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General Introduction - Motivation

and Outlook of Robust Statistics

0.1 Introduction

Robust statistics is concerned with statistical procedure leading to inference that is stable

with respect to departures of the data from model assumptions. Data inadequacies often

occur in the form of contamination, anomalous values or outliers, which are in disagreement

with the data generating mechanism. Outliers do occur in real data, for example as gross

errors. They are data which are far way from the majority, the bulk of the data. They

can be due to: gross errors - copying or punching error, in particular wrong decimal

point, interchange of two values with different meaning, equipment failures etc. Outliers

are sample values which cause surprise in relation to the majority of the sample. They

are usually influential observations, that is, their deletion often causes major changes in

estimates, confidence regions, tests, and so on. As the values and frequency of outliers

strongly fluctuate from sample to sample, outliers can make conclusions of a statistical

analysis unreliable.

Outliers are more likely to occur in datasets with many observations and/or variables,

and often they do not show up by simple visual inspection. Thus in multiple regression (and

other complex designs), outliers may be vary hard to find. In the computer age, we therefore

need reliable routine methods for finding all outliers. Once found, the outliers should still

be studded and interpreted, and not automatically be rejected (except in certain routine
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Introduction 6

situation). We also should have reasonably efficient methods for dealing with ”doubtful

outliers” (borderline or, rather, bortherzone cases).

The main purpose of any robust procedure is to give resistant (stable) results in the

presence or absence of outliers by best fitting the majority, the bulk of the data. This

means that robust estimation finds a fit, which is similar to the fit we would have found

without the outliers. Robust statistics deals with deviations (such as gross errors) from

ideal parametric models (such as normality) and with statistical procedures that are still

reliable and reasonably efficient under smaller and larger deviations from the parametric

model used. Robust procedures are based on the use of parametric models and must be

resistant with respect to outliers and efficient with respect to the sample variation of the

majority.

A great deal of work has been done in developing the theory and methodology of

robustness. Nowadays robust techniques have been developed in practically any field in

statistical analysis. The milestones are books by Huber (1981), Hampel et al. (1986),

Staudte and Sheather (1990), Maronna et al. (2006), Huber and Ronchetti (2009).

The book of Rousseeuw and Leroy (1987) is mainly concerned with robust detection

of regression and multivariate outliers based on trimming and is very practical. Marazzi

(1993) documents a set of FORTRAN routines for robust statistics with interface to S-

PLUS. Atkinson and Riani (2000), and Atkinson, Riani and Cerioli (2004) combine ro-

bustness with high BDP and various regression and multivariate data influential diagnos-

tics and computer graphics. Atkinson and Riani (2001) adapted the so called Forward

search algorithm in order to compute the parameter estimate of the generalized linear

linear regression models within the exponential family of distributions.

The book of Heritier et al. (2009) gives robust methods in biostatistical modeling

and statistical inference in general. Varmuza and Filzmoser (2008) dissiminate the robust

statistics in chemomemtrics whereas the book of Farcomeni and Greco (2015) is about

robust methods for data reduction techniques such as principal component, factor analysis,

discriminant analysis, and clustering. Review papers about robustness with high BDP can

be found in Hubert et al. (2005) and Hubert et al. (2008).
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A global measure of robustness of a statistical estimator is the finite sample breakdown

point (BDP). It measures the smallest fraction of contamination that can cause the esti-

mator to take arbitrary large values. We now recall the replacement variant of the finite

sample BDP given in Hampel et al. (1986), which is closely related to that introduced by

Donoho and Huber (1983). Let Ω = {ωi ∈ Rp, for i = 1, . . . , n} be a sample of size n.

Definition 0.1 The breakdown point of an estimator T at Ω is given by

ε∗n(T ) = max{m
n

: sup
Ω̃m

‖T (Ω)− T (Ω̃m)‖ <∞},

where Ω̃m is any sample obtained from Ω by replacing any m of the points in Ω by arbitrary

values and ‖.‖ is the Euclidean norm. .

Thus, there is a compact set such that the estimator T remains in it even if we replace any

m elements of the sample Ω by arbitrary ones. The largest m/n for which this property

holds is the breakdown point.

One way to construct a positive BDP estimator is to employ a standard estimator and

to trim some unusual, discordant, unlikely observations from the corresponding objective

function. For example in linear regression, this is the case of the Least Median of Squares

(LMS) and Least Trimmed Squares (LTS) introduced by Rousseeuw (1984), the Least

Trimmed Absolute Deviations (LTAD) by Bassett (1991), and the Maximum Trimmed

Likelihood estimator (TLE) by Neykov and Neytchev (1990).

This thesis is dedicated to robust estimators based on trimming and their applications

in fitting statistical models to data.

0.2 Regression estimators based on trimming

In order to aid the presentation we remind some basic definitions.

Consider the classical linear regression model

yi = xTi θ + εi for i = 1, . . . , n,
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where yi ∈ R1, xi ∈ Rp, θ ∈ Rp is unknown parameter, εi are i.i.d., E(εi) = 0, and

var(εi)=σ
2 > 0. Denote the residuals by

ri(θ) := yi − xTi θ for i = 1, . . . , n.

Definition 0.2 The Least Squares Estimator (LSE) is defined as

θ̂LSE := argmin
θ

n∑

i=1

r2i (θ).

Definition 0.3 The Least Absolute Deviations (LAD) is defined as

θ̂LAD := argmin
θ

n∑

i=1

|ri(θ)|,

Definition 0.4 The Least Median of Squares (LMS), Least Quantile of Squares (LQS)

and Least Trimmed Squares (LTS) are defined by Rousseeuw (1984):

θ̂MED := argmin
θ

med
i
r2i (θ),

θ̂LQS := argmin
θ
r2ν(k)(θ),

θ̂LTS := argmin
θ

k∑

i=1

r2ν(i)(θ),

where r2ν(1)(θ) ≤ r2ν(2)(θ) ≤ . . . ≤ r2ν(n)(θ) are the ordered values of r2i (θ) at θ, ν =

(ν(1), . . . , ν(n)) is the permutation of the indices (depends on θ), k is the trimming pa-

rameter such that ⌊n+p+1
2

⌋ ≤ k ≤ n if the observations are in general position, i.e., any p

of them are linearly independent.

Definition 0.5 The Least Trimmed Absolute Deviations (LTAD) is defined in Rousseeuw

and Leroy (1987):

θ̂LTAD := argmin
θ

k∑

i=1

fν(i)(θ),

where fν(1)(θ) ≤ fν(2)(θ) ≤ . . . ≤ fν(n)(θ) are the ordered values of fi(θ) = |ri(θ)| at θ,
ν = (ν(1), . . . , ν(n)) is the permutation of the indices (depends on θ), k is the trimming
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parameter such that ⌊n+p+1
2

⌋ ≤ k ≤ n if the observations are in general position, i.e., any

p of them are linearly independent.

From the above definitions it follows that the minima are achieved over a subsample

of size k. On the other hand the objective function LMS, LQS and LTS are continuous,

but non differentiable and possesses many local minima. Therefore one need non-smooth

and/or combinatorial optimization in general to get the corresponding minima. The fol-

lowing representation of the LQS due to Krivulin (1992) is very useful as it clarifies its

combinatorial nature over the observations

min
θ
r2ν(k)(θ) = min

θ
min
I∈Ik

max
i∈I

r2i (θ),

where Ik is the set of all k–subsets of the set {1, . . . , n}, whereas I = {i1, . . . , ik}. This

representation seems to be more useful than the original because it is based on the well-

known min and max functions. Moreover, it allows of further reducing the problem. One

can change the order of the operations of taking minimum and get

min
θ
r2ν(k)(θ) = min

θ
min
I∈Ik

max
i∈I

r2i (θ) = min
I∈Ik

min
θ

max
i∈I

r2i (θ).

The same holds about the LTS estimators

min
θ

k∑

i=1

r2ν(i)(θ) = min
θ

min
I∈Ik

∑

i∈I
r2i (θ) = min

I∈Ik
min
θ

∑

i∈I
r2i (θ).

Therefore all possible (nk) subsets of the data have to be fitted by the LSE. The LQS and LTS

estimators trim at most n − k of the observations that do not follow the assumed model.

Computing the LQS and LTS is infeasible for large data sets. To get an approximate

estimate a FAST-LTS was developed by Rousseeuw & van Driessen (2000).

Similar algorithm holds about LQS, however, the LTS is
√
n consistent and asymptot-

ically normal which are desired properties of any statistical estimator.

The same hold also about the LQAD estimator fν(k)(θ) where fi(θ) = |ri(θ)|

min
θ
fν(k)(θ) = min

θ
min
I∈Ik

max
i∈I

fi(θ) = min
θ

min
I∈Ik

max
i∈I

|ri(θ)| = min
I∈Ik

min
θ

max
i∈I

|ri(θ)|,
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which is the well known problem of fitting a linear function according to the so called l∞

criterion or Chebishev norm as well as about the LTAD

min
θ

k∑

i=1

fν(k)(θ) = min
θ

min
I∈Ik

∑

i∈I
fi(θ) = min

θ
min
I∈Ik

∑

i∈I
|ri(θ)| = min

I∈Ik
min
θ

∑

i∈I
|ri(θ)|.

In conclusion the optimization problems may be regarded as a ”two-stage” problems of

both combinatorial optimization over the observations and Least Squares optimization or

Linear Programming if LQAD and LTAD-estimators are to be considered.

Due to the representations it follows that the LMS, LQS, LTS, LQAD and LTAD

estimators are regression, scale and affine-equivariant estimators.

The BDP of the LMS, LTS and related trimmed rank based estimators were derived

by Rousseeuw (1984), Rousseeuw and Leroy (1987), and Hössjer (1994), assuming that the

observations are in general position whereas Müller (1997) and Mili and Coakley (1996)

omitted this restriction and gave a general treatment with replicated regression data. We

remind that the observations xi ∈ Rp for i = 1, . . . , n are in general position if any p of

them are linearly independent. The BDP properties of the LTS and LTAD estimators were

studied also by Vandev na Neykov (1998) based on the concept of d–fullness for data in

general position.

The LTS estimator belongs to the class of affine equivariant estimators which achieves

asymptotically the highest breakdown point 0.5. It is the right choice instead of the

LMS estimator of Rousseeuw (1984) because of its asymptotic (normality and consistency)

properties and computational aspects. Stromberg (1993) studied the properties of the

nonlinear regression LTS estimator. Visek (2002) proved the consistency and asymptotic

normality of the weighted LTS whereas Č́ıžek (2002), and Gervini and Yohai (2002) did

the same about the LTS adaptive choice of trimming.

Efficient FAST-LTS computational algorithm has been developed by Rousseeuw and

Van Driessen (1999a). Agullo (2001) considered a branch and bound algorithm to get the

LTAS estimate but it is appropriate for samples of small size. Hawkins and Olive (1999)

and Hawkins and Olive (2002) studied the asymptotic properties of the LTAD and LTS

estimators and discussed some computational algorithms as well.
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The BDP properties of the LTS and LTAD estimators were studied also by Vandev na

Neykov (1998) based on the concept of d–fullness for data in general position.

0.3 The trimmed likelihood and related estimators

Let xi ∈ Rp for i = 1, . . . , n be i.i.d. observations with pdf ψ(x, θ), θ ⊆ Θq is unknown

parameter, and li(θ) = l(xi, θ) = − logψ(xi, θ). Neykov and Neytchev (1990) proposed

to replace in the Rousseeuw’s estimators the squared residuals r2i (β) by the negative log

likelihoods li(xi, θ) and thus the following two classes of estimators are defined:

Definition 0.6 (Neykov and Neytchev, 1990) The minimum Median Likelihood Estimator

(MedLE(k)) and minimum Trimmed Likelihood Estimator (TLE(k)) is defined as

θ̂MedLE := argmin
θ∈Θ

l(xν(k), θ) and θ̂TLE := argmin
θ∈Θ

k∑

i=1

l(xν(i), θ),

where l(xν(1), θ) ≤ l(xν(2), θ) ≤ . . . ≤ l(xν(n), θ) are the ordered values of l(xi, θ) for i =

1, . . . , n at θ, ν = (ν(1), . . . , ν(n)) is the corresponding permutation of the indices, which

depends on θ and k is the trimming parameter.

The basic idea behind the trimming in this estimator is in removal of those n − k

observations which values would be highly unlikely to occur, had the fitted model been

true. The TLE coincides with the MLE if k = n. Due to the representation

min
θ∈Θ

k∑

i=1

l(xν(i), θ) = min
θ∈Θ

min
I∈Ik

∑

i∈I
l(xi, θ) = min

I∈Ik
min
θ∈Θ

∑

i∈I
l(xi, θ)

where Ik is the set of all k–subsets of the set {1, . . . , n}, it follows that all possible (nk)

partitions of the data have to be fitted by the MLE. Therefore, the TLE is given by the

partition with that MLE fit for which the negative log likelihood is minimal.

Vandev (1993) put the LMS, LTS, LTAD, MedLE and TLE estimators into a general

class of positive functions. Let f : X × Θ → R+, where Θ ⊆ Rq be an open set, and

F = {fi(θ) = f(xi, θ), for i = 1, . . . , n}.
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Definition 0.7 (Vandev, 1993) The Generalized Median Estimator (GMedE(k)) and Gen-

eralized Trimmed Estimator (GTE(k)) are defined as

θ̂kGMedE := arg min
θ∈Θq

fν(k)(θ) and θ̂kGTE := argmin
θ∈Θ

k∑

i=1

fν(i)(θ)

where fν(1)(θ) ≤ fν(2)(θ) ≤ . . . ≤ fν(n)(θ) are the ordered values of fi at θ, ν = (ν(1), . . . , ν(n))

is the corresponding permutation of the indices, which depends on θ, k is the trimming pa-

rameter.

Vandev (1993) developed d–fullness technique in order to study their BDP properties.

Definition 0.8 (Vandev, 1993) A set of functions F = {fi(θ), for i = 1, . . . , n} is called

d–full if for every subset J ⊂ {1, . . . , n} of cardinality d (|J | = d) the function g
J
(θ) =

max
j∈J

fj(θ), θ ∈ Θ, is subcompact.

Definition 0.9 (Vandev, 1993; Vandev and Neykov, 1993) A function g : Θ → R, Θ ⊆ Rq

is called subcompact if its Lebesgue set Lg(C) = {θ ∈ Θ : g(θ) ≤ C} is a compact set for

every real constant C.

Later on Neykov (1995) introduced the Weighted Generalized Trimmed Estimators

(wGTE(k)) and studied their BDP properties with the d–fullness concept.

Definition 0.10 The weighted Generalized Trimmed Estimator (wGTE) is defined as

θ̂wGTE := argmin
θ∈Θ

k∑

i=1

wν(i)fν(i)(θ), (1)

where fν(1)(θ) ≤ fν(2)(θ) ≤ . . . ≤ fν(n)(θ) are the ordered values of fi at θ, ν = (ν(1), . . . , ν(n))

is the corresponding permutation of the indices, which depends on θ, k is the trimming pa-

rameter, the weights wi ≥ 0 for i = 1, . . . , n are associated with the functions fi(θ) and are

such that wν(k) > 0.

A particular case of the wGTE(k), called WTLE, is obtained if the functions in (1)

are replaced by the negative log-likeligoods. The main wGTE(k) results and findings with
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some additional application concerning characterization of the BDP of the WTLE within

the framework of linear logistic regression and linear regression model with Laplace of order

q of the errors under the assumption that the data are in general position were published

in Vandev and Neykov (1998).

Finally, we note that Hadi and Luceño (1997) defined a version of the WTLE closely

following Neykov and Neytchev (1990), and Vandev and Neykov (1993) and offered a

computational algorithm in the univariate case. These authors ”introduced” also the

MedLE(k) but for some reason missed to cite that the MedLE(k) definition not only had

already been given by Vandev (1993) and Vandev and Neykov (1993) but its BDP prop-

erties were characterized.

0.4 The thesis structute

This thesis is dedicated to robust estimators based on trimming and their applications in

fitting statistical models to data. The estimators based on trimming have been developed as

alternatives of the classical statistical estimators such as the Least Squares and Maximum

Likelihood estimatos in order to reduce the outliers influence in data. The basic idea behind

trimming is in the removal of those observations whose values would be highly unlikely to

occur if the fitted model was true. The following paper are summarized in the thesis as

separate chapters:

This thesis is comprised of 8 chapters. Papers [1], [2], [4], [5], [6], [7] and [8] are

summarized in the thesis as separate chapters with the same numbers according to the

following list of papers. Chapter 3 is based on the results and findings of papers [3], [9]

and [10]. Publication [11] is a preliminary version of [5].

[1] Müller, Ch. and Neykov, N. M. (2003). Breakdown Points of the Trimmed Likeli-

hood and Related Estimators in Generalized Linear Models. J. Statist. Plann. and

Inference, 116, 503-519. IF: 0.307.

[2] Neykov, N. M. and Müller, Ch. (2003). Breakdown Point and Computation of
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Trimmed Likelihood Estimators in Generalized Linear Models. In: Developments in

Robust Statistics, Dutter, R., Filzmoser, P., Gather, U., and Rousseeuw, P. (eds.),

Physica-Verlag, Heidelberg, 277-286.

[3] Dimova, R. and Neykov, N. M. (2004a). Generalized d-fullness Technique for Break-

down Point Study of the Trimmed Likelihood Estimator with Applications. In: The-

ory and Applications of Recent Robust Methods, M. Hubert, G. Pison, A. Struyf and

S. Van Aelst (eds.), Birkhauser, Basel, 83-92.

[4] Neykov, N.M., Dimova, R. and Neytchev, P.N. (2005). Trimmed Likelihood Esti-

mation of the Parameters of the Generalized Extreme Value Distribution: A Monte-

Carlo Study. Pliska Stud. Math. Bulgar., 17, 187-200.

[5] Neykov, N. M., Filzmoser, P., Dimova, R. and Neytchev, P. N. (2007). Robust

fitting of mixtures using the Trimmed Likelihood Estimator. Comput. Statist. Data

Anal., 52, 299-308. IF: 1.029.

[6] Neykov, N. M., Filzmoser, P. and Neytchev, P. N. (2012). Robust joint modeling

of mean and dispersion through trimming. Comput. Statist. Data Anal. 56, 34-48.

IF: 1.304.

[7] Neykov, N. M., Č́ıžek, P., Filzmoser, P. and Neytchev, P.N. (2012). The least

trimmed quantile regression. Comput. Statist. Data Anal. 56, 1757-1770. IF:

1.304.

[8] Neykov, N. M., Filzmoser, P. and Neytchev, P. N. (2014). Ultrahigh dimensional

variable selection through the penalized maximum trimmed likelihood estimator.

Stat. Papers, 55, 187-207. IF: 0.813.

[9] Dimova, R. and Neykov, N.M. (2003). Generalized d-fullness Technique for Break-

down Point Study of the Trimmed Likelihood Estimator. Compt. rend. Acad. Bulg.

Sci., Tome 56, No 5, 7-12.



Short thesis survey 15

[10] Dimova, R. and Neykov, N.M. (2004b). Application of the d-fullness Technique

for Breakdown Point Study of the Trimmed Likelihood Estimator to a generalized

Logistic Model. Pliska Stud. Math. Bulgar., 16, 35-41.

[11] Neykov, N.M., Filzmoser, P., Dimova, R. and Neytchev, P.N. (2004). Mixture of

Generalized Linear Models and the Trimmed Likelihood Methodology. In: Proceed-

ings in Computational Statistics, J. Antoch (ed.), Physica-Verlag, 1585-1592.

NOTE: An Appendix is added to Chapetr 4 and another one to Capter 5 in order to

clarify the BDP derivations of the WTLE(k) estimators within the framework of the

Gumbel distribution and finite mixtures of distributions.

