.f.

n — Py _ y _ kST
(3) E[E(Z kj)] E( 1-0Q, ) (01 + PPy 013)

We can consider therefore Model 4 take (1) as (1—-47(z 1))-*% and
regard it as arising from Model 3, so that it gives the distribution of the
number of accidents for a person whose initial rate is kb, and interpret
(2) as a description of the variation of k; in the population. Then (3) be-
comes

(1—bTP, (== 1)] *.

Note: a. We could also allow % to vary in a distribution given by

E(s*) (II}Z)?JE')I’ PQ, 1

but then

PyP. !
E[E(w*f/k)]=(1‘:(1—fé£p;ﬁf )

is also of type (2).
b. The p.d. for any individual’s accident record can be written as in
section 3, so that the distribution of the times at which accidents occur,

conditional on the total number of accidents, is the same for each model.
c. The result obtained in section 4 is a particular case of the result (3).

7. HOW MANY VERSIONS OF MODEL 4?

Suppose that we have accident data relating to the time range O~ ¢ T
which is well fitted by the distribution

(1 —ut(z—1))*;

u and & are estimated from the observations and are to be taken as given
constants. We can interpret the data in terms of Model 4 ii u--b6/P,,i. e.
we can choos2 any P, 0<P,<1, and then take & - Pyu.

If P,==1, then b=u and we have Model 3, i. e. a trivial mixture in
which k;=4% for all j. At the other extreme, if P, is small, we have |l —
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bt(z—1)]7* = [1 —Put(z— 1)]=*, exp|P,kut(z —1)] approximately (since &, =
k>0) and E(expibk;P,) (1—ib) * approximately. Thus as P, >0, the dis-
tribution for each individual tends to a Poisson distribution with mean Aiuf
(for time f), where i P,k, and the distribution of i tends to a Gamma
distribution with index %, i. e. we have Model 2. Thus Models 2 and 3 are
the extreme versions ot an infinite set of models of type 4.

The square of the coefficient of vatiation for %4, in model 4, is Q./k;

for fixed & we might describe the proportion of nature to nurture as given
by Qa :P,.

8. INTERPRETATION

The reason for the multiplicity of equivalent models lies in the form
of the instantaneous risk for the contagion model. The probability of an
accident in (¢,f .-df) given that n have occurred in (0,¢) may be written

k . . . . .
T"tdt; if we regard £ as the number of accidents occurring in a time

u '+
u ' preceding the beginning of observation, this probabilitv depends only
on the average number of accidents in the past. For Model 4 the corres-

. - . k,+n
ponding probability is ‘T
(#.u) 4
of length (P,u) ': moreover, since equation (3) can be written w*{l—

QeP, (w—1)Jf, it is as though the last (k,- k) accidents had occurred in a
time interval of length Q) P,u) '. Thus each model effectively assumes that
at some fixed time every individual in the population at risk had an equal
chance of sustaining an accident; the models differ in the fixed time
chosen — for the pure contagion model it is taken to be the beginning of
the observation period, for the mixed Poisson model it is taken to be a
long time in the past; the ratio Q, P, specifies how far in the past we set
this point of equality of experience.

dtf, as if & accidents occurred in a time

9. DISCUSSION

If all that we require o° a mathematical model is that it should pro-
duce equations which represent well the data so far observed and which
may therefore be useful in predicting future results, then tre fact that a
number of different concepts may lead to the same equations is of no con-
cern. All the accident models described would leal us to predict that the
more accidents a person has had in the past, the more he is likely to have
in the future. Unfortunately, mathematical models are not used only in this
way. Often a model is based on some concepts which seem plausible and
if the model works the concepts are held to be justified; it is then falt
that some insight into the mechanism by which the data was produced has
been obtained and this insight is applied to much more general situations.
As an example of this, consider tie problem of population growth.

Suppose we observe a number of colonies each initially of size £ and
find that the colony sizes at later times fit the distribution whose p.g.f. is
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ZX(1 —ef(z—1))*

We can interpret the data as the outcome of a pure birth process, i. e. as
if each individual can reproduce with a constant birth rate (of unity). For
such a process the probability of a birth in a given colony in (¢, ¢-{-d¥),
given that n births have occurred in this colony in (0, /), is (k { n)df. This
is an example of Model 3 with u(f) expt. (Waugh [8] has exploited this
representation of the pure birth process to prove limit theorems.) Conse-
quently there are other interpretations, for example: only founder members
reproduce, the birth rate for any one of them is Zl¢’ at time ¢ (where 4 is
a random variate with p.d. exp ( 2)). Another possibility (more appropriate
for a bee-hive) is: only one of the ifounder members reproduces, the birth
rate depends linearly on the population size, The explanation of the data
as a pure birth process of the usual sort has a pleasing symmetry and also
has some justification for demographic work with human and animal popu-
lations where we know the reproductive mechanisn. It does not follow that
we should accept this explanaticn ot population size in other cases.