0.5 Short thesis survey

In chapter 2, a general class called S–estimators based on majorization - minorization of

the kth ordered element of a d–full set of functions is introduced by Müller and Neykov

(2003) and its BDP is characterized. As a consequence of this the main results Theorem 1

of Vandev and Neykov (1998) about the BDP of the wGTE estimator were extended and

a lower bound without any additional sample size and trimming parameter assumption

was found. Müller and Neykov (2003) consider the BDP behavior of the TLE estimator

within the framework of the generalized linear models and gave a detail derivations for

the linear logistic regression, Poisson linear regression model and linear regression model

with Laplace error of q order omitting the requirement of Vandev and Neykov (1998) for

general position of the data. The BDP of the linear regression S-estimator of Rousseeuw

and Yohai (1985) and Rousseeuw and Leroy (1987) is characterized using the d–fullness

concept. Details can be found in Chapter 1.

We note that the results of Müller and Neykov (2003) about the linear logistic regression

were further developed by Č́ıžek (2008a) considering the adaptive maximum symmetrically

trimmed likelihood estimator in order to overcome the problems with nonexistence of

the TLE solution in case of no overlap between observations. Č́ıžek (2008) prove the
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TLE consistency and asymptotic normality, and demonstrate its applicability in nonlinear

regression, time series, and limited dependent variable models (these are the generalized

linear models in econometric literature).

Computation of the TLE is unfeasible for large data sets because of its combinatorial

nature. To get approximate TLE an algorithm called FAST-TLE was developed by Neykov

and Müller (2003). The concentration steps of this algorithm are reduced to the FAST-

LTS or FAST-MCD algorithms developed by Rousseeuw and Van Driessen (1999a) and

Rousseeuw and Van Driessen (1999b) in case of normal linear regression parameter and

multivariate Gaussian mean and covariance matrix estimation, respectively. Details can

be found in Chapter 2.

The requirement for d–fullness of the set F is restrictive, more precisely, the condition

for every real constant C in the definition of a subcompact function is not always satisfied.

For instance the corresponding set F of negative log-likelihoods for the mixtures of univari-

ate and multivariate normal are not d–full in the above sense. To overcome the problems

Dimova and Neykov (2003), Dimova and Neykov (2004a), and Dimova and Neykov (2004b)

developed a generalized d–fullness techniques to study the BDP of a wider class of functions

containing the class of subcompact functions. The main results are Proposion 3.1 and 3.2

which give the necessary conditions under which there exists a solution of the correspond-

ing optimization problem and a lower bound for the BDP of the wGTE(k) estimator for a

set of functions F satisfying the conditions A1 and A2. These results are a generalization

of Theorem 1 of Vandev and Neykov (1998). A generalization of the corresponding result

of Vandev and Neykov (1998) and Müller and Neykov (2003) about linear logistic regres-

sion model with generalized link function is given by Proposion 3.3. Details are given in

Chapter 3.

In Neykov et al. (2005) the applicability of the TLE is considered within the framework

of the extreme value distributions. The index of fullness for the negative log-likelihoods of

the Gumbel density is derived and the BDP of the TLE is characterized in the Appendix to

this chapter. The finite sample properties of the MLE and TLE are studied in a comparative

simulation Monte Carlo study. The study shows that the MLE can be easily destroyed



Short thesis survey 17

by one or several discordant observations. A strategy for trimming parameter choice is

discussed. Details can be found in Chapter 4.

Another application of the TLE is proposed in Neykov et al. (2004), and Neykov et

al. (2007) to estimate mixture of distributions in a robust way. The superiority of this

approach in comparison with the MLE is illustrated by examples and simulation stud-

ies. The FAST-TLE algorithm is adapted to carry out the computation of the unknown

parameters. The BDP of the TLE for the mixture components is characterized by the

d–fullness concept. The relationship of the TLE with various other approaches that have

incorporated robustness in fitting mixtures and clustering are also discussed in this context

such as the classification trimmed likelihood estimator. The BDP of the TLE within the

mixture context is characterized in the Appendix to this chapter. An adaptive way for

selection of the TLE trimming parameter k based on the robust version of the Bayesian

Information Criteria (BIC) is proposed as well. The proposed robust estimation technique

is demonstrated on 3 data sets with contamination - mixture of 3 simple regression lines,

mixture of two Poisson regression and mixture of 3 components of two-variate Gaussian

distributions. A strategy for trimming parameter choice based on trimmed version of the

Bayesian Information Criteria is offered. Details are given in Chapter 5.

It is worth to mention that a group of researchers from Spain has published a series

of papers based on the classification trimmed likelihood estimator. Details can be found

in Garcia-Escudero et al. (2008), Garcia-Escudero et al. (2010a), Garcia-Escudero et al.

(2010b), Garcia-Escudero et al. (2011), Garcia-Escudero et al. (2013), Garcia-Escudero

et al. (2014), Garcia-Escudero et al. (2015) and Garcia-Escudero et al. (2016). In order

to disseminate robustness usage within the framework of clusterwise linear regression and

multivariate data clustering these authors developed fast and reliable software in R follow-

ing the ideas of the FAST-LTS of Rousseeuw and Van Driessen (1999a) and FAST-TLE

of Neykov and Müller (2003) algorithms. Details can be found in Fritz et al. (2013a), Fritz

et al. (2013b) and Ruwet et al. (2013).

The MLE and the Extended Quasi-Likelihood (EQL) estimators have commonly been

used to estimate the unknown parameters within the joint modeling of mean and disper-
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sion framework. Particular cases of this framework are the classical linear regression model

with heteroskedastic errors and generalized linear models with distributions from the lin-

ear exponential family with non-constant dispersion. In order to overcome the sensitivity

of these estimators to outliers in the data Neykov et al. (2012) introduced the maximum

Extended Trimmed Quasi-Likelihood (ETQL) estimator to estimate the unknown param-

eters in a robust way. The BDP of this class of estimators is characterized by Theorem

6.1. The superiority of the proposed estimator in comparison with the classical MLE and

EQL estimators is illustrated by examples and an extended Monte Carlo simulation study.

Details are given in Chapter 6.

The linear quantile regression estimator is very popular and widely used during the last

40 years. It is well known that this estimator can be very sensitive to leverage observations

in data (the discordant observations in the explanatory variables). In order to reduce

the influence of the leverage observations in data, the least trimmed quantile regression

estimator is proposed by Neykov et al. (2012) in order to estimate the unknown parameters

in a robust way. The BDP of the proposed estimator is characterized by Theorem 7.1

whereas its consistency is proved by Theorem 7.2. The performance of this approach in

comparison with the classical one is illustrated by an example and an extended simulation

study. Details can be found in Chapter 7.

The Penalized Maximum Likelihood Estimator (PMLE) has been widely used for ex-

planatory variable selection in high-dimensional data when the sample size n is comparable

or less than p the dimension of the explanatory variables. The penalized least squares esti-

mator and MLE are non-robust against outliers in the data just as the classical estimators.

To overcome this problem, the penalized M-estimator has been employed (Fan and Li,

2001; Fan and Lv, 2010). However, within regression models, M-estimators are not robust

against outlying observations in the explanatory variables, the so called leverage points,

and therefore penalized M-estimators are not robust in such settings as well. Only some

redescending M-estimators are robust in linear regression settings with fixed designs, e.g.,

Mizera and Müller,(1999) and Bühlmann and van der Geer (2011)). Neykov et al. (2014)

proposed the Penalized Maximum Trimmed Likelihood Estimator (PMTLE) to estimate
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the unknown parameters in a robust way. The computation of the PMTLE takes advantage

of the same technology as used for PMLE but here the estimation is based on subsamples

only. The BDP properties of the PMTLE are discussed using the notion of d–fullness in

several settings. The performance of the proposed estimator is evaluated in a simulation

study for the classical multiple linear and Poisson linear regression models. Details are

given in Chapter 8.

The newly developed methodology based on trimming has been widely used in real

everyday practice. We assess this by the increasing citation number of our papers given

in a separate citation list. Among these citations special attention deserves the results

and findings of Atanasov (2003), Atanasov (2004), Atanasov (2005) and the series of pa-

pers concerning branching processes studies by Stoimenova et al. (2004a), Stoimenova et

al. (2004b), Stoimenova (2005), Stoimenova and Yanev (2005), Stoimenova et al. (2005),

Stoimenova (2006), Stoimenova and Atanasov (2006), Atanasov (2007), Atanasov et al.

(2007).



Chapter 1

Breakdown points of trimmed

likelihood estimators and related

estimators in generalized linear

models

Summary. Lower bounds for breakdown points of trimmed likelihood (TL) estimators

in a general setup are expressed by the fullness parameter of Vandev (1993) and results

of Vandev and Neykov (1998) are extended. A special application of the general result

are the breakdown points of TL estimators and related estimators as the S estimators in

generalized linear models. For the generalized linear models, a connection between the

fullness parameter and the quantity N (X) of Müller (1995) is derived for the case that

the explanatory variables may be not in general position which happens in particular in

designed experiments. These results are in particular applied to logistic regression and

log-linear models where also upper bounds for the breakdown points are derived.

20
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1.1 Introduction

Assume that the distribution of an observation Yn has the density fn(yn, θ) and that the

observations Y1, . . . , YN are independent. Let y := (y1, . . . , yN)
⊤ be the vector of all realized

observations, ln(y, θ) := − log fn(yn, θ) the log-likelihood, and l(y, θ) := (l1(y, θ), . . . , lN(y, θ))
⊤.

Maximum likelihood (ML) estimators are maximizing the likelihood, i.e. minimzing

N∑

n=1

ln(y, θ)

. Trimming the least likely observations, i.e. the observations with the largest ln(y, θ),

leads to trimmed likelihoods. Maximizing the trimmed likelihood provides the trimmed

likelihood estimators TLh(y) given by

TLh(y) := argmin
θ

h∑

n=1

l(n)(y, θ),

where N − h observations are trimmed and l(1)(y, θ) ≤ . . . ≤ l(N)(y, θ). These estimators

can be also extended to weighted trimmed likelihood estimators WTLh defined by

WTLh(y) := argmin
θ

h∑

n=1

wn l(n)(y, θ),

where the weights satisfy wn ≥ 0 for n = 1, . . . , h and wh > 0. See e.g. Hadi and Luccño

(1997) and Vandev and Neykov (1998).

The weighted trimmed estimators will be used if some outliers are expected. Outliers

are observations which differ from the majority of the observations and in particular do

not possess the density fn(yn, θ). If the number of ouliers is known, then this number of

observations should be trimmed. Since usually the number of ouliers is unknown we could

choose the trimming parameter h such that the protection against outliers is as good as

possible. A well known measure of protection against outliers is the breakdown point which

here will be studied.

In the case of normal distribution with known variance, the trimmed likelihood es-

timators coincide with the least trimmed squares (LTS) estimators of Rousseeuw (1984,
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1985) and Rousseeuw and Leroy (1987). Breakdown points of LTS estimators for linear

regression were derived in Rousseeuw (1984, 1985), Rousseeuw and Leroy (1987), Vandev

(1993), Vandev and Neykov (1993), Coakley and Mili (1993), Hössjer (1994), Müller (1995,

1997), Mili and Coakley (1996) and Hössjer (1994) showed also consistency and asymptotic

normality. Trimmed likelihood estimators for normal distribution with unknown variance

were regarded in Bednarski and Clarke (1993) who derived their asymptotic properties like

Fisher consistency, asymptotic normality and compact differentiability.

Up to now, not much is known about trimmed likelihood estimators for distributions

different from the normal distribution. There are approaches on robust and in particular

high breakdown point estimators for logistic regression and other nonlinear models given

by Stefanski, Carroll, and Ruppert (1986), Copas (1988), Künsch, Stefanski and Carroll

(1989), Stromberg and Ruppert (1992), Carroll and Pederson (1993), Wang and Carroll

(1993, 1995), Christmann (1994), Sakata and White (1995), Hubert (1997), Christmann

and Rousseeuw (1999). But these approaches do not concern trimmed likelihood estima-

tors.

Only Vandev and Neykov (1998) derived breakdown points of trimmed likelihood es-

timators for logistic regression and exponential linear models with unknown dispersion.

Their approach bases on the concept of d-fullness developed by Vandev (1993). However,

they could only derive breakdown points under the restriction that the explanatory vari-

ables x1, . . . , xN of the logistic regression and the exponential linear model are in general

position. This restriction was also used in the approaches of Rousseeuw (1984, 1985) and

Rousseeuw and Leroy (1987) concerning LTS estimators. Müller (1995, 1997) and Mili and

Coakley (1996) dropped this restriction and showed that then the breakdown point of LTS

estimators is determined by N (X) defined as

N (X) := max
06=β∈IRp

card
{
n ∈ {1, . . . , N}; x⊤n β = 0

}
,

where X := (x1, . . . , xN)
⊤ ∈ IRN×p. Hence N (X) provides the maximum number of

explanatory variables lying in a subspace. If the explanatory variables are in general

position then N (X) = p− 1 which is the minimum value for N (X). In other cases N (X)
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is much higher. These other cases appear mainly when the explanatory variables are not

random but fixed and this happens in particular if they are given by an experimenter in a

designed experiment.

In this chapter we are showing that the quantity N (X) determines the breakdown point

not only of LTS estimators in linear models but also of any trimmed likelihood estimator

and related estimators as the S estimators in generalized linear models. In particular, we

will show how the fullness parameter of Vandev (1993) is connected with N (X). This

leads to a general approach about lower bounds for breakdown points in generalized linear

models with and without dispersion parameters. Although the approach is a generalization

and combination of that in Müller (1995, 1997), Mili and Coakley (1996) and Vandev and

Neykov (1998) it is much simpler and the proofs are shorter. In particular, restrictions of

the sample size and the trimming factor h which are used in Vandev and Neykov (1998)

can be dropped.

In Section 1.2, the most general result concerning a lower bound for breakdown points

of trimmed likelihood estimators in general models is presented. The first application of

the general result is given in Section 1.3 for generalized linear models without dispersion

parameter. Here it is shown how the fullness parameter d of Vandev (1993) is connected

with the quantity N (X). From these results, lower bounds for the breakdown points

in linear models, in logistic regression models and in log-linear models appear as simple

examples. Since also upper bounds for the breakdown points are derived for the logistic

regression and the log-linear models by special considerations, the logistic regression model

and the log-linear model are treated separately in Section 1.4 and Section 1.5, respectively.

The second application of the general result of Section 1.2 concerns generalized linear

models with dispersion parameter and is presented in Section 1.6. Here we also derive

breakdown points of S estimators by completing a proof of Rousseeuw and Yohai (1984)

and Rousseeuw and Leroy (1987).
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1.2 Breakdown points of trimmed likelihood estima-

tors in general models

Let Θ be an topological space. For example, Θ = [0, 1] for binomial experiments, Θ =

[0,∞) for variance estimation, Θ = IRp for regression experiments, or Θ = IR × IR+. In

such general setting breakdown points of an estimator for θ ∈ Θ are defined as follows,

where int(Θ) denotes the interior of Θ. Compare e.g. Hampel et al. (1986), p. 97.

Definition 1.1 The breakdown point of an estimator θ̂ : YN → Θ at y ∈ YN is defined as

ǫ∗(θ̂, y) :=
1

N
min {M ; there exists no compact set Θ0 ⊂ int(Θ) with

{θ̂(y); y ∈ YM(y)} ⊂ Θ0

}
,where YM(y) :=

{
y ∈ YN ; card{n; yn 6= yn} ≤M

}
is the

set of contaminated samples corrupted by at most M observations.

In the case Θ = IRp, we have that N ·ǫ∗(θ̂, y) is the smallest numberM of contaminated

observations so that {θ̂(y); y ∈ YM(y)} is unbounded.

In some situations the breakdown point satisfies ǫ∗(θ̂, y) = 0, which can only happen if

θ̂(y) is not uniquely defined and given by values not lying in a compact subset of int(Θ).

Then the estimator is not identifiable. Typically the values of a nonidentifiable estimator

are lying in a whole subspace of Θ, and this happens in particular in complex models,

for example, in models where the observations depend on several explanatory variables.

Maximum likelihood estimators are not identifiable if the maximum of
∏N

n=1 fn(yn, θ), or

equivalently the minimum of
∑N

n=1 ln(y, θ), is attained at several θ. Then, setting γ(θ) =
∑N

n=1 ln(y, θ), a breakdown point equal to zero means that the set {θ ∈ Θ; γ(θ) ≤ C} is

not contained in a compact subset of int(Θ) for all C ≥ minθ γ(θ). Since we want to extend

these considerations to trimmed likelihood estimators, we make the following definition.

Definition 1.2 A function γ : Θ → IR is called sub-compact if the set {θ ∈ Θ; γ(θ) ≤ C}
is contained in a compact set ΘC ⊂ int(Θ) for all C ∈ IR.
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This definition of sub-compactness is similar to the definition of Vandev and Neykov

(1998) but not the same since Vandev and Neykov demanded that {θ; γ(θ) ≤ C} itself is

a compact set. But this is for our purposes too restrictive. With Definition 1.2 we have

the following conclusion.

Lemma 1.1 The breakdown point of a maximum likelihood estimator θ̂ at y satisfies

ǫ∗(θ̂, y) > 0 if γ given by γ(θ) =
∑N

n=1 ln(y, θ) is sub-compact.

Since maxn=1,...,N ln(y, θ) ≤
∑N

n=1 ln(y, θ) ≤ N maxn=1,...,N ln(y, θ) Lemma 1.1 holds also

if γ is given by γ(θ) = maxn=1,...,N ln(y, θ). To study the breakdown behavior of maximum

likelihood estimators at subsamples, we use the definition of d-fullness of Vandev and

Neykov (1998).

Definition 1.3 A finite set Γ = {γn : Θ → IR; n = 1, . . . , N} of functions is called d-full

if for every {n1, . . . , nd} ⊂ {1, . . . , N} the function γ given by γ(θ) := max{γnk
(θ); k =

1, . . . , d} is sub-compact.

The d-fullness of the log-likelihood functions {ln(y, ·); n = 1, . . . , N} provides positive

breakdown points of the maximum likelihood estimators at any subsample with d obser-

vations. Moreover, as Vandev and Neykov (1998) showed, d-fullness is also related to

the breakdown points of TL and WTL estimators. Here we extend this result and show

that the proof of this extension is even much shorter and simpler than that of Vandev and

Neykov. For this proof, we use in particular the fact that the definition of d-fullnes is based

on the maximum of γnk
(θ) instead of the sum. The extension concerns any estimator S of

the form

S(y) := argmin
θ∈Θ

s(y, θ)

with s : YN ×Θ → IR, where s(y, θ) can be estimated by l(h)(y, θ) such that there exists

α, β ∈ IR with α 6= 0 and h ∈ {1, . . . , N} such that

α l(h)(ỹ, θ) ≤ s(ỹ, θ) ≤ β l(h)(ỹ, θ) (1.1)
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for all ỹ ∈ YN and θ ∈ Θ. It is obvious that s(y, θ) of the TL and WTL estimators satisfies

condition (1.1). But there are also other estimators which fall under condition (1.1). One

of these estimators, the S-estimator, is treated in Section 1.6.

Theorem 1.1 If the estimator S satisfies condition (1.1) and {ln(y, ·); n = 1, . . . , N} is

d-full, then

ǫ∗(S, y) ≥ 1

N
min{N − h + 1, h− d+ 1}.

The proof of Theorem 1.1 bases on the following lemma.

Lemma 1.2 If {ln(y, ·); n = 1, . . . , N} is d-full, M ≤ N − h, and M ≤ h − d, then

l(d)(y, θ) ≤ l(h)(y, θ) ≤ l(N)(y, θ) for all y ∈ YM(y) and θ ∈ Θ.

Proof of Lemma 1.2. Regard n1, . . . , nh with l(k)(y, θ) = lnk
(y, θ) for k = 1, . . . , h. Since

h ≥ M + d we have 1 ≤ k(1) < . . . < k(d) ≤ h with lnk(i)
(y, θ) = lnk(i)

(y, θ). Then we

obtain

l(h)(y, θ) = lnh
(y, θ) ≥ lnk(d)

(y, θ) ≥ lnk(i)
(y, θ) = lnk(i)

(y, θ)

for all i = 1, . . . , d. This implies l(h)(y, θ) ≥ l(d)(y, θ). The other inequality follows simi-

larly. �

Proof of Theorem 1.1. LetM = min{N−h, h−d}. Lemma 1.2 together with assumption

(1.1) provide that

α l(d)(y, θ) ≤ s(y, θ) ≤ β l(N)(y, θ)

for all y ∈ YM(y) and θ ∈ Θ. This means

α l(d)(y, S(y)) ≤ s(y, S(y)) = min
θ
s(y, θ) ≤ β min

θ
l(N)(y, θ)

for all y ∈ YM(y). Setting C0 := β
α
minθ l(N)(y, θ) we have {S(y); y ∈ YM(y)} ⊂ {θ ∈

Θ; l(d)(y, θ) ≤ C0} so that we have only to show that γ given by

γ(θ) := l(d)(y, θ) = max{l(1)(y, θ), . . . , l(d)(y, θ)}

= max{ln1(θ)(y, θ), . . . , lnd(θ)(y, θ)}
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is sub-compact. Assume that this is not the case. Then there exists C ∈ IR such

that {θ; γ(θ) ≤ C} is not contained in a compact set. Hence, there exists a sequence

(θm)m∈IN ∈ {θ; γ(θ) ≤ C} such that every subsequence of (θm)m∈IN is not converg-

ing. Because of {n1(θm), . . . , nd(θm)} ⊂ {1, . . . , N} we have a subsequence (θm(k))k∈IN

and n1, . . . , nd such that {n1(θm(k)), . . . , nd(θm(k))} = {n1, . . . , nd} for all k ∈ IN . This

implies γ(θm(k)) = max{ln1(y, θm(k)), . . . , lnd
(y, θm(k))} ≤ C for all k ∈ IN . However,

max{ln1(y, ·), . . . , lnd
(y, ·)} is sub-compact since {l1(y, ·), . . . , lN(y, ·)} is d-full. This pro-

vides that (θm(k))k∈IN contains a convergent subsequence which is a contradiction. Hence

γ is sub-compact. �

Note that Theorem 1 of Vandev and Neykov (1998) provides a lower bound of the

breakdown point of weighted trimmed likelihood estimators which is (N − h + 1)/N .

However this lower bound is derived under the additional assumptions of N ≥ 3 d and

(N +d)/2 ≤ h ≤ N −d. Since (N +d)/2 ≤ h implies h−d ≥ (N −d)/2 ≥ N −h the lower

bound of Vandev and Neykov is not better than that of Theorem 1.1. Hence Theorem 1.1

is not only an extension of Theorem 1 of Vandev and Neykov to other estimators but also

provides the lower bound without additional assumptions on N and h.

Note also that the lower bound of Theorem 1.1 is maximized if the trimming factor h

satisfies
⌊
N+d
2

⌋
≤ h ≤

⌊
N+d+1

2

⌋
where ⌊z⌋ := max{n ∈ IN ; n ≤ z}. A simple consequence

of this fact is the following result concerning trimmed likelihood estimators.

Theorem 1.2 Assume that {ln(y, ·); n = 1, . . . , N} is d-full and
⌊
N+d
2

⌋
≤ h ≤

⌊
N+d+1

2

⌋
.

Then the breakdown point of any weighted trimmed likelihood estimator WTLh satisfies

ǫ∗(WTLh, y) ≥
1

N

⌊
N − d+ 2

2

⌋
.

In the next sections, we derive the fullness parameter d and thus the lower bound for

the breakdown point for special models.
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1.3 Application on generalized linear models without

dispersion parameter

Assume that the distribution of the observations Yn have densities f(yn, xn, β) given by a

linear exponential family, that is

f(yn, xn, β) = exp{T (yn)⊤ g(x⊤nβ) + c(x⊤n β) + b(yn)},

where T : Y → IRr, g : IR → IRr, c : IR → IR, and b : Y → IR are known functions with

Y ⊂ IRq, xn ∈ X ⊂ IRp, n = 1, . . . , N , are known explanatory variables and β ∈ IRp is

unknown. Then the log-likelihood functions are given by

ln(y,X, β) = −T (yn)⊤ g(x⊤nβ)− c(x⊤nβ)− b(yn),

where X = (x1, . . . , xn)
⊤. For estimating β we can use again trimmed or weighted trimmed

likelihood estimators to protect ourselves against the influence of outliers not coming from

the model. The breakdown point of these estimators is determined according to Theorem

1.2 by the fullness parameter of {l1(y,X, ·), . . . , lN(y,X, ·)}. We will now show that, under

fixed X , this fullness parameter depends on the quantity N (X) of Müller (1995) defined in

the introduction. Intuitively it is clear that we only can expect identifiability of β with d

observations and thus d-fullness if d explanatory variables always span the whole IRp. This

is just satisfied by d ≥ N (X)+1 by definition of N (X). We even have d = N (X)+1 for a

lot of generalized linear models, however sometimes with some restrictions on the sample

space. The formal proof of the relation between the fullness parameter and the quantity

N (X) is based on the following lemma.

Lemma 1.3 Let X ∈ IRN×p and I ⊂ {1, . . . , N} with cardinality N (X) + 1. Then the set

{β ∈ IRp; maxi∈I |x⊤i β| ≤ D} is bounded for all D ∈ IR.
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Proof of Lemma 1.3. We have the following inclusion

{β ∈ IRp; max
i∈I

|x⊤i β| ≤ D}

⊂
{
β ∈ IRp;

1

N (X) + 1

∑

i∈I
(x⊤i β)

2 ≤ D2

}

=

{
β ∈ IRp;

1

N (X) + 1
β⊤
∑

i∈I
xi x

⊤
i β ≤ D2

}
.

Because I is of cardinality N (X) + 1 the definition of N (X) implies that the matrix
∑

i∈I xi x
⊤
i is of full rank. Hence the set

{
β ∈ IRp;

1

N (X) + 1
β⊤
∑

i∈I
xi x

⊤
i β ≤ D2

}

is bounded. �

Theorem 1.3 If the function γz given by γz(θ) = −T (z)⊤g(θ)−c(θ)−b(z) is sub-compact

for all z ∈ Y then the family {ln(y,X, ·); n = 1, . . . , N} is N (X)+1-full for all y ∈ YN

and all X ∈ XN .

Proof of Theorem 1.3. Regard any C ∈ IR and any I ⊂ {1, . . . , N} with cardinality

N (X) + 1. Because of the sub-compactness of γz there exists Di, i ∈ I, such that

{
β ∈ IRp; max

i∈I
li(y,X, β) ≤ C

}

=
⋂

i∈I
{β ∈ IRp; li(y,X, β) ≤ C} =

⋂

i∈I

{
β ∈ IRp; γyi(x

⊤
i β) ≤ C

}

⊂
⋂

i∈I

{
β ∈ IRp; |x⊤i β| ≤ Di

}
⊂
{
β ∈ IRp; max

i∈I
|x⊤i β| ≤ max

i∈I
Di

}
.

The last set is contained in compact set because of Lemma 1.3. �

Example 1.1 (Linear models)
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In a linear model where the errors have normal distribution with known variance the log-

likelihood function is

ln(y,X, β)

=
1

2

(yn − x⊤nβ)
2

σ2
+

1

2
log(2πσ2)

= −yn
1

σ2
x⊤n β +

(x⊤n β)
2

2σ2
+

(yn)
2

2σ2
+

1

2
log(2πσ2).

Since γz(θ) = −z 1
σ2 θ +

θ2

2σ2 + z2

2σ2 + 1
2
log(2πσ2) is sub-compact the condition of Theorem

1.3 is satisfied so that the set {ln(y,X, ·); n = 1, . . . , N} is N (X)+1-full. Hence Theorem

1.2 provides that any weighted trimmed likelihood estimator with
⌊
N+N (X)+1

2

⌋
≤ h ≤⌊

N+N (X)+2
2

⌋
has a breakdown point not less than 1

N

⌊
N−N (X)+1

2

⌋
. This result was already

obtained by Müller (1995, 1997) since the trimmed likelihood estimators coincide with the

least trimmed squares estimators in this case. In Müller (1995, 1997) it was also shown

that 1
N

⌊
N−N (X)+1

2

⌋
is an upper bound for regression equivariant estimators as well. Since

also weighted trimmed likelihood estimators are regression equivariant we even have that

the breakdown point of the WTL estimators is exactly 1
N

⌊
N−N (X)+1

2

⌋
.

Note that Vandev and Neykov (1998) also treated this linear model and the least

trimmed squares estimators. But they made the assumption that x1, . . . , xN are in general

position, that is N (X) = p − 1. Under this assumption, they showed only that the set

{ln(y,X, β); n = 1, . . . , N} is p+ 1-full although it is p-full.

Theorem 1.3 together with Theorem 1.1 provide only a lower bound for the breakdown

points. Since regression equivariance makes only sense for linear models but not for other

generalized linear models an upper bound cannot be derived by regression equivariance as

it was shown for linear models by Müller (1995, 1997). In other generalized linear models it

also can happen that even the maximum likelihood estimators never breaks down. However,

as soon as the ML estimator has a breakdown point less than or equal to 1
N

it is obvious

that the following upper bound for the breakdown point holds.

Lemma 1.4 If the breakdown point of the maximum likelihood estimator satisfies

ǫ∗(ML, y,X) ≤ 1

N
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for all y ∈ YN and X ∈ XN , then we have for any weighted trimmed likelihood estimator

WTLh

ǫ∗(WTLh, y, X) ≤ 1

N
(N − h+ 1).

Proof of Lemma 1.4 . From the definition of the weighted trimmed likelihood estimator

it follows that it is a maximum likelihood estimator over a subsample of h observations

out of N . So the smallest fraction of the data which has to be contaminated in order to

render the estimator completely meaningless is (N − h + 1)/N . Therefore its breakdown

point is not greater than (N − h+ 1)/N . �

The assumption ǫ∗(ML, y,X) ≤ 1
N

of Lemma 1.4 must be shown for each generalized

linear model separately. Under this assumption we see that, as for linear models, the

efficiency and the breakdown point are contrary properties. For large h, the efficiency is

high while the breakdown point is small.

The upper bound given by Lemma 1.4 is only useful if h is large enough. In particular

for h ≥
⌊
N+N (X)+1

2

⌋
we obtain ǫ∗(WTLh, y, X) ≤ 1

N

⌊
N−N (X)+2

2

⌋
. This is very similar

to the upper bound for regression equivariant estimators in linear models. However, for

h <
⌊
N+N (X)+1

2

⌋
no reasonable upper bound is provided by Lemma 1.4. As for linear

models, the breakdown point should be small if h is too small. However, this cannot be

shown in full generality so that special considerations for each generalized linear model

are necessary. Therefore we treat the logistic regression model and the log-linear model as

examples in the following two sections .

1.4 Logistic regression

Let tn the total number of observations and sn ∈ {0, . . . , tn} the number of successes under

condition xn. In a logistic regression model, it is assumed that the number of successes Sn

has a binomial distribution with parameters tn and πn where πn = exp(x⊤n β)/(1+exp(x⊤n β))

is the probability of success explained by the explanatory variable xn. Setting y = (s, t)
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with t = (t1, . . . , tN)
⊤ and s = (s1, . . . , sN)

⊤, the log-likelihood function is

ln(y,X, β) = ln(s, t, X, β)

= −sn x⊤n β + tn log(1 + exp(x⊤nβ))− log(
(
tn
sn

)
)

= γsn,tn(x
⊤
nβ). (1.2)

The function γu,v given by γu,v(θ) = −uθ + v log(1 + exp(θ))− log(
(
v
u

)
) is sub-compact as

soon as 0 < u < v so that according to Theorem 1.3 the set {ln(y,X, ·); n = 1, . . . , N} is

N (X)+1-full for all y = (s, t) satisfying 0 < sn < tn for n = 1, . . . , N . Hence, Theorem 1.1

provides 1
N

min{N − h + 1, h−N (X)} as a lower bound for the breakdown point of any

weighted trimmed likelihood estimator WTLh. This lower bound is also an upper bound

as the following theorem shows. For that let be Y∗ the set of all y = (s, t) with 0 < sn < tn

for n = 1, . . . , N . Here we exclude the case sn = 0 or s = tn to avoid problems described

in Christmann and Rousseeuw (1999) concerning missing overlap. A combination of our

results and those of Christmann and Rousseeuw would provide a result for 0 ≤ sn ≤ tn

but this is beyond the scope of this chapter.

Theorem 1.4 The breakdown point of any weighted trimmed likelihood estimator WTLh

for logistic regression satisfies

min
y∈Y∗

ǫ∗(WTLh, y, X) =
1

N
min{N − h + 1, h−N (X)}.

Proof of Theorem 1.4. After the remarks above we have only to show that 1
N

min{N −
h + 1, h − N (X)} is an upper bound. If h >

⌊
N+N (X)+1

2

⌋
the upper bound follows from

Lemma 1.4 if we can show ǫ∗(ML, y,X) ≤ 1
N
for all y for the maximum likelihood estimator.

Hence regard any y = (s, t). If ML(y,X) is not contained in a compact subset of IRp then

ǫ∗(ML, y,X) = 0. Otherwise, since the second derivative of
∑N

n=1 ln(y,X, β) with respect

to β is a positive semidefinite matrix, it is sufficient and necessary for β̂ =ML(y,X) that

X⊤s = X⊤e(t, β̂) holds where

e(t, β̂) :=

(
t1

exp(x⊤1 β̂)

1 + exp(x⊤1 β̂)
, . . . , tN

exp(x⊤N β̂)

1 + exp(x⊤N β̂)

)⊤

.
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Regard the sequence yk = (sk, tk) ∈ Y1((s, t)) with sk1 = 1 and tk1 = k for all k ∈ IN .

Assume that β̂k =ML(yk, X) is bounded. Then

X⊤e(tk, β̂k) = x1 t
k
1

exp(x⊤1 β̂
k)

1 + exp(x⊤1 β̂
k)

+ x2 t2
exp(x⊤2 β̂

k)

1 + exp(x⊤2 β̂
k)

+ . . .

+ xN tN
exp(x⊤N β̂

k)

1 + exp(x⊤N β̂
k)

is unbounded while X⊤sk is bounded which is a contradiction to X⊤sk = x⊤e(tk, β̂k).

Hence ML(yk, X) is not bounded so that ǫ∗(ML, y,X) ≤ 1
N
.

Now regard the case h ≤
⌊
N+N (X)+1

2

⌋
. W.l.o.g. we can assume that there exists β0 such

that x⊤n β0 = 0 for n = 1, . . . ,N (X). Then by definition of N (X) we have x⊤n β0 6= 0 for

n = N (X)+1, . . . , N . At leastM0 =
⌊
N−N (X)+1

2

⌋
of these n satisfy x⊤n β0 < 0 otherwise we

can regard −β0. W.l.o.g. let x⊤n β0 < 0 for n = N −M0+1, . . . , N . Setting M = h−N (X)

we have M ≤ M0. Now regard the following special sample y = (s, t) with sn = 1 for

n = 1, . . . , N , tn = 2 for n = 1, . . . ,N (X) and tn = u > 2 for n = N (X) + 1, . . . , N . As

corrupted sample we use y = (s, t) with sn = 0, tn = tn for n = N −M + 1, . . . , N and

sn = sn, tn = tn for n = 1, . . . , N −M . Then y ∈ Y∗ and y ∈ YM(y). Moreover, we have

min
β
ln(s, t, X, β) = min

β
ln(s, t, X, β) = ln(s, t, X, kβ0) = log(2)

for n = 1, . . . ,N (X) and all k ∈ IR, and

min
β
ln(s, t, X, β) ≥ min

µ
(−µ + u log(1 + exp(µ))− log(u)) > log(2)

for n = N (X) + 1, . . . , N . This implies

min
β

h∑

n=1

wn l(n)(s, t, X, β) ≥
h∑

n=M+1

wn log(2).

Since we have with the property x⊤n β0 < 0 for n = N−M+1, . . . , N for k large enough

h∑

n=1

l(n)(s, t, X, kβ0) =

h∑

n=M+1

wn ln−M(s, t, X, kβ0)

+

M∑

n=1

wn tN−n+1 log
(
1 + exp(x⊤N−n+1 k β0)

)

k→∞−→
h∑

n=M+1

wn log(2),
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the estimator WTLh(y,X) is not contained in a bounded subset of IRp so that

ǫ∗(WTLh, y, X) ≤ 1
N
M = 1

N
(h−N (X)).�

The proof of Theorem 1.4 shows that for deriving the upper bound for h >
⌊
N+N (X)+1

2

⌋

it is necessary to assume that also the total numbers tn can be contaminated by outliers.

Without this assumption even the maximum likelihood estimator need not to break down

by one or more corrupted observations. The assumption of possibly contaminated total

numbers makes sense as soon as the total numbers are given by random which is often

the case (see the example below). If the total numbers are given by random then the log-

likelihood function (1.2) should have additional terms. But since these terms are additive

they do not influence the determination of the maximum likelihood estimator if these

terms are independent of β. However they can influence the trimmed likelihood estimators

by changing the order of the ln(y,X, β) and would make the second step of the proof of

Theorem 1.4 (for h ≤
⌊
N+N (X)+1

2

⌋
) more complicated though it also would work. Thus

here we regarded for simplicity the simple trimmed likelihood estimators based on the

log-likelihood functions given by (1.2).

Theorem 1.4 in particular shows that the maximum breakdown point for logistic regres-

sion is attained for h satisfying
⌊
N+N (X)+1

2

⌋
≤ h ≤

⌊
N+N (X)+2

2

⌋
and equals 1

N

⌊
N−N (X)+1

2

⌋
.

Hence we have the same maximum breakdown point value and the same optimal trimming

proportion h as for linear models.

Note, that for the special case that x1, . . . , xN are in general position, that is N (X) =

p− 1, a lower bound for the breakdown point similar to that in Theorem 1.4 was already

obtained by Vandev and Neykov (1998) under the additional restriction of N ≥ 3(p + 1).

Thereby, they showed again that the set {ln(y,X, β); n = 1, . . . , N} is only p + 1-full

although it is p-full.

Example 1.2 (Toxicological experiment with fish eggs)

This example involves data which resulted from a toxicological experiment conducted at

the University of Waterloo, Canada, and are presented in O’Hara Hines and Carter (1993,

p.13). Six different concentrations of the toxicant potassium cyanate (KSCN) were applied
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to 48 vials of trout fish eggs. Each vial contained between 61 and 179 eggs. The eggs

in half the vials were allowed to water harden for several hours before the toxicant was

applied (this is a process in which the surface of a fish eggs becomes toughened after a

few hours in water). For the remaining vials, the toxicant was applied immediately after

fertilization. After 19 days of the start of the experiment the number of dead eggs in each

vial was counted.

Treating the number of dead eggs in each vial as the response, a logistic regression

model was fitted to the data with covariates for water hardening (0 if the toxicant was

applied before water hardening and 1 after), and for a linear and quadratic term in log-

concentration of toxicant. The quadratic term in log-concentration is used to describe a

sharp increase in mortality caused by the two highest concentrations. Thus the logistic

regression model is

logit

(
p

1− p

)
= β1 + β2 ∗WH + β3 ∗ log10(Ct) + β4 ∗ log10(Ct)2

The maximum likelihood estimator for (β1, β2, β3, β4)
⊤ based on all observations is

ML(y,X) = (10.28, 0.03,−11.4, 2.50)⊤.

O’Hara Hines and Carter (1993) pinpoint the observations 38, 39 and 26 as possi-

ble outliers. They also reported that Pregibon’s influence diagnostics indicated that the

observations 38 and 39 were pinpointed as potential outliers. The MLE without the obser-

vations 38 and 39 is (15.40, 0.27,−15.53, 3.26)⊤ and without the observations 26, 38 and

39 is (14.04, 0.32,−14.64, 3.11)⊤.