In the case of accident data variation in the observed resulls can be
attributed partly to variation in the population, partly to variation inherent
in the process and it has been shown that the partition can be effected in
infinitely many ways; this is because differences between individuals can
only be displayed by behaviour which is exhibited in the course of time
and therefore can be “explained” by the process. This sort of difficulty can
arise in a number of difierent fields, from the study of the development of
mental illness to the study of the movement of allegedly identical elemen-
tary particles. It is clearly necessary to trv to formulate classes of expla-
nations which may apply to a given type of phenomena rather than attempt
to defend one explanation at all costs or wrangle unprofitably over two.

REFERENCES

1. Arbous, A. GG, J. E. Kerrich. — Biometrics, 7, 1951, 310—342.

2. Ashton. W. The theory of rad traffic flow. Lendon, 1966,

3. Bates, (. E., J. Neyman.— Univ. Calif. Publ. Statist.. 1. 1952, 215—275.
4 Greenwood, M., Udny Yule — 1 R. Statist. Soc., &3, 1920, 255—275.
5. Gurland, J. — Biometrika, 44, 1957, 265—268.

6. Irwin, J. O. — J. R. Statist. Soc.. A, 127. 1964, 438 —451.

7. McKendrick, A. (i. — Proc. Edin. Math. Sec., 44, 1926, 98—13",

8. Waugh, W, A. O'N. — J. R. Statis*. Soc. B, 32, 1970, 418—431.

Received 2. X. 1972

188



BDBPXY MNMOHATHETO 3A CKIOHHOCT KBM 3JIOMOJYVKA
Baftoner Keiinu

(Pe3onme)

OG6uKHOBEHO NaHHHTE 32 3/0MONYKHTe ce OnHCBaT Xo6pe C MOMOLITA
Ha oTpHuatrensHo GHHOMHO pasnpene.enue. }3BecTHO e, ye 3a TOBa Morar aa
ce nanat nBe OGACHEeHHs : €JIHOTO € CBbP3aHO CBC ,CKJIOHHOCT KbM 3J0MO-
AyKa®, a Apyroto — C’bC ,3apa3sHocT OT 3710noayka“. [louskora o5aye Ka3par,
Ye MOXeM 1a PeUIHM KOe¢ OT JBeTe 00siCHeHHst € 34]0BOJHTEeNHO, aKO HMaMe
nbAHa HHGOPMAILNY 3@ CLULECTBYBANMTE 310N0AYKH, KaTO NOJA TOBa ce pas-
6Hp8, Yye BPEeMETO HA HCHKU ¢J1HA 3J0H0JVKAa 33 BCeKH €I1HMH YCBEK OT H3-
BagkaTa e M3BeCTHO. B rtasm paGorta ce nokassa, ye He MOXEM, JOPH H aKoO
pasnonarame ¢ I'baHa HHPOPMIUKH, 13 pelldM KOe OT IBeTe e B CHJA W ye
HHTO €] 1MH €KCNePMMENT, IPH KoilTO 32 ¢[HH cYOeKTH PHCKBT pacTe, a 3a
APpYyrn HaMaasiBa, HAMA 138 HH [IOMOI'He 1a B3eMéeM pewieHne ; Heulo noseye,
CbUIECTBYBAT He caMO ABe, a Oe3xpaeH Gpoi 06GfCHEHHS 3a 3J0MOJNYKHTe.

O NOHSATHH NOIBEPARKEHHOCTIH MPOHCUIECTBHUAM

Baiioaer Keiin

rPesrxrve)

OO6nYHO AaHHBlE O NPOHCIIECTBHAX XOPOLIO ONHCHIBAIOTCA OTpHLATeAb-
HbiM OHHOMHANbHLIM pacnpenenenHeM. }I3BeCTHO, 4TO 3TOMY MOXHO npexn-
nocaath ABa OOGBACHEHHS — MepBOoe CBA3AHO C ,NOJABEPXEHHOCTHIO NPOHC-
LUeCTBHsM ", BTOpOe — ¢ .3apaxieHHeM npoucliecTsiem* Huorna cunraercs,
YTO MOXHO BHOMpaTh H3 ABYX 0O6bsicHeHuil Go.oee VayHoe, eClH HMeeTCH
nonnas HHQOPMaUHS O CYIIeCTBYIOIIMX npoucliecTBHsx. [loa 3THM noapasy-
MEBaeTCs, YTO BpeMs AAs KaXJ0ro NpPOHCILIECTBHA C KaXXJblM YENOBEKOM M3
BHOOpPKH H3BeCTHO. I3 cTaThe noka3biBaeTcs, YTO Jaxe AAA CAyuas, Koraa
Mbl pacnonaraem Bceii HHQOpMauHell, HeBO3MOXHO PeIUMTH 3afayy BHGOpa H3
ABYX OGLACHEHHR M UTO He CVIILECTBYET 3KCNePHMEHT, KOTOPRIi nomor Oul
NPHHATH pELIEHHE, €CAH I8 OAHHX CyGbeKTOR PHCK BO3PacTaeT, 4 ANs APYTHX
yMenbuiaetcs. bonee Toro, cyuiecTByeT He TOAbKO ABa OOBACHEHHS MPOMC-
lecTBHA, HX YHCAO GeCKOHeyHO.
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