Markatou et al. (1997) analyzed the same data. The observations 38 and 39 are iden-

tified as potential outliers, whilst their methods gave a weight nearly 1 to observations 26

by means of the negative exponential RAF (Residual Adjustment Function) downweight

function. When the Hellinger RAF was used for the construction of the weights, observa-

tions 13, 32, 40, 43 and 44 received a weight of 0. They reported that examination of those

observations revealed that observations 32 and 40 had a 0 response, while observations 43

and 44 had the lowest mortality at concentration levels 720 and 1440, respectively, at the

same water-hardening level. The MLE without the observations 13, 32, 40, 43 and 44 is
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Table 1.1:

WH Concentra- No Eggs No Dead WH Concen- No Eggs No Dead

tion (Ct) tration

1 1 90 111 8 25 0 90 130 7

2 1 90 97 10 26 0 90 179 25

3 1 90 108 10 27 0 90 126 5

4 1 90 122 9 28 0 90 129 3

5 1 180 68 4 29 0 180 114 12

6 1 180 109 6 30 0 180 149 4

7 1 180 109 11 31 0 180 121 4

8 1 180 118 6 32 0 180 105 0

9 1 360 98 6 33 0 360 102 4

10 1 360 110 5 34 0 360 145 21

11 1 360 129 9 35 0 360 61 1

12 1 360 103 17 36 0 360 118 3

13 1 720 83 2 37 0 720 99 29

14 1 720 87 3 38 0 720 109 53

15 1 720 118 16 39 0 720 99 40

16 1 720 100 9 40 0 720 70 0

17 1 1440 140 60 41 0 1440 100 14

18 1 1440 114 47 42 0 1440 127 10

19 1 1440 103 49 43 0 1440 132 8

20 1 1440 110 20 44 0 1440 113 3

21 1 2880 143 79 45 0 2880 145 113

22 1 2880 131 85 46 0 2880 103 84

23 1 2880 111 78 47 0 2880 143 105

24 1 2880 111 74 48 0 2880 102 78
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(6.49,−0.23,−8.42, 1.97)⊤.

For satisfying the assumption 0 < sn < tn of Theorem 1.4, we dropped the observations

32 and 40 for our calculations so that only 46 observations are available. Since 24 observa-

tions satisfy WH=1, we have N (X) = 24. Hence, according to Theorem 1.4, the maximum

breakdown point is 11/46 and is attained by any weighted trimmed likelihood estimator

with h = 35 or h = 36. Since an exact algorithm for calculating the trimmed likelihood

estimator with weights wn = 1 and h = 36 had run too long, we used a genetic algorithm

and obtained TL36(y,X) = (7.36,−0.12,−9.29, 2.16)⊤. The trimmed observations were

13, 14, 20, 21, 38, 39, 41, 42, 43, 44. Hence there is some coincidence with the results of

Markatou et al. (1997) with respect to the estimate and the trimmed observations.

1.5 Log-linear models

The response variables Yn of a log-linear model have a Poisson distribution with parameter

λn = exp(x⊤n β) so that the log-likelihood function is

ln(y,X, β) = −yn x⊤nβ + exp(x⊤nβ) + log(yn!).

The function γz given by γz(θ) = −zθ + exp(θ) + log(z!) is sub-compact as soon as z > 0

so that according to Theorem 1.3 the set {ln(y,X, ·); n = 1, . . . , N} is N (X)+1-full for

all y satisfying yn > 0 for all n = 1, . . . , N . Hence, Theorem 1.1 provides 1
N

min{N −
h + 1, h − N (X)} as a lower bound for the breakdown point of any weighted trimmed

likelihood estimator WTLh. This lower bound is also an upper bound as the following

theorem shows. For that let be Y∗ the set of all y with yn > 0 for n = 1, . . . , N .

Theorem 1.5 The breakdown point of any weighted trimmed likelihood estimator WTLh

for a log-linear model satisfies

min
y∈Y∗

ǫ∗(WTLh, y, X) =
1

N
min{N − h + 1, h−N (X)}.

Proof of Theorem 1.5. The proof is similar to that for the logistic regression model.

The first step is to show ǫ∗(ML, y,X) ≤ 1
N

for using Lemma 1.4. Again a sufficient and
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necessary condition for β̂ = ML(y, x) lying in a bounded subset of IRp is X⊤y = X⊤e(β̂)

where here e(β̂) := (exp(x⊤1 β̂), . . . , exp(x
⊤
1 β̂))

⊤. Then, as soon as yk ∈ Y1(y) is unbounded

also the corresponding β̂k =ML(yk, X) cannot be bounded.

The second step is to construct a sample y ∈ Y∗ and a corrupted sample y ∈ YM(y) with

M = h− N (X) such that WTLh(y,X) is not contained in a bounded subset of IRp. For

that, let x1, . . . , xn and β0 as in the proof of Theorem 1.4. Set yn = 1 for n = 1, . . . ,N (X),

yn = z > e2 − 1
2
for n = N (X) + 1, . . . , N , yn = yn for n = 1, . . . , N −M , and yn = 0 for

n = N −M + 1, . . . , N . Then we have

min
β
ln(y,X, β) = min

β
ln(y,X, β) = ln(y,X, kβ0) = 1

for n = 1, . . . ,N (X) and all k ∈ IR, and

min
β
ln(y,X, β) ≥ min

µ
(−zµ + exp(µ) + log(z!))

= −z log(z) + z + log(z!)

≥ −z log(z) + z +

(
z +

1

2

)
log

(
z +

1

2

)
− z − 1

2
log

(
1

2

)

≥ 1

2
log

(
z +

1

2

)
> 1

for n = N (X) + 1, . . . , N . The rest follows as in the proof of Theorem 1.4. �

Again the maximum breakdown point for log-linear models is 1/N ⌊N −N (X) + 1/2⌋
and coincides with the maximum breakdown point for linear models. This maximum

breakdown point is also attained by the same trimming proportion h.

1.6 Application on exponential linear models with dis-

persion parameter

Assume that the observations Yn are distributed with q-th power exponential distribution,

i.e., the density function is given by

f(yn, xn, β, σ) =
q (1/2)(1+1/q)

σ Γ(1/2)
exp

(
−1

2

∣∣∣∣
yn − x⊤nβ

σ

∣∣∣∣
q}

,
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where Γ is here the gamma function. Special cases of this distribution are the normal (q =

2), the Laplace (q = 1), the double exponential (0 < q < 2), the leptokurtic (1 < q < 2),

the platikurtic (q > 2) and the rectangular distribution (q → ∞). The fullness parameter

of {ln(y,X, ·); n = 1, . . . , N}, where

ln(y,X, β, σ) =
1

2

∣∣∣∣
yn − x⊤nβ

σ

∣∣∣∣
q

+ log(σ)− log

(
q (1/2)(1+1/q)

Γ(1/2)

)
(1.3)

with β ∈ IRp and σ ∈ IR+, was derived in Vandev and Neykov (1998) under the assumption

that x1, . . . , xN are in general position, i.e. N (X) = p− 1. They showed in Lemma 3 that

the fullness parameter is p + 1. Here we show that the fullness parameter is even p and

that the fullness parameter can be also determined in the case where x1, . . . , xN are not in

general position.

Lemma 1.5 If the log-likelihood function is given by (1.3) with q > 0 then the set {ln(y,X, ·); n =

1, . . . , N} is N (X)+1-full.

Proof of Lemma 1.5. We have to show that γ given by

γ(β, σ) := max
i∈I

1

2

∣∣∣∣
yi − x⊤i β

σ

∣∣∣∣
q

+ log(σ)−K

with K ∈ IR is sub-compact for all I ⊂ {1, . . . , N} with cardinality N (X) + 1. We will do

it with the same trick as in Vandev and Neykov (1998) but with a shorter proof. Take any

C ∈ IR and set β̃(σ) := argmin{γ(β, σ); β ∈ IRp} and σ̃(β) := argmin{γ(β, σ); σ ∈ IR+}.
Then β̃(σ) is independent of σ such that β̃(σ) =: β̃. Setting

γ1(σ) := γ(β̃(σ), σ) = max
i∈I

1

2

∣∣∣∣∣
yi − x⊤i β̃

σ

∣∣∣∣∣

q

+ log(σ)−K

we see that γ1 is a sub-compact function. Hence, there exists a compact set Θ1 $ IR+ such

that {σ; γ1(σ) ≤ C} ⊂ Θ1. Moreover, we have that with η(β) := maxi∈I
∣∣yi − x⊤i β

∣∣

σ̃(β) = η(β)
(q
2

)1/q

so that

γ2(β) := γ(β, σ̃(β)) =
1

q
+ log (η(β)) +

1

q
log
(q
2

)
−K.
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Example 1.1 implies that η is sub-compact. Since the logarithm is monoton also γ2 is

sub-compact so that {β; γ2(β) ≤ C} ⊂ Θ2 for some compact set Θ2 $ IRp. Then we have

{(β, σ) ∈ IRp × IR+; γ(β, σ) ≤ C}

⊂ {(β, σ) ∈ IRp × IR+; γ1(σ) ≤ C and γ2(β) ≤ C} ⊂ Θ2 ×Θ1. �

Theorem 1.1 and Lemma 1.5 immediately imply that any weighted trimmed likelihood

estimator WTLh for (β, σ) has a breakdown point not less than 1
N
min{N − h + 1, h −

N (X)} and that the lower bound of the breakdown point attains its maximum value of

1
N

⌊
N−N (X)+1

2

⌋
if
⌊
N+N (X)+1

2

⌋
≤ h ≤

⌊
N+N (X)+2

2

⌋
. This maximum lower bound is also the

upper bound for the breakdown point since the estimator for β is regression equivariant so

that the upper bound follows from Müller (1995, 1997).

However, also other robust estimators can be used for distributions with unknown

dispersion parameter. Estimators with good breakdown properties are the S-estimators.

An S-estimator Sc is defined by (see Rousseeuw and Yohai 1984, Rousseeuw and Leroy

1987, p. 135)

Sc(y,X) := argmin
β
sc(y,X, β),

where sc(y,X, β) is given as solution of

bc(y,X, β, sc(y,X, β)) :=
1

N

N∑

n=1

ρc

( |yn − x⊤nβ|
sc(y,X, β)

)
= K.

Usually K is chosen as the expectation Eβ,σ(bc(Y,X, β, σ)) to get consistency under the

model distribution. If ρc is strictly increasing on [0, c] and constant on [c,∞) then S-

estimators have high breakdown points. This was shown in Rousseeuw and Yohai (1984)

for x1, . . . , xN in general position and in Mili and Coakley (1996) for general x1, . . . , xN .

However they showed only the inequality

α l(h)(y,X, β) ≤ sc(y,X, β) ≤ β l(h)(y,X, β) (1.4)

for all y, X, β, and c satisfying ρc(c) = KN/(N−h+1), where ln(y,X, β) = |yn−x⊤nβ|. A
detailed proof of the inequality (1.4) for h =

⌊
N+1
2

⌋
was given in the book of Rousseeuw and
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Leroy (1987), p. 136-139. Also in this book, they conclude from (1.4) without additional

arguments that the breakdown points of argminβ l(h)(y,X, β) and Sc(y,X) coincide. But

the proof of Theorem 1.1 shows that indeed additional arguments are necessary and that

they base on the concept of d-fullness. Hence only now a complete proof of the breakdown

points of the S-estimators is possible.

Theorem 1.6 Any S-estimator Sc with ρc(c) = KN/(N − h + 1) has a breakdown point

satisfying ǫ∗(Sc, y, X) ≥ 1
N
min{N − h + 1, h−N (X)}. If

⌊(N +N (X) + 1)/2⌋ ≤ h ≤ ⌊(N +N (X) + 2)/2⌋ then

ǫ∗(Sc, y, X) = 1
N

⌊
N−N (X)+1

2

⌋
.

Proof of Theorem 1.6. It follows from Example 1.1 that the set {ln(y,X, ·); n =

1, . . . , N} is N (X)+1-full. Hence, Theorem 1.1 and inequality (1.4) provide the lower

bounds. That 1
N

⌊
N−N (X)+1

2

⌋
is also an upper bound follows from the result of Müller

(1995, 1997) concerning regression equivariant estimators. �



Chapter 2

Breakdown Point and Computation

of the Trimmed Likelihood

Estimators in Generalized Linear

Models

Summary. A review of the studies concerning the finite sample breakdown point (BP)

of the trimmed likelihood (TL) and related estimators based on the d–fullness technique

of Vandev (1993), and Vandev and Neykov (1998) is made. In particular, the BP of these

estimators in the frame of the generalized linear models (GLMs) depends on the trimming

proportion and the quantity N (X) introduced by Müller (1995). A faster iterative algo-

rithm based on resampling techniques for derivation of the TLE is developed. Examples of

real and artificial data in the context of grouped logistic and log-linear regression models

are used to illustrate the properties of the TLE.

42
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2.1 Introduction

The Weighted Trimmed Likelihood (WTL) estimators are defined by Hadi and Luceño

(1997), and Vandev and Neykov (1998) as

WTLk(y1, . . . , yn) := arg min
θ∈Θp

k∑

i=1

wif(yν(i), θ), (2.1)

where f(yν(i), θ) ≤ f(yν(i+1), θ), f(yi, θ) = − log ϕ(yi, θ), yi ∈ Y ⊂ Rq for i = 1, . . . , n are

iid observations with probability density ϕ(y, θ), which depends on an unknown parameter

θ ∈ Θp ⊂ Rp, ν = (ν(1), . . . , ν(n)) is the corresponding permutation of the indices, which

depends on θ, k is the trimming parameter and wi ≥ 0 are known weights such that wk > 0.

The WTL estimators reduce to TLE if wi = 1 for i = 1, . . . , k. In the case of normal

regression and appropriate choice of the weights, the WTLE reduce to the LMS and LTS

estimators of Rousseeuw (1984) and Rousseeuw and Leroy (1987). Similarly, the WTLE

coincide with the MVE and MCD estimators of the multivariate location and scatter

considered by Rousseeuw and Leroy (1987) in the multivariate normal case, see Vandev and

Neykov (1993). The Fisher consistency, asymptotic normality and compact differentiability

of the TLE for normal distributions with unknown variance are derived by Bednarski and

Clarke (1993).

The BP (i.e. the smallest fraction of contamination that can cause the estimator to

take arbitrary large values) properties of the WTLE were studied by Vandev and Neykov

(1998) using the d–fullness technique developed by Vandev (1993). It was proved that the

BP of the WTLE is not less than (n− k)/n if the set F = {f(yi, θ), i = 1, . . . , n} is d-full,

n ≥ 3d and (n + d)/2 ≤ k ≤ n− d. We remind that, according to Vandev (1993), a finite

set F of n functions is called d-full if for each subset of cardinality d of F , the supremum

of this subset is a subcompact function. A real valued function g (θ) is called subcompact

if the sets Lg(θ) (C) = {θ : g (θ) ≤ C} are compact for any constant C.

Vandev and Neykov (1993), and Vandev and Marincheva (1996) determined the value

of d for the multivariate normal and general elliptical family of distributions, respectively.

Vandev and Neykov (1998) did the same about some linear and logistic regression models



Introduction 44

under the restriction that the observations are in general position. Similarly, the fullness

parameters for the Lognormal, Poisson, Gamma, Geometric and Logarithmic series distri-

butions were derived by Atanasov (1998), and the BPs of the WTLE of the corresponding

GLMs were characterized (see, Atanasov and Neykov (2001)).

There are approaches on robust and in particular high BP estimators for logistic re-

gression and other nonlinear models given by Copas (1988), Carroll and Pederson (1993),

Christmann (1994), Christmann and Rousseeuw (2001), Hubert (1997), Künsch et al.

(1989), Markatou et al. (1997), Stromberg (1992), to name a few, but these approaches do

not concern TLE.

The BP of the LMS, LTS and related regression estimators were derived by Rousseeuw

(1984), Rousseeuw and Leroy (1987), and Hössjer (1994), assuming that the observations

are in general position. Müller (1995), and Mili and Coakley (1996) omitted this restriction

and showed that then the BP of these estimators is determined by

N (X) := max
06=β∈Rp

card
{
i ∈ {1, . . . , n}; x⊤i β = 0

}
,

where X := (x⊤i ) is the data matrix of the explanatory variables xi ∈ Rp. If xi are

in general position then N (X) = p − 1 whereas in other cases, e.g., ANOVA models or

designed experiments N (X) is much higher.

Müller and Neykov (2003) relaxed the compactness condition in the above definition

assuming only that the set Lg(θ)(C) is contained in a compact set. However, the meaning

of the term subcompact function is retained since if the function g (θ) is continuous or

has at most countable many discontinuities then Lg(θ)(C) is a compact set. The following

theorem characterizes the BPs of any estimator S defined by S(y) := argminθ∈Θ s(y, θ),

where s(y, θ) can be estimated by f(yν(k), θ) and satisfies the conditions α f(yν(k), θ) ≤
s(y, θ) ≤ β f(yν(k), θ) for some constants α 6= 0 and β, and therefore of the WTLE in

particular.

Theorem 2.1 If {f(yi, θ); i = 1, . . . , n} is d-full, then the BP of the estimator S is not

less than 1
n
min{n− k + 1, k − d+ 1}.
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This theorem is an extension of Theorem 1 of Vandev and Neykov (1998) and provides

the lower bound of the BP without additional assumptions on k and n (see, Müller and

Neykov (2003)).

Thus, if one wants to study the BP of the WTL and related S estimators for a particular

distribution, one has to find the fullness parameter d for the corresponding set of log

likelihoods and then the BP can be exemplified by the range of values of k by Theorem

2.1.

An application of this technique is made, by Müller and Neykov (2003), for the general

linear exponential families of distributions (known dispersion parameter) of yi depending

on unknown vector parameter β ∈ Rp and known xi ∈ Rp for i = 1, . . . , n. The log

likelihoods of these families are f(yi, xi, β) = −T (yi)⊤ g(x⊤i β)− c(x⊤i β)−h(yi) for suitably

defined vectors and functions. The following theorem holds.

Theorem 2.2 The set {f(yi, xi, β); i = 1, . . . , n} is N (X)+1–full if the function γz(θ) =

−T (z)⊤g(θ)− c(θ)− h(z) is subcompact in θ for all z ∈ Y and arbitrary xi ∈ Rp .

For the particular cases of normal, logistic and log-linear regression models Müller and

Neykov (2003) show that the corresponding γz(θ) are subcompact. Therefore, according

to Theorem 2.1 and some additional arguments it is shown that the BP of the WTL

estimators is 1
n
min{n − k + 1, k − N (X)}. If k satisfies ⌊(n+N (X) + 1)/2⌋ ≤ k ≤

⌊(n +N (X) + 2)/2⌋ this BP is maximized and equal to 1
n
⌊(n−N (X) + 1)/2⌋, where

⌊r⌋ := max{n ∈ N ;n ≤ r}. As a consequence, the results of Mili and Coakley (1996),

Müller (1997), Vandev and Neykov (1998), and Atanasov (1998) for these models are

derived.

In this way, a unifying theory for the BP of the WTL and related estimators is devel-

oped.
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2.2 The FAST-TLE Algorithm

From the definition of the WTLE it follows that its minima are achieved over a subsample

of size k. The objective function (2.1) is continuous, but non differentiable and possesses

many local minima. Therefore one need nonsmooth and/or combinatorial optimization in

general. In the univariate case Hadi and Luceño (1997) developed several algorithms for

TL estimation.

Neykov and Neytchev (1990) considered an iterative approximate algorithm for finding

the TLE which is based on the resampling technique proposed by Rousseeuw and Leroy

(1987). Many subsets of k different observations out of n are drawn at random and the

MLE is calculated for any one. The estimate with the lowest TL objective function (2.1)

is retained. There is no guarantee that the achieved estimate will be the global minimizer

of (2.1) but one can hope that it would be a close approximation to it.

In this chapter we offer a more efficient TLE algorithm called the FAST-TLE as it

reduces to the FAST-LTS algorithm developed by Rousseeuw and Van Driessen (1999a)

in the normal linear regression case. The corner stone of this algorithm is an analog of

the so called C–step procedure proposed by these authors. We shall follow closely the

terminology and exposition of their paper in order to present the algorithm in a more

readable form to those who are acquainted with it.

So as to make sure that there always exists a solution to the optimization problem

(2.1), we assume that the set F is d–full and k ≥ d Neykov (1995). Then the idea behind

the FAST-TLE algorithm can be described as follows.

Given Hold = {yj1, . . . , yjk} ⊂ {y1, . . . , yn} then:

• take θ̂old to be either arbitrary or compute θ̂old :=MLE based on Hold;

• define Qold :=
∑k

i=1 f(yji, θ̂
old);

• sort f(yi, θ̂
old) for i = 1, . . . , n in ascending order, f(yν(i), θ̂

old) ≤
f(yν(i+1), θ̂

old), and get the permutation ν = (ν(1), . . . , ν(n));
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• put Hnew := {yν(1), . . . , yν(k)};

• compute θ̂new :=MLE based on Hnew;

• define Qnew :=
∑k

i=1 f(yν(i), θ̂
new).

Proposition 2.1 On the basis of the above statements Qnew ≤ Qold.

Proof of Proposition 2.1. Since θ̂new is the MLE based on Hnew then

Qnew =

k∑

i=1

f(yν(i), θ̂
new) ≤

k∑

i=1

f(yν(i), θ̂
old) ≤

k∑

i=1

f(yji, θ̂
old) = Qold. �

We call this step in our algorithm C–step just like Rousseeuw and Van Driessen (1999a)

where C is reserved for ‘concentration’ since Hnew is more concentrated (has a lower sum

of negative log likelihoods) than Hold.

Clearly, repeating C–step yields an iterative process. When Qnew = Qold the process

terminates; otherwise we need more C–steps . In this way a nonnegative monotonically

decreasing sequence Q1 ≥ Q2 ≥ Q3 ≥ . . . is defined, which by a classical theorem in analysis

is always convergent. Moreover, the convergence is guaranteed after a finite number of steps

since there are only finitely many k–subsets out of n!/(k!(n− k)!) in all. Finally, we note

that this is only a necessary condition for a global minimum of the TL objective function.

This gives us a hint as to how to implement an algorithm. Actually, we will be using the

suggestion made by Rousseeuw and Van Driessen (1999a): “Take many initial choices of

Hold and apply C–steps to each until convergence, and keep the solution with lowest value

of” (2.1).

However, this would not be of much use unless we can tell: how to generate different sets

Hold to start the algorithm; the necessary number of Hold sets; how to avoid duplication

of work since several Hold may yield the same solution; is it possible to reduce the number

of C–steps?

Unfortunately, at this stage we cannot provide reasonable answer to all these issue alike

Rousseeuw and Van Driessen (1999a) as the structure of the data in GLMs beyond the
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linear regression case is usually more complicated. However, it is worth to discuss some

of these aspects based on the experience concerning the grouped binary linear logistic and

Poisson regression cases.

First, we consider the possibilities for the sample sizes of Hold. Since the parameter of

fullness of the GLMs is given explicitly by N (X) then any k within the bounds N (X)+1 ≤
k ≤ n can be chosen to draw a random k–subset in order to compute θ̂old. A recommendable

choice of k is ⌊(n+N (X)+ 1)/2⌋ as the BP of the TLE is maximized. However, following

the same reasoning as Rousseeuw and Van Driessen (1999a) and because θ̂old can be

arbitrary, one should draw subsamples with a smaller k∗ := N (X)+1 size as the chance to

get at least one outlier free subsample is larger. In practice, for the case of initial choices

of Hold, we draw finitely many random subsamples of size k∗, calculate ML estimate θ̂old

for any one, and keep those 10 different subsamples of size k whose TL values evaluated at

θ̂old are lowest. In this way the resampling process would guarantee better initial choice of

Hold sets. The recommendable choice of k∗ and k could be used as defaults in a software

implementation. If the expected percentage of outliers in data is low then a larger value

of k can be chosen by the user in order to increase the efficiency of the TL estimator.

Second, as the regression models we consider belong to the linear exponential families

an iteratively reweighted least squares algorithm discussed by Green (1994) for obtaining

the MLE can be used. Therefore any modern Gauss-Newton nonlinear regression program

can be used to carry out the computations as the iteratively reweighted Gauss-Newton,

Fisher scoring and Newton-Raphson algorithms are identical to these families, see Jennrich

and Moore (1975). In all the applications of the MLE handled by such a program called

NLR, see Neytchev et al. (1994), convergence to θ̂old discussed in the previous paragraph

is reached in about 6 iterations starting from an arbitrary value θo := (0, . . . , 0).

Third, each C–step calculates MLE based on k observations, and the negative log

likelihoods for all n observations. In practice, we need 4 or 5 C–steps at most to reach

convergence starting from θ̂old at the first C–step, which leads to a faster convergence at

the remaining C–steps .

A combination of the above elements yields the basis of our algorithm.
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If the data set is large one can apply partitioning and nestings in a similar way as in

FAST-LTS of Rousseeuw and Van Driessen (1999a), i.e., the entire data is partitioned in a

representative way to several data subsets with smaller size. Applying the above algorithm

to any subset the best 10 estimates θ̂oldsub can be calculated. The process continues by making

C–steps over the merged set, which is composed by pooling the subsets. In this way the

best 10 estimates θ̂oldmerged can be obtained, and at last to find the best solution θ̂full.

When the data set is small all possible subsets with the default size k can be considered

for calculation of the TLE skipping the C–steps procedure.

The above algorithm can be implemented easily using the environment of the software

packages such as GLIM, S-PLUS, SAS, etc.

2.3 Applications

We illustrate our theory and algorithm by three examples. As a first one we analyzed

a subset of the data set 28 of Hand et al. (1994) concerning the vaccination successes in

three different areas (1=Staffordshire, 2=Cardiff, 3=Sheffield) by using two types of needles

(1=fixed, 2=detachable). In the original data set an additional factor, the vaccine batch,

was given. This factor was dropped since it had no significant influence and reduces the

model’s low degree of freedom once more. So a subset of the data with design matrix X =

(x⊤i ) with xi ∈ R4 is given in Table 2.1. The logistic regression model logit(p/(1−p)) = x⊤i β

is used. As N (X) = 6 the maximum BP attained by any TLE with k = 8 is 2
9
. We obtained

TL8(y,X) = (2.05,−0.92,−0.12,−0.21)⊤ and ML(y,X) = (2.01,−0.92,−0.17,−0.15) for

β. The mean absolute difference between these estimates is less than 0.04. It seems that

there are no large influential outliers in the sample. To study the behavior of the estimators

in the presence of one outlier we replaced s1 and t1 by s1 = 0 and t1 = u, respectively,

where u attains several large values. For a study with two outliers we additionally replaced

s9 and t9 by s9 = 0 and t9 = u. Table 2.2 provides the mean absolute difference between

the estimators at the original and the contaminated samples.

These results show clearly that the TLE is stable in the presence of one outlier and
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Table 2.1: Subset of data set 28 of Hand et al. (1994).

ti si Area Needle x1i x2i x3i x4i

228 223 1 1 1 -1 -1 -1

221 210 1 2 1 -1 -1 1

230 218 1 1 1 -1 -1 -1

221 181 2 1 1 1 -1 -1

213 158 2 2 1 1 -1 1

200 160 2 1 1 1 -1 -1

223 198 3 1 1 0 2 -1

228 189 3 2 1 0 2 1

216 177 3 1 1 0 2 -1

Table 2.2: Mean absolute differences.

Estimator u 10 20 50 100 200 500 1000

MLE 1 outlier 0.15 0.23 0.39 0.54 0.71 0.94 1.11

TLE8 1 outlier 0.07 0.07 0.07 0.07 0.07 0.07 0.07

MLE 2 outliers 0.15 0.24 0.41 0.57 0.77 1.06 1.28

TLE8 2 outliers 0.07 0.11 0.19 0.28 0.40 0.55 0.67
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breaks down (explodes) in the presence of two outliers. However, the explosion of it and

the MLE is not linear in u, it is more logarithmical.

The second example is about a toxicological experiment conducted at the University

of Waterloo, Canada, and discussed in O’Hara Hines and Carter (1993) with n = 48

observations. A logistic regression model is fitted to the data with covariates for water

hardening (WH), and for a linear and quadratic term in log concentration (C) of toxicant

logit(p/(1− p)) = β1 + β2 ∗WH + β3 ∗ log10(C) + β4 ∗ log10(C2), (2.2)

where β1, β2, β3, and β4 are unknown parameters.

Based on all observations the MLE is (10.28, 0.03,−11.4, 2.50)⊤. O’Hara Hines and

Carter (1993) pinpoint the observations 38, 39 and 26 as possible outliers. They also

reported that Pregibon’s influence diagnostics indicated the observations 38 and 39 as

potential outliers. The MLE without the cases 38 and 39 is (15.40, 0.27,−15.53, 3.26)⊤

whereas without the cases 26, 38 and 39 is (14.04, 0.32,−14.64, 3.11)⊤.

Markatou et al. (1997) analyzed the same data. They identified the observations 38

and 39 as potential outliers, whilst their methods gave a weight nearly 1 to observations 26

by means of the negative exponential RAF (Residual Adjustment Function) downweight

function. When the Hellinger RAF was used for the construction of the weights, observa-

tions 13, 32, 40, 43 and 44 received a weight of 0. They reported that examination of those

observations revealed that observations 32 and 40 had a 0 response, while observations 43

and 44 had the lowest mortality at concentration levels 720 and 1440, respectively, at the

same water-hardening level. The MLE without the observations 13, 32, 40, 43 and 44 is

(6.49,−0.23,−8.42, 1.97)⊤.

We dropped the observations 32 and 40 in TLE analysis as subcomactness can not be

proved because of zero response according to Müller and Neykov (2003), and Vandev and

Neykov (1998). Since 24 observations satisfy WH=1, we have N (X) = 24. Hence, the

maximum breakdown point is 11/46 and is attained by any TL estimator with k = 35 or

k = 36. Using the TLE algorithm we obtained TL36 = (7.36,−0.12,−9.29, 2.16)⊤. The

trimmed observations are 13, 14, 20, 21, 38, 39, 41, 42, 43, 44. The Pearson residuals
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Figure 2.1: O’Hara Hines and Carter (1993) data: Index plot associated with Pearson

residuals and log likelihood values based on TLE.

diagnostic calculated by the TL36 estimate indicate these observations as potential outliers

(see Figure 1). As a bench-mark, the value of 3 is considered. Hence there is some

coincidence with the results of Markatou et al. (1997) with respect to the estimate and the

trimmed observations.

Next example is about the data set 340 of Hand et al. (1994), given in Table 2.3,

concerning the amount of newspaper and TV publicity ti following i = 17 murder-suicides

through deliberate crashing of private aircraft and the number yi of fatal crashes during

the week immediately following.

Since fatal crashes are rare events a log-linear model can be assumed where the amount

ti of publicity is the explanatory variable. For simplicity we assume a linear influence



Applications 53

Table 2.3: Data set 340 of Hand et al. (1994).

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ti 376 347 322 104 103 98 96 85 82 63 44 40 5 5 0 0 0

yi 8 5 8 4 6 4 8 6 4 2 7 4 3 2 4 3 2

of ti, i.e., xi = (1, ti)
⊤. Then the maximum BP is 7/17 and is attained by any TLE

with k = 10 or k = 11 as N (X) = 3. We obtained TL11(y,X) = (1.086, 0.002)⊤ and

ML(y,X) = (1.310, 0.002)⊤ for β = (β1, β2)
⊤. Both estimators provides a very small

estimate of the slope of the regression line but they differ with respect to the estimated

intercept. This difference is caused by the fact that the TLE trims the highest numbers of

crashes at i=1, 3, 5, 7, 8, 11. A scatter plot of this two-dimensional data set is given in

Figure 2, along with the MLE (squares) and TLE (triangles) fits.
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Figure 2.2: Scatterplot of 340 data set of Hand et al. (1994) with MLE (dashed) and TLE

(solid) curves.



Chapter 3

Generalized d-fullness Technique for

Breakdown Point Study of the

Trimmed Likelihood Estimator with

Application

Summary. The d–fullness technique of Vandev Vandev (1993) for the finite sample break-

down point study of the Weighted Trimmed Likelihood Estimator is extended. The pro-

posed generalized d–fullness technique is illustrated over the generalized logistic regression

model.

3.1 Introduction

The classical Maximum Likelihood Estimator (MLE) can be very sensitive to outliers in

the data. In fact, even a single outlier can ruin completely the MLE. To overcome this

problem many robust alternatives of the MLE have been developed (see, Atkinson and

Riani (2000), Bednarski and Clarke (1993), Beran (1982), Christmann (1994), Field and

Smith (1994), Hampel et al. (1986), Huber (1981), Hubert (1997), Marazzi and Yohai
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(2004), Markatou et al. (1997), Neykov and Neytchev (1990), Shane and Simonoff (2001),

Vandev and Neykov (1993), Windham (1995), and Choi et al. (2000)).

Hadi and Luceño (1997), and Vandev and Neykov (1998) introduced a robust parametric

modification of the MLE called the Weighted Trimmed Likelihood Estimator (WTLE(k)).

The basic idea behind the trimming in the proposed estimator is in the removal of those

observations whose values would be highly unlikely to occur if the fitted model was true.

These authors showed that under appropriate choices of the trimming parameter and the

weights, the WTLE(k) estimator reduces to the MLE, to the LMS and LTS estimators of

Rousseeuw (1984) in the case of normal regression, and to the MVE and MCD estimators

of the multivariate location and scatter introduced by Rousseeuw (1986) in the multivariate

normal case.

The
√
n consistency of the WTLE(k) estimator is derived by Č́ıžek (2002).

Algorithms for TL estimation in the univariate case were developed by Hadi and Luceño

(1997), whereas Neykov and Müller (2003) proposed a FAST-TLE algorithm in the frame-

work of the generalized linear models.

The breakdown point (BDP) properties of the WTLE(k) estimator were studied by

Vandev and Neykov (1998), and Müller and Neykov (2003) using the d–fullness technique

of Vandev (1993). According to Vandev and Neykov (1998), a set F = {f1, . . . , fn} of

arbitrary functions fi : Θ → R+, Θ ⊆ Rq, is called d–full if for every subset J ⊂ {1, . . . , n}
of cardinality d (|J | = d) the function g

J
(θ) = max

j∈J
fj(θ), θ ∈ Θ, is subcompact. A function

g : Θ → R, Θ ⊆ Rq is called subcompact if its Lebesgue set Lg(C) = {θ ∈ Θ : g(θ) ≤ C}
is contained in a compact set for every real constant C, as defined by Müller and Neykov

(2003).

The requirement for d–fullness of the set F is restrictive, more precisely, the condi-

tion for every real constant C in the definition of a subcompact function is not always

satisfied. For instance the corresponding set F of log likelihoods for the mixtures of uni-

variate/multivariate normal or binomial distributions, just to name but a few, are not

d–full in the above sense.

In this chapter a generalized d–fullness technique is proposed to study the BDP of the



Generalized d-fullness Technique 57

WTL estimator for a wider class of functions containing the class of subcompact functions.

Section 2 defines the concept of breakdown point and generalized d-fullness. This technique

is illustrated over the the generalized logistic regression model in section 3. The lemmas

and propositions proofs are given in the Appendix.

3.2 Generalized d-fullness Technique

To aid the presentation we remind the replacement variant of the finite sample BDP given

in Hampel et al. (1986), which is closely related to that introduced by Donoho and Huber

(1983). Let X = {xi ∈ X ⊆ Rp, for i = 1, . . . , n} be a sample of size n.

Definition 3.1 The BP of an estimator T at X is given by

ε∗n(T ) =
1

n
max{m : sup

X̃m

‖T (X̃m)‖ <∞},

where X̃m is a sample obtained from X by replacing any m of the points in X by arbitrary

values from X , and ‖.‖ is the Euclidean norm.

We now recall the definition of the Weighted Generalized Trimmed estimator given in

Vandev and Neykov (1998). Let f : X × Θ → R+, where Θ ⊆ Rq be an open set, and

F = {fi(θ) = f(xi, θ), for i = 1, . . . , n}.

Definition 3.2 The weighted Generalized Trimmed estimator is defined as

θ̂wGTE(k) := argmin
θ∈Θ

k∑

i=1

wν(i)fν(i)(θ), (3.1)

where fν(1)(θ) ≤ fν(2)(θ) ≤ . . . ≤ fν(n)(θ) are the ordered values of fi at θ, ν = (ν(1), . . . , ν(n))

is the corresponding permutation of the indices, which depends on θ, k is the trimming pa-

rameter, the weights wi ≥ 0 for i = 1, . . . , n are associated with the functions fi(θ) and are

such that wν(k) > 0.

The wGTE(k) estimator is too general to be of practical use. However, many high

breakdown statistical estimators can be derived from it. For instance, let fi(θ) = g(|ri(θ)|)
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for i = 1, . . . , n, where g be a continuos monotonic function such that g(0) = 0 and

ri(θ) = yi − xTi θ be the ith linear regression residual, generated by the observation

(yi, x
T
i ) ∈ Rp+1 and the unknown parameter θ ∈ Θ ⊆ Rp. Then the LMS, LTS and

LQS regression estimators of Rousseeuw (1984), the h–trimmed weighted Lq estimator of

Müller (1995), and the Hössjer (1994) rank-based estimator can be obtained as special

cases of the Wk estimator. If xi ∈ X for i = 1, . . . , n be i.i.d. observations with prob-

ability density function φ(x, θ), which depends on an unknown parameter θ ∈ Θ ⊆ Rq

and f(xi, θ) = − log φ(xi, θ), then the wGTE(k) estimator coincides with the WTLE(k)

estimator proposed by Hadi and Luceño (1997), and Vandev and Neykov (1998). In par-

ticular, when φ(x, θ) is the multivariate normal dencity function, the wGTE(k) reduces

to the MVE and MCD estimators of the multivariate location and scatter considered by

Rousseeuw (1986) (see, Vandev and Neykov (1993)). Vandev and Neykov (1998) prove

that the BDP of the wGTE(k) is not less than (n− k)/n if the set F is d-full, n ≥ 3d and

(n + d)/2 ≤ k ≤ n − d. Müller and Neykov (2003) extend their result finding the lower

bound of the BDP without additional assumptions on k and n. Moreover, for the general-

ized linear models it was shown that the fullness parameter d is related with the quantity

N (X) of Müller (1995), where X is the matrix of the explanatory variables which may not

be in general position, as is the case with the designed experiment, or are generated by

qualitative factors.

We need the following notations in the presentation of the generalized d–fullness tech-

nique.

Let g be a function such that g : Θ → R, ∂Θ be the set of the boundary points of Θ,

and Θ∞ = {{θk}∞k=1 : θk ∈ Θ, ‖θk‖ → ∞} be the set of all sequences whose norm tends to

infinity. Then g is defined as

g =





inf
θ∗∈∂Θ

lim inf
θk→θ∗

g(θk), if Θ is bounded, or

inf
θ∗∈∂Θ

lim inf
θk→θ∗

{θk}∈Θ∞

g(θk), if Θ is unbounded.

(3.2)

Let us introduce the following conditions:
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A1. F = {fi(θ) ≥ 0, i = 1, . . . , n, for θ ∈ Θ} be a set of continuous functions;

A2. There exists θ0 ∈ Θ, such that for every subset J ⊂ {1, . . . , n} of cardinality d,

c∗∗g
J
(θ0) < C, where g

J
(θ) = max

j∈J
fj(θ) and C = inf

J
g
J
, c∗∗ = c∗

w∗ , c
∗ =

k∑

i=1

wν(i), and

w∗ = min{wj > 0, j = 1, . . . , n}.

Remark 3.1 The d-full sets class of functions is a special case of the class of sets of

functions satisfying A1 and A2 conditions, because if g = ∞, then g is a subcompact

function which follows from

Lemma 3.1 Let g : Θ → R be continuous function, Θ ⊆ Rq be an open set. If there

exists θ0 ∈ Θ and a real constant a ≥ 1, such that ag(θ0) < C, where C ≤ g, then the set

S = {θ : g(θ) < C} is bounded and non empty.

The proof of this Lemma is given in the Appendix. The following proposition gives the

necessary conditions under which there exists a solution of the optimization problem 3.1.

Proposition 3.1 θ̂wGTE(k) is non-empty compact set if k ≥ d, A1 and A2 hold.

The next proposition gives a lower bound for the BDP of Wk for a set of functions

F satisfying A1 and A2 conditions. It is a generalization of the corresponding result of

Vandev and Neykov (1998) who required d–fullness of F .

Proposition 3.2 The BDP of wGTE(k) estinator is not less than 1
n
min(n − k, k − d) if

A1 and A2 hold.

Remark 3.2 The above propositions hold for the WTLE(k) estimator. Thus, if one wishes

to study the BDP of the WTLE(k) estimators for a particular distribution, one has to

establish the validity of the conditions A1 and A2 for the corresponding set of functions

fi(θ) = − log φ(xi, θ) for i = 1, . . . , n. Then the BDP can be exemplified by the range of

values of k by Proposition 3.2.
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3.3 Application on a generalized logistic regression

model

As an illustration of the above propositions we consider the grouped binary linear regression

model with generalized logistic link. The type of the data under consideration is of the

form (yi, x
T
i ) for i = 1, . . . , N . It is assumed that, yi is binomially distributed, b(yi | ni, πi),

where the group size is ni, the probability of success is πi, and xi is a p–dimensional

vector of covariates (explanatory variables). The total number of observations is n =

n1 +n2 + · · ·+nN . We will assume that 0 < yi < ni for each i, and πi follows the Prentice

(1976) generalized logistic distribution

πi = (1 + exp(−ηi))−a,

where a > 0, ηi = xTi β is the linear predictor and β is a p–dimensional vector of unknown

parameters.

The particular case, when a=1, is considered by Müller and Neykov (2003) who proved

that the BDP of the wGTE(k) estimator is equal to min(N−k+1,k−N (X))
N

, where

N (X) = max
06=β∈Rp

card{i ∈ {1, . . . , N}; xTi β = 0}.
We will show that the set F = {f(yi, ηi, a), i = 1, . . . , N}, where

f(yi, ηi, a) = − log (ni
yi
) + yia log (1 + e− ηi)− (ni − yi) log (1− (1 + e− ηi)− a), satisfies Con-

ditions A1 and A2.

It is obvious that lim
a→0

f(yi, ηi, a) = +∞, lim
a→+∞

f(yi, ηi, a) = +∞, and

lim
ηi→±∞

f(yi, ηi, a) = +∞. Therefore f(yi, ηi, a) is a subcompact function because f = +∞.

Proposition 3.3 The set {f(yi, xi, β, a), i = 1, . . . , N} is N (X) + 1-full.

As a consequence of this proposition, the following corollary is obtained.

Corollary 3.1 The set WTLk for the grouped binary linear regression model with gener-

alized logistic link is a non empty compact set if k ≥ N (X) + 1.

Applying Theorem 2 of Müller and Neykov (2003) we get the following
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Corollary 3.2 If ⌊(N +N (X) + 1)/2⌋ ≤ k ≤ ⌊(N +N (X) + 2)/2⌋, then the BP of the

WTLk estimator for the grouped binary linear regression model with generalized logistic

link is

ε∗N(WTLk) ≥
1

N

⌊
N −N (X) + 1

2

⌋
.

We remind that ⌊z⌋ := max{n : n ≤ z}.

3.4 Appendix

Proof of Lemma 3.1. We shall note that the set S is non empty since θ0 ∈ S. Let

us assume that S is unbounded, {θj}∞j=1 be a sequence from S such that ‖θj‖ −→
j→∞

∞ and

rj = max{‖θ1‖, . . . , ‖θj‖}. Then we have that inf
‖θj‖≥rj

g(θ) ≤ g(θj) < C. Taking a limit we

get g < C, which is a contradiction with C ≤ g. �

We will use the representation f(k)(θ) = min
I∈Ik

max
i∈I

fi(θ) which holds at any fixed θ and

Ik is the set of all subsets of {1, . . . , n} consisting of k elements in the propositions proof

(see, Krivulin (1992)).

Proof of Proposition 3.1: The following inclusions hold

θ̂wGTE(k) =

{
θ :

k∑

i=1

wν(i)fν(i)(θ) ≤
k∑

i=1

wν(i)fν(i)(ϑ) ∀ ϑ ∈ Θ

}

=

{
θ :

k∑

i=1

wν(i)fν(i)(θ) ≤ inf
ϑ∈Θ

k∑

i=1

wν(i)fν(i)(ϑ)

}

⊆
{
θ :

k∑

i=1

wν(i)fν(i)(θ) ≤ inf
ϑ∈Θ

k∑

i=1

wν(i)fν(k)(ϑ)

}

⊆
{
θ : min

I∈Ik

∑

i∈I
wifi(θ) ≤ c∗ inf

ϑ∈Θ
fν(k)(ϑ)

}

⊆
⋃

I∈Ik

{
θ :
∑

i∈I
wifi(θ) ≤ c∗ inf

ϑ∈Θ
fν(k)(ϑ)

}

=
⋃

I∈Ik

{
θ :
∑

i∈I
wifi(θ) ≤ c∗ inf

ϑ∈Θ
min
I∈Ik

max
i∈I

fi(ϑ)

}
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⊆
⋃

I∈Ik

{
θ :
∑

i∈I
wifi(θ) ≤ c∗ inf

ϑ∈Θ
max
i∈I

fi(ϑ)

}

⊆
⋃

I∈Ik

{
θ : w∗max

i∈I
fi(θ) ≤ c∗ inf

ϑ∈Θ
max
i∈I

fi(ϑ)

}

⊆
⋃

I∈Ik

{
θ : max

i∈I
fi(θ) ≤ c∗∗max

i∈I
fi(θ0)

}

⊆
⋃

I∈Ik

⋃

J⊂I

{
θ : max

j∈J
fj(θ) ≤ c∗∗max

j∈J
fj(θ0)

}

=
⋃

I∈Ik

⋃

J⊂I

{θ : g
J
(θ) ≤ c∗∗g

J
(θ0)}

⊂
⋃

I∈Ik

⋃

J⊂I

{θ : g
J
(θ) < C}

The latter set is a non-empty bounded set according to Lemma 3.1, since A2 condition is

satisfied. Therefore, θ̂wGTE(k) is a compact set, since the functions from F are continuous.

�

Proof of Proposition 3.2: Let F̃ = {f̃i(θ) = f(x̃i, θ) for i = 1, . . . , n} be obtained

from F upon replacement of m = min{n− k, k − d} observations from the sample X with

arbitrary ones from X , the weights wi correspond to the functions that belong to F and

θ̃wGTE(k) is the corresponding analog of θ̂wGTE(k), defined over F̃ . The number of the original

functions in F̃ is n−m ≥ k. Hence there exists I∗ ∈ Ik such that f̃i(θ) ≡ fi(θ) for i ∈ I∗.

The following inequalities hold f̃ν(k)(θ) = min
I∈Ik

max
i∈I

f̃i(θ) ≤ max
i∈I∗

fi(θ) and fν(d)(θ) ≤ f̃ν(k)(θ)

(see, Müller and Neykov (2003)). Then we have the inclusions

θ̃wGTE(k) =

{
θ :

k∑

i=1

wν(i)f̃ν(i)(θ) ≤ inf
ϑ∈Θ

k∑

i=1

wν(i)f̃ν(i)(ϑ)

}

⊆
{
θ : w∗f̃ν(k)(θ) ≤ c∗ inf

ϑ∈Θ
f̃ν(k)(ϑ)

}

⊆
{
θ : w∗f̃ν(k)(θ) ≤ c∗ inf

ϑ∈Θ
max
i∈I∗

fi(ϑ)

}

⊆
{
θ : w∗f̃ν(k)(θ) ≤ c∗max

i∈I∗
fi(θ0)

}
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⊆
⋃

J⊂I∗
|J|=d

{
θ : w∗f̃ν(k)(θ) ≤ c∗max

j∈J
fj(θ0)

}

⊆
⋃

J⊂I∗
|J|=d

{
θ : w∗fν(d)(θ) ≤ c∗max

j∈J
fj(θ0)

}

⊂
⋃

J⊂I∗
|J|=d

{
θ : fν(d)(θ) < C

}

According to Lemma 3.1 the final set is a non-empty bounded set. Therefore, θ̃wGTE(k) is

a compact set, since the functions from F̃ are continuous. �

Proof of Proposition 3.3. Let C ∈ R is arbitrary. Since f(yi, ηi, a) is a subcompact

function of ηi and a, there exist constants Bi and Ai for i ∈ I ⊂ {1, . . . , N}, card(I) =

N (X) + 1, such that the set

{β ∈ Rp, a > 0 : max
i∈I

f(yi, xi, β, a) ≤ C}

=
⋂

i∈I
{β ∈ Rp, a > 0 : f(yi, xi, β, a) ≤ C}

=
⋂

i∈I
{β ∈ Rp, a > 0 : f(yi, ηi = xTi β, a) ≤ C}

⊂
⋂

i∈I
{{β ∈ Rp : |xTi β| ≤ Bi} × {a : 0 < a ≤ Ai}}

is contained in a bounded set. (The set {β ∈ Rp|xTi β| ≤ Bi} is bounded for all Bi according

to Lemma 3 of Müller and Neykov (2003).) �



Chapter 4

TLE of the Parameters of the GEV

Distributions: A Monte-Carlo Study

Summary. The applicability of the Trimmed Likelihood Estimator (TLE) proposed by

Neykov and Neytchev (1990) to the extreme value distributions is considered. The effec-

tiveness of the TLE in comparison with the classical MLE in the presence of outliers in

various scenarios is illustrated by an extended simulation study. The FAST-TLE algorithm

developed by Neykov and Müller (2003) is used to get the parameter estimate. The compu-

tations are carried out in the R environment using the package ismev originally developed

by Coles (2001) and ported in R by Stephenson (2002).

4.1 Introduction

The extreme value distributions theory has been intensively developed. The book of Coles

(2001) provides a useful theoretical background. The Maximum Likelihood is the standard

technique for statistical inference in extremes. It is well known that the MLE can be very

sensitive to outliers in the data. Indeed, the simulation study of Barão and Tawn (1999)

shows that in the presence of outliers, the parameter estimates are significantly influenced

and thus the return period. Relatively little attention to robustness has been paid in the

64
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context of extreme values. To overcome this problem Dupuis and Field (1998), Dupuis

and Morgenthaler (2002), and Dupuis and Tawn (2001) estimate robustly the parameters

of various extreme value distributions using the so called B-optimal robust M-estimators

of ?. It is concluded that these estimators are more efficient than MLE under some model

assumptions violation. Unfortunately, these estimators do not possess a high Breakdown

Point (BP) and hence are not appropriate for the modeling purposes, as with the increasing

the number p of the explanatory variables their BP decreases to zero as 1/p. (Roughly

speaking, the BP is the smallest fraction of contamination that can cause the estimator

to take an arbitrarily large value.) In practice, one needs robust estimators that possess a

high BP resistant against high percentage of surrogate (aberrant, anomalous) observations

in data. For instance, such observations arise when data are collected by different ways.

Several parametric robust alternatives of the ML estimator possessing high BP have

been developed, e.g., Choi et al. (2000), Markatou et al. (1997), Neykov and Neytchev

(1990), and Windham (1995). To our knowledge, none of these high BP estimators has

been used for the purposes of the extreme value modeling. Thus, the main goal of the

paper is to develop a robust parametric approach for extreme values statistical modeling

based on the TLE proposed by Neykov and Neytchev (1990). The TLE is looking for that

sub-sample of k observations out of n the original data size with the optimal likelihood.

The trimming number of observations can be chosen by the user in appropriate bounds

to get a high BP and optimal efficiency. Details about the properties of the TLE can

be found in Vandev and Neykov (1993), Vandev and Neykov (1998), Neykov and Müller

(2003), Č́ıžek (2002), ?, and Dimova and Neykov (2004a). Because the TLE accommodates

the classical MLE, the extreme value methodology, which is based mainly on the MLE,

can be adapted and further developed.

In this paper we consider an application of the TLE to the Generalized Extreme Value

(GEV) distribution, however, the generalized Pareto distribution or the Poison point ap-

proaches for modeling of extreme values can be used instead. A simulation study is per-

formed to illustrate the effectiveness of the TLE in comparison with the MLE.
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4.2 Basic definitions and notions

In the following, the GEV distribution is introduced. It arises as the limiting distribution

of the maxima of a series of independent and identically distributed (i.i.d.) observations.

The distribution function of the GEV is given by

G(x;µ, σ, ξ) =





exp
{
−
[
1 + ξ

(
x−µ
σ

)]−1/ξ
}

if ξ 6= 0,

exp
{
− exp

[
−
(
x−µ
σ

)]}
if ξ = 0.

(4.1)

where {x : 1+ξ(x−µ)/σ > 0}, σ > 0, and µ, σ, ξ are location, scale and shape parameters,

respectively, see Coles (2001).

The Fréchet and Weibull distributions are obtained for ξ < 0 and ξ > 0, respectively.

The case of ξ = 0 is interpreted as the limit of the GEV as ξ → 0, widely known as the

Gumbel distribution. The MLE is completely regular if ξ > −0.5, it exists but is not

completely regular if −1 < ξ < −0.5 and it does not exist if ξ < −1, according to Smith

Smith (1985).

We now recall the definition of the Trimmed Likelihood Estimator. Let x1, . . . , xn be

i.i.d. observations with density function f(x, θ), depending on unknown parameter θ and

l(xi, θ) = − log f(xi, θ).

Definition 1. The Trimmed Likelihood Estimator (TLE) is defined in Neykov and

Neytchev (1990) as

θ̂ := argmin
θ∈Θ

k∑

i=1

l(xν(i), θ), (4.2)

where l(xν(1), θ) ≤ l(xν(2), θ) ≤ . . . ≤ l(xν(n), θ) are the ordered values of l(xi, θ) for i =

1, . . . , n at θ, ν = (ν(1), . . . , ν(n)) is the corresponding permutation of the indexes, which

depends on θ and k is the trimming parameter.

The basic idea behind the trimming in this estimator is in removal of those n − k

observations which values would be highly unlikely to occur, had the fitted model been

true. The TLE coincides with the MLE if k = n. Due to the representation

min
θ∈Θ

k∑

i=1

l(xν(i), θ) = min
θ∈Θ

min
I∈Ik

∑

i∈I
l(xi, θ) = min

I∈Ik
min
θ∈Θ

∑

i∈I
l(xi, θ)
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where Ik is the set of all k–subsets of the set {1, . . . , n}, it follows that all possible (nk)

partitions of the data have to be fitted by the MLE. Therefore, the TLE is given by the

partition with that MLE fit for which the negative log likelihood is minimal.

General conditions for the existence of a solution of (5.2) can be found in Dimova

and Neykov (2004a), whereas the consistency is proved in Č́ıžek (2002). The BP of the

TLE is studied by Vandev and Neykov (1998), ?, and Müller and Neykov (2003) using

the d–fullness technique proposed by Vandev (1993). According to Vandev (1993), the

set F = {l(xi, θ), i = 1, . . . , n} is called d-full if for any subset of cardinality d of F , the

supremum of this subset is a subcompact function. A real valued function g (θ) is called

subcompact if the sets Lg(θ) (C) = {θ : g (θ) ≤ C} are compact for any constant C. The

BP of the TL is not less than 1
n
min{n − k, k − d} if the corresponding set of negative

loglikelihoods is d–full (see, Müller and Neykov (2003)). It is easy to show that in case

of Gumbel distribution d = 2. When the location parameter is a monotone function of a

linear predictor, µ = h(zTi β), where β ∈ Rp is unknown parameter and Z := (z⊤i ) is the

data matrix of rank p of the explanatory variables zi ∈ Rp, then d = p+1. Determination

of the d–fullness parameter for the Fréchet and Weibull distributions is not considered

because of the complexity of parameters’ domain.

Increasing k, the estimator will possess a BP point less than the highest possible, but

it will be more efficient at the same time.

Computation of the TLE is infeasible for large data sets because of its combinatorial

nature. To get approximate TLE an algorithm called FAST-TLE is developed in Neykov

and Müller (2003). It reduces to the FAST-LTS or FAST-MCD algorithms in the normal

regression or multivariate Gaussian cases. The basic idea behind the FAST-TLE algorithm

consists of carrying out finitely many times a two-step procedure: a trial step followed by

a refinement step. In the trial step a subsample of size k∗ is selected randomly from

the data sample and then the model is fitted to the subsample to get a trial MLE. The

refinement step is based on the so called concentration procedure. The cases with the k

smallest negative log likelihoods from the trial fit are found. Fitting the model to these k

cases gives an improved fit. Repeating the improvement step yields an iterative process.



Simulation design 68

Convergence is always guaranteed after a finite number of steps since there are only finitely

many k–subsets out of (nk) in all. The estimate with the lowest TL objective function is

retained. There is no guarantee that this value will be the global minimizer but one can

hope that it would be a close approximation to it. The trial subsample size k∗ should be

greater than or equal to p+1 which is needed for the existence of the MLE but the chance to

get at least one outlier free subsample is larger if k∗ = p+1. Any k within the interval [p+1,

n] can be chosen in the refinement step. A recommendable choice of k is ⌊(n + p + 1)/2⌋
because then the BP of the TLE is maximized, where ⌊r⌋ := max{n ∈ N ;n ≤ r}. We note

that, if the data set is small, all possible subsets of size k can be considered.

4.3 Simulation design

We compare the performance of the MLE and the TLE through a simulation study for

a range of different situations of GEV generated data sets. The regular data follow the

model

yi ∼ GEV(µi = 1 + xi, σ = 1, ξ = 0.0), where x ∼ N(0, 7).

The outliers follow the model

yi ∼





U(ymax + µi, ymax + (ymax − ymin) + µi) if xi ≥ x̄,

U(ymin − (ymax − ymin)− µi, ymin − µi) if xi < x̄.

The regular observations and outliers union comprises the contaminated sample of size

n = 100. Thus, samples with levels of contamination 0%, 10%, 20%, 30% and 40% are

considered. The trimming percentage n−k
n

100% is held fixed at 0%, 5%, . . . , 45%. The

MLE and TLE are computed over the regular and contaminated data. These estimators

are compared using the mean, median, root mean square error and various quantiles crite-

ria over 400 independent replications of the simulation experiment at any contamination

level.

All the computations were carried out in the R environment using the ismev package
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originally developed by Coles (2001) in S-Plus and ported in R by Stephenson Stephenson

(2002).

4.4 Simulation results

On all plots in Figures 1-4, the data sets that constitute the regular observations are

represented by bullets, while the outliers, if any, are represented by triangles. The ML

and TL fits are based on the contaminated samples. Exceptions are the upper left plots

where the ML fits are based only on the regular observations. The dashed lines describe

the generated model, whereas the straight lines describe the ML and TL fits in all of these

plots. Due to space limitations, only some selected TL fits are presented. In all other

plots, the empty triangles or tiny circles describe the trimmed observations (either regular

or outliers). The two numbers in the plots’ title represent the (trimmed)log-likelihood value

of the current estimate and the (trimmed)log-likelihood value evaluated over the regular

data at this estimate.

It is a well known fact that the MLE can easily be influenced by a single bad observation

whereas the TLE is resistant up to n−k
n
100% percentage of outliers. To explore the behavior

of the estimators the simulation experiment was replicated more than 400 times. As a

consequence, a series of estimates were obtained and their distribution was studied.

The plot panels on Fig. 1-4 represent some of these experiments. Generally, the plots

indicate that the MLE becomes completely useless if the percentage of observations that

do not follow the model is large, while the TLE gives better fits. However, the quality of

the TLE fits depends on the trimming percentage n−k
n

100%. As it could be expected, the

TL estimates are more stable for those values of k that satisfy the inequality n−k
n

100% ≥ α,

where α is the contamination level. The series of box-plots in the ”Intercept”, ”Slope”,

”Scale” and ”Shape” panels on Figure 5 give a more detailed characterization of the distri-

bution of the GEV parameters’ estimates conditional on the different trimming percentages.

Any of these box-plots series exhibits some specific properties that could serve as a guide

to get an idea about the optimal trimming percentage. One can see that the box-plots
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variation in any panel becomes more stable by increasing the trimming percentage. A

large percentage of trimming exhibits great influence on the scale and shape estimates.

This is because the relationship between the trimming percentage and the scale estimate is

inversely proportional while it is generally nonlinear for the shape parameter estimate. For

instance, even a single outlier can drive the MLE scale estimate to infinity. However, in-

creasing the trimming percentage leads to underestimating of the scale. So, trimming with

large percentages outside the location-scale distributions framework should be done with

great care. It can be seen that there is a common interval of trimming percentages where

the parameters estimates become more stable in all these panels (”Intercept”, ”Slope”,

”Scale” and ”Shape”). Therefore, an optimal choice of the trimming percentage could be

the minimal value of that interval.

Usually, the percentage of outliers in real data is unknown. Therefore, one can proceed

by a TLE, based on a decreasing range of values for k, starting with k = n. However, the

TL estimation procedure must be repeated several times at any particular value of k. When

the parameters estimate stabilization occurs then following the previous recommendations

on the trimming choice, not only the unknown GEV parameters but also the outliers

percentage in the data can be estimated robustly.

4.5 Summary and conclusions

The simulation study demonstrates that the TLE is a useful alternative to the MLE in the

framework of extreme value modeling. The extreme values data can be analyzed with the

TLE methodology just as with the classical MLE, however, over sub-samples. Therefore the

computation can be carried out by a standard MLE procedure for fitting extreme value

distributions to data closely following the FAST-TLE algorithm of Müller and Neykov

(2003). Such procedures are widely available in software packages such as S-PLUS, R,

SAS. The TLE will lead to greater computational effort, but having in mind the growing

power of modern-day processors and memory, one can afford it.
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Figure 4.1: Experiments with zero percentage of contamination.
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Figure 4.2: Experiments with 10% of contamination.
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Figure 4.3: Experiments with 20% of contamination.
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Figure 4.4: Experiments with 40% of contamination.
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Figure 4.5: Distribution of the GEV estimates of location (intercept and slope), scale and shape parameters

based on 411 experiments.
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4.6 Appendix to chapter 4

The Gumbel density distribution is defined as

φ(y;µ, σ) =
1

σ
exp

[
−
(
y − µ

σ

)]
exp

{
− exp

[
−
(
y − µ

σ

)]}
.

Let µi = ηi = zTi β is the identity link function, where Zn×p = (zTi ) is with rank

p. Obviously, any p observations are linearly independent because the observations are

extremes. We will show that the set F = {f(yi; ηi, σ) = − log(φ(yi; ηi, σ) i = 1, . . . , n}
satisfies conditions A1 and A2 of chapter 3. It is obvious that lim

ηi→±
f(yi; ηi, σ) = +∞,

lim
σ→∞

f(yi;µ, σ) = +∞ and lim
σ→0

f(yi;µ, σ) = +∞. Therefore f(yi; ηi, σ) is a subcompact

function because f = +∞

Proposition 4.1 The set {f(yi, β, σ), i = 1, . . . , n} is p–full.
Proof of 4.1: The proof is the same as Proposition 3.3 of chapter 3.

Applying Theorem 2 of Müller and Neykov (2003) we get the following

Corollary 4.1 If ⌊(n + p + 1)/2⌋ ≤ k ≤ ⌊(n + p + 2)/2⌋, then the BDP of the TLE(k)

estimator for the Gumbel regression model of the location parameter with identity link

function is

ε∗n(TLE(k)) ≥
1

n

⌊
n− p+ 1

2

⌋
.



Chapter 5

Robust fitting of mixtures using the

Trimmed Likelihood Estimator

Summary. The Maximum Likelihood Estimator (MLE) has commonly been used to esti-

mate the unknown parameters in a finite mixture of distributions. However, the MLE can

be very sensitive to outliers in the data. In order to overcome this the Trimmed Likeli-

hood Estimator (TLE) is proposed to estimate mixtures in a robust way. The superiority

of this approach in comparison with the MLE is illustrated by examples and simulation

studies. Moreover, as a prominent measure of robustness, the Breakdown Point (BDP) of

the TLE for the mixture component parameters is characterized. The relationship of the

TLE with various other approaches that have incorporated robustness in fitting mixtures

and clustering are also discussed in this context.

5.1 Introduction

Finite mixtures of distributions have been widely used to model a wide range of heteroge-

neous data. In most applications the mixture model parameters are estimated by the MLE

via the expectation-maximization (EM) algorithm, see e.g.McLachlan and Peel (2000). It

is well known, however, that the MLE can be very sensitive to outliers in the data. In fact,

77
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even a single outlier can completely ruin the MLE which in mixture settings means that

at least one of the component parameters estimate can be arbitrarily large. To overcome

this, robust parametric alternatives of the MLE have been developed, e.g., Huber (1981),

Hampel et al. (1986), Rousseeuw and Leroy (1987). A direct fitting of mixture models to

data by these robust estimators is of limited use. The reason is that these robust estimators

are designed to fit a parametric model to the majority of the data whereas the remaining

data which do not follow the model are considered as outliers. In practice, however, the

data could be quite heterogeneous without having a homogeneous part consisting of at

least 50% of the data. Fortunately, since the EM algorithm is capable to transfer a com-

plex mixture MLE problem into relatively simple single component MLE problems, some

of the ideas of robust estimation have been adapted to mixture models. Details can be

found in Campbell (1984), Kharin (1996), Davé and Krishnapuram (1997), Medasani and

Krishnapuram (1998), McLachlan and Peel (2000), Hennig (2003), just to name a few. In

this way robustness has been adapted to meet the problem with outliers in mixtures of

the location-scale family of distributions. Generally speaking, robust fitting of mixtures

of distributions outside this family has not been developed yet. Exceptions are Markatou

(2000) and Neykov et al. (2004) who discussed fitting mixtures of Poisson regressions based

on the weighted MLE and Trimmed Likelihood Estimator (TLE) via simulations.

Thus, after many years of parallel development of fitting mixtures, cluster analysis,

outlier detection and robust techniques, the need for a synthesis of some of these methods

beyond the location scale family of distributions has become apparent. Such a synthesis

can be a flexible and powerful tool for an effective analysis of heterogeneous data. So, the

aim of this chapter is to make a step toward the achievement of this goal by offering a

unified approach based on the TLE methodology. Because the TLE accommodates the

classical MLE, the finite mixture methodology based on the MLE can be adapted and

further developed. In this chapter the superiority of this approach in comparison with the

MLE is illustrated.

The paper is organized as follows. In Section 2, the basic properties of the weighted TLE

are presented. In Section 3 we briefly discuss the EM algorithm and explain how robustness
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can be incorporated. Moreover, the TLE software implementation and adjustments to the

framework of mixtures with existing software are presented. Comparisons of the MLE and

TLE by examples and simulations are presented in Section 4. Finally, in Section 5 the

conclusions are given.

5.2 The Trimmed Likelihood methodology

Definition 5.1 The Weighted Trimmed Likelihood Estimator (WTLE) is defined in Hadi

and Luceño (1997) and in Vandev and Neykov (1998) as

θ̂WTLE := arg min
θ∈Θp

k∑

i=1

wν(i)f(yν(i); θ), (5.1)

where f(yν(1); θ) ≤ f(yν(2); θ) ≤ . . . ≤ f(yν(n); θ) for a fixed θ, f(yi; θ) = − logϕ(yi; θ),

yi ∈ IRq for i = 1, . . . , n are i.i.d. observations with probability density ϕ(y; θ), which

depends on an unknown parameter θ ∈ Θp ⊂ IRp, ν = (ν(1), . . . , ν(n)) is the corresponding

permutation of the indices, which depends on θ, k is the trimming parameter and the

weights wi ≥ 0 for i = 1, . . . , n are nondecreasing functions of f(yi, θ) such that at least

wν(k) > 0.

The basic idea behind trimming in (5.1) is the removal of those n−k observations whose

values would be highly unlikely to occur if the fitted model was true. The combinatorial

nature of the WTLE is emphasized by the representation

min
θ∈Θp

k∑

i=1

wν(i)f(yν(i); θ) = min
θ∈Θp

min
I∈Ik

∑

i∈I
wif(yi; θ) = min

I∈Ik
min
θ∈Θp

∑

i∈I
wif(yi; θ),

where Ik is the set of all k–subsets of the set {1, . . . , n}. Therefore, it follows that all

possible (nk) partitions of the data have to be fitted by the MLE, and the WTLE is given

by the partition with the minimal negative log likelihood.

The WTLE accommodates: (i) the MLE if k = n; (ii) the TLE if wν(i) = 1 for

i = 1, . . . , k and wν(i) = 0 otherwise; (iii) the Median Likelihood Estimator (MedLE) if

wν(k) = 1 and wν(i) = 0 for i 6= k; If ϕ(y; θ) is the multivariate normal density function then
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the MedLE and TLE coincide with the MVE and MCD estimators Rousseeuw and Leroy

(1987). If ϕ(y; θ) is the normal regression error density, the MedLE and TLE coincide with

the LMS and LTS estimators Rousseeuw and Leroy (1987). Details can be found in Vandev

and Neykov (1993) and Vandev and Neykov (1998). General conditions for the existence

of a solution of (5.1) can be found in Dimova and Neykov (2004a) whereas the asymptotic

properties are investigated in Č́ıžek (2004). The Breakdown Point (BDP) (i.e. the smallest

fraction of contamination that can cause the estimator to take arbitrary large values) of

the WTLE is not less than 1
n
min{n− k, k − d} for some constant d which depends on the

density considered, see Müller and Neykov (2003). The choice of d in mixture settings will

be discussed in Section 3.

The FAST-TLE algorithm. Computing the WTLE is infeasible for large data sets

because of its combinatorial nature. To get an approximative TLE solution an algorithm

called FAST-TLE was developed in Neykov and Müller (2003). It reduces to the FAST-

LTS and FAST-MCD algorithms considered in Rousseeuw and Van Driessen (1999a);

Rousseeuw and Van Driessen (1999b) in the normal regression or multivariate Gaussian

cases, respectively. The basic idea behind the FAST-TLE algorithm consists of carrying

out finitely many times a two-step procedure: a trial step followed by a refinement step. In

the trial step a subsample of size k∗ is selected randomly from the data sample and then

the model is fitted to that subsample to get a trial ML estimate. The refinement step is

based on the so called concentration procedure: (a) The cases with the k smallest negative

log likelihoods based on the current estimate are found, starting with the trial MLE as

initial estimator. (Instead of the trial MLE any arbitrarily plausible value can be used.);

(b) Fitting the model to these k cases gives an improved fit. Repeating (a) and (b) yields

an iterative process. The convergence is always guaranteed after a finite number of steps

since there are only finitely many k–subsets out of (nk). At the end of this procedure the

solution with the lowest trimmed likelihood value is stored. There is no guarantee that

this value will be the global minimizer of (5.1) but one can hope that it would be a close

approximation to it. The trial subsample size k∗ should be greater than or equal to d

which is necessary for the existence of the MLE but the chance to get at least one outlier
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free subsample is larger if k∗ = d. Any k within the interval [d, n] can be chosen in the

refinement step. A recommendable choice of k is ⌊(n + d + 1)/2⌋ because then the BDP

of the TLE is maximized according to Müller and Neykov (2003). The algorithm could be

accelerated by applying the partitioning and nesting techniques as in Rousseeuw and Van

Driessen (1999a) and Rousseeuw and Van Driessen (1999b). We note that if the data set

is small all possible subsets with size k can be considered.

5.3 Finite mixtures and robustness

To make the robust approaches in mixture and cluster settings more understandable we

will briefly sketch the MLE within these frameworks based on the EM algorithm. For more

details see McLachlan and Peel (2000).

The MLE and EM algorithm. Let (yi, x
T
i ) for i = 1, . . . , n be a sample of i.i.d. observa-

tions such that yi is coming from a mixture of distributions ψ1(yi; xi, θ1), . . . , ψg(yi; xi, θg)

conditional on xi ∈ IRp, in proportions π1, . . . , πg defined by

ϕ(yi; xi,Ψ) =

g∑

j=1

πjψj(yi; xi, θj), (5.2)

where Ψ = (π1, . . . , πg−1, θ1, . . . , θg)
T is the unknown parameter vector. The proportions

satisfy the conditions πj > 0 for j = 1, . . . , g, and
∑g

j=1 πj = 1. The MLE of Ψ is defined

as a maximum of the log likelihood

logL(Ψ) =

n∑

i=1

log
{ g∑

j=1

πjψj(yi; xi, θj)
}
. (5.3)

Under certain assumptions on ψj(yi; xi, θj) for j = 1, . . . , g the MLE of Ψ exists and

belongs to a compact set. However, the resulting MLE is not reasonable if these as-

sumptions are violated. Usually (5.3) is not maximized directly. The EM algorithm

is a standard technique to obtain the MLE of Ψ. It is assumed that each observation

(yi, x
T
i ) is associated with an unobserved state zi = (zi1, zi2, . . . , zig)

T for i = 1, . . . , n,

where zij is one or zero, depending on whether yi does or does not belong to the jth
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component. Treating (yi, x
T
i , z

T
i ) as a complete observation, its likelihood is given by

P (yi, xi, zi) = P (yi, xi|zi)P (zi) =
∏g

j=1 ψj(yi; xi, θj)
zijπ

zij
j . Therefore the complete-data

log-likelihood is defined by

logLc(Ψ) =

n∑

i=1

g∑

j=1

zij{log πj + logψj(yi; xi, θj)}. (5.4)

Considering the zij as missing the EM algorithm proceeds iteratively in two steps, called

the E-step and M-step for expectation and maximization respectively. The E-step on the

(l + 1)th iteration involves the calculation of the conditional expectation of the complete-

data log-likelihood, given the observed data (yi, x
T
i ) and using the current estimate Ψ(l) of

Ψ,

Q(Ψ;Ψ(l)) =

n∑

i=1

g∑

j=1

τj(yi; xi,Ψ
(l)){log πj + logψj(yi; xi, θj)}, (5.5)

where τj(yi; xi,Ψ
(l)) = π

(l)
j ψj(yi; xi, θ

(l)
j )/

∑g
h=1 π

(l)
h ψh(yi; xi, θ

(l)
h ) is the current estimated

posterior probability that yi belongs to the jth mixture component. The functionQ(Ψ;Ψ(l))

minorizes logL(Ψ), i.e., Q(Ψ;Ψ(l)) ≤ logL(Ψ) and Q(Ψ(l); Ψ(l)) = logL(Ψ(l)). The M-step

in the (l+1)th iteration maximizes Q(Ψ;Ψ(l)) with respect to Ψ. This yields a new param-

eter estimate Ψ(l+1). These two steps are alternately repeated until convergence occurs.

The maximization problem can be simplified as (5.5) can be seen to consist of two parts.

The first depends only on the parameters π1, . . . , πg−1 whereas the second part depends

only on θ1, . . . , θg. Consequently, the prior probabilities πj are updated by

π
(l+1)
j =

1

n

n∑

i=1

τj(yi; xi,Ψ
(l)) (5.6)

and the expression for θj is maximized,

max
θ1,...,θg

n∑

i=1

g∑

j=1

τj(yi; xi,Ψ
(l)) logψj(yi; xi, θj), (5.7)

considering the posterior probabilities τj(yi; xi,Ψ
(l)) as the prior weights. Under the as-

sumption that θj (for j = 1, . . . , g) are distinct a priori, expression (5.7) is maximized for

each component separately,

max
θj

n∑

i=1

τj(yi; xi,Ψ
(l)) logψj(yi; xi, θj), for j = 1, . . . , g. (5.8)
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In case that θj are non-distinct, many techniques exist to reformulate (5.7) by single sum-

mations, see McLachlan and Peel (2000).

The classification EM algorithm. This approach consists of assigning the observation

(yi, x
T
i ) to the hth component if τh(yi; xi,Ψ

(l)) ≥ τj(yi; xi,Ψ
(l)) for j = 1, . . . , g. In case of

equal estimated posterior probabilities an observation is assigned arbitrarily to one of the

components. Hence instead of (5.8) the following expression is maximized

max
θj

nj∑

i=1

logψj(yi; xi, θj) for j = 1, . . . , g, (5.9)

where nj is the jth cluster sample size and n1 +n2 + . . .+ ng = n. This is a k–means-type

algorithm which converges in a finite number of iterations. The resulting estimates are

neither MLE nor consistent, see McLachlan and Peel (2000). However, they could be used

as starting values in the EM algorithm.

The expressions (5.8) and (5.9) are standard MLE problems. In this way the EM

algorithm decomposes complex MLE problems into more simple ones that can be solved

by widely available software packages.

The Breakdown Point of the WTLE in mixture settings. As a consequence of the EM

algorithm, the BDP of the WTLE in mixture settings can be characterized via the BDP

of the trimmed version of (5.5), the trimmed conditional expectation of the complete-data

negative log-likelihood estimator

min
Ψ

min
I∈Ik

∑

i∈I

g∑

j=1

−τj(yi; xi,Ψ(l)){log πj + logψj(yi; xi, θj)}. (5.10)

Here only the BDP of the WTLE for the parameters θj for j = 1, . . . , g will be treated

because the BDP for π1, . . . , πg needs special consideration.

Let us assume that the fullness index of the set Fθj = {− logψj(yi; xi, θj) i = 1, . . . , n}
is dj for j = 1, . . . , g. Derivation of the fullness index of any of the sets Fθj is a routine

task. Consequently, there always exists a solution θ̂j of the optimization problem (5.10)

of θj for j = 1, . . . , g if k∗ ≥ gd and k ≥ gd, where d = max(d1, . . . , dg). Thus a proper

choice for k is be to taken from the interval [gd, n]. This choice of d guarantee a solution
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for each component of the mixture under the assumption that θj are distinct a priory. If

k satisfies ⌊(n + gd)/2⌋ ≤ k ≤ ⌊(n + gd+ 1)/2⌋ the BDP of the WTLE is maximized and

equal to 1
n
⌊(n− gd)/2⌋.

Generally, the fullness index of Fθ is less than the above in case of non-distinct param-

eters. The fullness indices dj are equal if ψj(yi; xi, θj) for j = 1, . . . , g belong to the same

distribution family, e.g., dj = p in the p-variate normal case Vandev and Neykov (1993).

Therefore the BDP of the WTLE in mixtures of p-variate heteroscedastic normals is equal

to 1
n
⌊(n− gp)/2⌋. The index of fullness of a mixture of p-variate homoscedastic normals is

gp and thus the BDP of the WTLE in this setting is equal to 1
n
⌊(n− gp)/2⌋. The WTLE

reduces to the weighted MCD estimator in both cases if g = 1 whereas the BDPs coincide

with the BDP of the MCD estimator which is equal to 1
n
⌊(n− p)/2⌋. The same holds

for mixtures of multiple normal and Poisson regressions with intercept and rank p of the

covariates matrix. If the data are not in general position (which is often the case with

mixtures of GLMs) this number should be much larger, at least g(N(X) + 2), see Müller

and Neykov (2003) for the definition of N(X).

Robust fitting of mixtures. If one is able to perform all k–subsets MLE fits of n cases

for the mixture model (5.2) then the WTLE could be found. As this is infeasible for large

n the FAST-TLE algorithm can be used to get an approximation. The FAST-TLE algo-

rithm is a general approach for robust estimation and thus any MLE procedure for fitting

mixtures can be used. However, the usage of the EM algorithm has a number of conceptual

advantages. For instance, fitting mixtures of p-variate normals by the FAST-TLE using

the classification EM algorithm reduces to the cluster analysis estimation techniques de-

scribed by Garcia-Escudero et al. (2003), Gallegos and Ritter (2005), and Hardin and Rocke

(2004) under the restriction that the covariance matrices are spherical, homoscedastic and

heteroscedastic, respectively. FAST-TLE fitting mixture of normal regressions using the

classification EM algorithm would coincide with carrying out cluster-wise regression by the

FAST-LTS algorithm of Rousseeuw and Van Driessen (1999a).

Generally, other techniques for robust fitting of mixtures or clustering can be derived by

replacing the g standard MLE problems in (5.8) or (5.9) by appropriate g robust estimation
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problems. This idea was adapted by Campbell (1984) in robustly fitting mixtures of

normals involving the M-estimators Huber (1981) of location and scale. The usage of

M-estimators for the cluster-wise multiple linear regression case is discussed by Hennig

(2003).

Software adjustments of the FAST-TLE to mixtures. Since the trial and refinement

steps are standard MLE procedures, the FAST-TLE algorithm can be easily implemented

using widely available software. We illustrate this in the framework of mixtures of linear

regression models, multivariate heteroscedastic normals, and Poisson regressions using the

program FlexMix of Leisch (2004). FlexMix was developed in R (http:/www.R-project.org)

as a computational engine for fitting arbitrary finite mixture models, in particular, mixtures

of GLMs and model-based cluster analysis by using the EM algorithm.

In the mixture setting with g components, the trial sample size k∗ must be at least gp to

overcome the degenerated case of unbounded likelihood. Thus we recommend a larger trial

sample size to increase the chance to allocate at least p cases to each mixture component.

If this is not the case, any program would fail to get an estimate that could serve as a trial

estimate. If this happens a new random subsample of k∗ observations has to be drawn and

supplied to the software estimation procedure. This trial and error process continues until

a trial estimate is derived. The refinement subsample size k has to be ⌊(n+ gp))/2⌋ to

ensure the highest BDP of the TLE. If the expected percentage α of outliers in the data

is a priory known, a recommendable choice of k is ⌊n(1− α)⌋ to increase the efficiency of

the TLE.

Most of the software procedures for fitting mixtures, in particular the FlexMix program,

maximize the expression (5.8) or (5.9) according to the user specified weight option. For

instance, if the hard weighting option is specified then the classification EM algorithm

is performed by FlexMix. We recommend this option within the trial step only. Hence

depending on the weight option various algorithms can be designed.

As a final remark we note that in the refinement steps the negative log likelihoods

− logϕ(yi; xi,Ψ) defined by (5.2) are evaluated at the current estimate Ψ̂ and then sorted

in ascending order to get the indices of those k cases with the smallest negative log-
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likelihoods, starting with the trial estimate Ψ∗ of Ψ at the first iteration of the refinement

step. In practice, we need 4 or 5 refinement steps at most to reach convergence.

5.4 Examples

In the examples below we compare MLE and FAST-TLE approaches using the program

FlexMix as a computational MLE and FAST-TLE procedure. Sometimes FlexMix re-

turns less components than initially specified. This is because FlexMix allows a removal of

components containing less observations than a user specified percentage to overcome nu-

merical instabilities. Since the true number of mixture components is unknown in practice,

FlexMix is always run with various numbers of components. The Bayesian Information

Criterion (BIC) based on the MLE and FAST-TLE can then be used to determine the

number of mixture components. In this way we can assess the quality of the fits as in

our examples the number of components and their parameters are known. A fit is con-

sidered as successful if all components are correctly estimated even if some non-sense fits

occur additionally. Correct estimation means that at least 95% of the observations that

are assigned to a particular component are indeed generated from this model.

Mixture of three regression lines with noise

In this example we consider a mixture of three simple normal linear regressions with addi-

tional noise. The regression lines were generated according to the models y1i = 3+1.4xi+ǫi

(70 data points), y2i = 3−1.1xi+ ǫi (70 data points), and y3i = 0.1xi+ ǫi (60 data points),

where xi is uniformly distributed in the intervals [-3,-1] and [1,3], respectively, and ǫi is

a standard normal distribution with σ = 0.1. To these data we added 50 outliers uni-

formly distributed in the area [−4.5, 4.5]× [−0.8, 2.8]. The points that follow the models

are marked by rhombs, squares and bullets whereas the outliers are marked by triangles.

The plots in Figure 5.1 are typical results of the MLE and FAST-TLE fits. The dotted,

dashed and solid lines correspond to the true models, MLE and FAST-TLE fits, respec-

tively. Starting with an increasing percentage of trimming from 20 to 45 and number of
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Figure 5.1: Mixture of three regressions: true model (dotted lines), fits based on the MLE

(dashed lines) and FAST-TLE (solid lines) with (a) 20% trimming and 3 components, (b)

40% trimming and 4 components.

components from 2 to 5 the FAST-TLE algorithm converged to the correct two components

mixture model in almost all trials whereas the MLE failed.

Mixture of three bivariate normal models with noise

By this example the behavior of the FAST-TLE is studied for the simulated data set

discussed in McLachlan and Peel (2000). This data consists of 100 observations generated

from a 3-component bivariate normal mixture model with equal mixing proportions and

component parameters, respectively as

µ1 = (0 3)T , µ2 = (3 0)T , µ3 = (−3 0)T ,

Σ1 =


 2 0.5

0.5 .5


 , Σ2 =


 .1 0

0 .1


 , Σ3 =


 2 −0.5

−0.5 .5


 .

Fifty outliers, generated from a uniform distribution over the range -10 to 10 on each

variate are added to the original data. Thus a sample of 150 observations is obtained.

McLachlan and Peel (2000) model this data by a mixture of t–distributions and reduce the

influence of the outliers.
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The original observations, the outliers, the 3 components MLE and FAST-TLE fits

with 15%, 25%, 35% and 45% trimming are presented in Figure 5.2 (a)–(d). The original

observations, i.e., data that follow the models are marked by rhombs, squares and bullets

whereas the outliers are marked by triangles. The dotted contours of the ellipses on the

plots correspond to the true models whereas the solid and dashed contours of the 99%

confidence ellipses correspond to the FAST-TLE and MLE fits, respectively. For the robust

fits we can see that a lower or higher trimming percentage than the true contamination

level still allows the correct estimation of the ellipsoid centers while the covariances are

overestimated or underestimated due to the too high or low trimming percentage. The

fits are excellent if the specified trimming percentage is close to the true percentage of

contamination. The classical MLE fits are poor when using 3 or even more components.

Generally, in real applications the number of mixture components is unknown and

the BIC is widely used for model assessment. The trimmed analog of BIC is defined by

TBIC = −2 log(TLk(Ψ̃)) +m log(k), where TLk(Ψ̃) is the maximized trimmed likelihood,

k is the trimming parameter, and m is the number of parameters in the mixture model.

Obviously, TBIC reduces to BIC if k = n. To get an impression of the empirical distribution

of these quantities for this example a limited Monte Carlo simulation study was conducted

for a range of different situations. We fit the simulated three bivariate mixtures of normals

with 1 to 5 components and vary the trimming percentage from 0% to 45% in steps of

5%. The experiment was independently replicated 500 times for any combination. The

resulting TBIC median values (rounded) are presented in Table 5.1. The smallest values

for each column are marked in italics. One can see that these values stabilize in a model

with 3 components which is the correct model. A two-phase regression fit of the 3rd row

values against the trimming percentages detects a change point between 25% and 30%

trimming which could be interpreted as a data contamination estimate. We note that

the true contamination level in this data set is slightly higher, however, a part of the

noise observations conforms the mixture model. From this and other similar studies we

could conclude that the TBIC might be used to assess robustly the number of mixture

components and the percentage of contamination in the data.
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Figure 5.2: Data set of McLachlan and Peel (2000) with mixtures of 3 normals with noise:

true model (dotted lines) and fits of a three component normal mixture based on the MLE

(dashed lines) and FAST-TLE (solid lines) with (a) 15%, (b) 25%, (c) 35%, and (d) 45%

of trimming.
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Table 5.1: Simulation experiment for the data of McLachlan and Peel (2000): resulting

TBIC median values (rounded) based on different numbers of components (rows) and

different trimming percentages (columns).

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

1 1672 1510 1382 1253 1119 1003 915 837 749 650

2 1654 1494 1338 1202 1054 920 822 734 643 559

3 1585 1436 1313 1190 1047 902 795 709 620 538

4 1595 1429 1304 1178 1040 908 807 720 631 549

5 1594 1430 1309 1184 1051 922 822 736 647 566

Mixture of two Poisson regression models with noise

In this example we consider two Poisson regression models with equal mixing proportions

and with additional noise. For each Poisson regression model 100 data points are generated

according to the Poisson distribution with means log λ1 = 3 − 0.008x and log λ2 = 3 +

0.008x, where x is uniformly distributed in the intervals [-225,-25] and [25,225], respectively.

For the noise we generated 50 points from a uniform distribution over the range of each

variate. The plots in Figure 5.3 are typical results of the MLE and FAST-TLE fits for a

simulated data set. The points that follow the models are marked by squares and rhombs

whereas the outliers are marked by triangles. The dotted, dashed and solid lines correspond

to the true models, MLE and TLE fits, respectively. Starting with an increasing number of

components from 2 to 5 the FAST-TLE algorithm converged to the correct two components

mixture model in most of the trials whereas the MLE failed, see Figure 5.3.

In order to get more insight we generated 100 independent data samples according

to the above model. Each data set was fitted by a mixture model with 2, 3, 4 and 5

components and with 20% trimming. Similar to the previous examples, the estimated

number of components as returned by FlexMix can be smaller than initially specified. For

each considered model we count how often a model with a certain number of components
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Figure 5.3: Mixture of two Poisson regression components: true model (dotted lines), fits

based on the MLE (dashed lines) and FAST-TLE (solid lines) with (a) 20% trimming and

2 components, and (b) 40% trimming and 4 components.

is returned among all simulated data sets. The results for the MLE and FAST-TLE are

reported in Table 5.2. The number of specified components is presented by the rows in

the table, and the number of returned components by the columns. Additionally to the

frequencies we provide the number of successful fits (number below in italics), i.e., both

Poisson regression components of the mixture model were correctly estimated. For the

MLE method we see that the chance for successful fits increases only for a larger required

number components. Overall, the method has severe problems in estimating the models

since only 37 out of 400 fits were successful. For FAST-TLE the increase of the initial

number of components has almost no effect, since a model with 2 components is optimal

in more than 90% of the fits. Moreover, these models are almost always successful fits. In

total, 392 out of the 400 experiments were successful.
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Table 5.2: Simulation results for the mixture of two Poisson regressions. Models with 2,

3, 4, and 5 components were fitted for 100 simulated data sets. Out of 400 fits, 37 were

successful for MLE and 392 were correctly estimated by FAST-TLE.

MLE FAST-TLE
returned components returned components

started 2 3 4 5 Total 2 3 4 5 Total

2 100 100 100 100

1 1 98 98

3 100 100 93 7 100

2 2 92 7 99

4 94 6 100 96 4 0 100

4 4 8 94 4 98

5 19 15 66 100 94 6 0 100

3 7 16 26 91 6 97

Total 100 213 21 66 400 383 7 0 0 400

1 9 11 16 37 375 17 392

5.5 Summary and conclusions

The TLE methodology can be used for robustly fitting mixture models. We have demon-

strated by examples and simulations that in presence of outliers the TLE gives very reliable

estimates comparable to the mixture model generating parameters. Applying the FAST-

TLE algorithm to mixtures boils down to carrying out the classical MLE on subsamples.

Procedures for mixture models based on the MLE are widely available and thus the method

is easy to implement. Software in R is available from the authors upon request. The TBIC

is a useful indicator for determining the number of components and contamination level

in the data. If the trimming percentage is chosen too large, some of the observations that

follow the model will be trimmed and incorrectly identified as outliers. Therefore an addi-

tional inspection of the FAST-TLE posterior weights can be helpful in distinguishing these

observations from real outliers. The TLE will lead to greater computational effort, but
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having in mind the growing power of modern-day processors and memory, one can afford

this.

Appendix to chapter 5

Proposition 5.1 If the Fθj = {− logψ(x1, θj), . . . ,− logψ(xn, θj)} is dj–full for any j =

1, . . . , g and d = max(d1, d2, . . . , dg) then the BDP of the WTLE for the mixture of model

distributions (5.10) satisfies ε∗n(WTLE) ≥ 1
n
min(n− k, k − d).

Proof: Denote by τ
(l)
ij = τj(yi; xi,Ψ

(l)). Let X̃m = {x̃1, . . . , x̃n} is obtained by replacement

of m = min(n−k, k−d) observations by arbitrary ones from X = {x1, . . . , xn}. Therefore,
if m = n − k ≤ k − d then k − m ≥ d and if m = k − d then k − m = d, i.e., for any

k observations of X̃m there are at least d which are from X . Let θ̃(l) is the value of the

parameter estimate at the l–th iteration and τ̃
(l)
ij is the corresponding value of τ

(l)
ij at X̃m.

Without loss of generality we can assume that at the (l + 1)-th iteration we get the set

I(l+1) = {1, . . . , k}. Let J ⊂ I(l+1) is with cardinality |J | = d and for any i ∈ J , x̃i ∈ X .

Then for any θj for j = 1, . . . , g

−
k∑

i=1

τ̃
(l)
ij logψ(x̃i, θj) ≥ −

∑

i∈J
τ
(l)
ij logψ(x̃i, θj) ≥ τ

(l)
iJ gJ(θj),

where τ
(l)
iJ = minj∈J τ

(l)
ij and gJ(θj) = maxi∈J − logψ(xi, θj). However, the function of

the right side of this inequality is subcompact because the set Fθj is d–full and thus the

sum from the left side of the inequality is also a subcompact function. Therefore the set

{θj : −
∑k

i=1 τ̃
(l)
ij logψ(x̃i, θj) ≤ C} is compact and contains θ̃

(l+1)
j for j = 1, . . . , g. �

The set Fθj are simultaneously d-full if d = max(d1, d2, . . . , dg) (Vandev, 1993: a set is

q + 1–full if it is q-full). �



Chapter 6

Robust joint modeling of mean and

dispersion through trimming

Summary. The Maximum Likelihood Estimator (MLE) and Extended Quasi-Likelihood

(EQL) estimator have commonly been used to estimate the unknown parameters within the

joint modeling of mean and dispersion framework. However, these estimators can be very

sensitive to outliers in the data. In order to overcome this disadvantage, the usage of the

maximum Trimmed Likelihood Estimator (TLE) and the maximum Extended Trimmed

Quasi-Likelihood (ETQL) estimator is recommended to estimate the unknown parameters

in a robust way. The superiority of these approaches in comparison with the MLE and EQL

estimator is illustrated by an example and a simulation study. As a prominent measure of

robustness, the finite sample Breakdown Point (BDP) of these estimators is characterized

in this setting.

6.1 Introduction

Let yi be independently observed responses with means µi and known variance function

V (µi), for i = 1, . . . , n. Nelder and Pregibon (1987) consider a general quasi-likelihood

94
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model

g(µi) = xTi β, h(φi) = zTi λ and var(yi) = φiV (µi), (6.1)

where φi is the dispersion parameter, g and h are known monotonic differentiable link

functions, xi and zi are the covariate vectors of dimensions p and q affecting the means

and dispersions, and β and λ are vectors of unknown regression parameters, respectively.

The linear exponential family of distributions with a known constant φi = φ is a special

case of this general setting. The widely used over-dispersed Poisson distribution with

var(yi) = φµi and binomial distribution with var(yi) = φµi(1 − µi/mi) and trial number

mi are also accommodated by this model.

For joint inferences on β and λ, Nelder and Pregibon (1987) suggest to maximize an

extended quasi-likelihood (EQL) (strictly extended quasi-log-likelihood) function

Q+(β, λ) =

n∑

i=1

q+(yi;µi(β), φi(λ)) =

n∑

i=1

q+(yi;µi, φi) (6.2)

=
n∑

i=1

−1

2

{
log [2πφiV (yi)] +

di
φi

}
, (6.3)

in which di ≡ d(yi;µi) = −2
∫ µi

yi

yi−u
V (u)

du denotes the individual deviance function corre-

sponding to V (µi).

The EQL is an approximate log-likelihood which is exact in the normal, inverse Gaus-

sian and gamma cases (Smyth, 1989). Therefore the Maximum Likelihood Estimation

(MLE) can be employed as an estimation criterion for these distributions. Actually, the

EQL is not a proper density, but a distribution can be derived by suitably normalizing it.

Nelder and Pregibon (1987) proposed using the unnormalized EQL due to convenience in

implementation. The EQL does not require full distributional assumption, only specifica-

tion of the form of the first two moments. In many cases this provides a greater flexibility

within the statistical modeling framework eliminating the necessity of specifying the full

distribution for the data. However, if an exponential dispersion family with a variance

function V (µ) exists then the EQL is the log-likelihood function based on a saddlepoint

approximation to that family (McCullagh and Nelder, 1989; Jørgensen, 1997). A related
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approach to the EQL proposed by Efron (1986) is based on the double-exponential family

of distributions. Lee and Nelder (2000) notice that the unnormalized EQL and Efron’s

(1986) unnormalized double-exponential family are equivalent up to some constant terms

and therefore both approaches lead to identical inferences.

Equation (6.3) shows that the quasi-likelihood estimator β̂ of β can be found by min-

imizing the deviance function
∑n

i=1 di instead of maximizing directly Q+(β, λ). Then the

quasi-likelihood estimator λ̂ of λ can be obtained by using µ̂i = µi(β̂). The parameters

φi and µi are orthogonal in the sense of Cox and Reid (1987) as E (∂2Q+/∂µi∂φi) = 0

and this implies orthogonality between β and λ. Therefore the optimization of the p + q

dimensional problem reduces to two separate optimization problems of dimensions p and

q. As a consequence, the unknown parameters β and λ can be estimated by alternating

between two GLMs, a standard and a gamma,

E(yi) = µi g(µi) = ηi = xTi β var(yi) = φiV (µi) (6.4)

E(di) = φi h(φi) = ξi = zTi λ var(di) = 2φ2
i . (6.5)

Setting the initial value for φi to a constant, the mean model (6.4) produces the deviances

di as responses for the dispersion model (6.5) with dispersion parameter 2 and log-link

function h, which in turn produces the prior weights 1/φi for the mean model (6.4). This

alternation process continues until convergence is reached, see Smyth (1989) for a com-

prehensive exposition. McCullagh and Nelder (1989) referred to this procedure as “joint

modeling of mean and dispersion”.

In order to reduce the bias in estimating the dispersion parameters, when the number

of mean parameters is relatively large compared to sample size, Lee and Nelder (1998)

recommend using adjusted deviances d∗i = di/(1− ρii) as responses instead of di and prior

weights 1 − ρii in the dispersion model (6.5), where ρii is the ith diagonal element of the

projection matrix of the mean model (6.4) (Smyth and Verbyla, 1999; Lee et al., 2006).

The proposed modification is called restricted maximum likelihood (REML) adjustment

algorithm. It provides the MLE and REML estimators for β and φ, respectively, in case of

normal models with non-homogeneous errors. Details about estimation adjustments can



Introduction 97

be found in McCullagh and Nelder (1989), Smyth (1989), Smyth and Verbyla (1999), Lee

and Nelder (2000), and Lee et al. (2006).

From a computational point of view, (Green, 1984), this is equivalent to finding ML or

quasi-likelihood estimates of β and λ by solving iteratively the following two interlinked

weighted least squares problems:

min
β

(um −Xβ)T Wm (um −Xβ) (6.6)

min
λ

(ud∗ − Zλ)T Wd∗ (ud∗ − Zλ) , (6.7)

where X and Z are the n × p and n × q matrices of covariates, um and ud∗ are the mean

and dispersion adjusted dependent variable vectors with elements um,i = xTi β + ∂ηi
∂µi

(yi −
µi) and ud∗,i = zTi λ + ∂ξi

∂φi
(yi − φi), and Wm = diag ((φi(∂ηi/∂µi)

2V (µi))
−1) and Wd∗ =

diag ((2(1− ρi)φ
2
i (∂ξi/∂φi)

2)−1) are the working weight matrices, ρii is the ith diagonal

element of the matrix W
1/2
m X(XTWmX)XTW

1/2
m , and all these elements are evaluated at

the current estimates of β and λ. More precisely, holding λ fixed at the current estimate λ̂ at

each iteration, Wm and um are updated and (6.6) is solved again for β until convergence.

Similarly, holding β fixed at the current estimate β̂, at each iteration, W ∗
d and v∗d are

updated and (6.7) is solved again for λ until convergence. Cycling between these two

Iteratively Reweighted Least Squares (IRLS) algorithms until convergence results in the

EQL estimates of β and λ. Thus a standard linear regression routine can be adapted to

calculate β̂ and λ̂ via an IRLS algorithm.

The use of EQL provides a greater flexibility of the GLMs modeling, and the availability

of software such as the R packages dglm, JointModeling, statmod and tweedie, facilitate

and enlarge its applicability. Information on these R packages is given in Smyth (2009a),

Ribatet and Iooss (2009), and Smyth (2009b).

Unfortunately, the MLE and EQL estimator can be highly sensitive to a small pro-

portion of observations that departs from the model, (Hampel at al., 1986). The non-

robustness of the MLE and quasi-likelihood estimators against outliers within the single

GLM has been studied extensively in the literature, e.g., Markatou et al. (1997), Cantoni

and Ronchetti (2001), Müller and Neykov (2003), Maronna et al. (2006) and the references
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therein.

In this chapter we consider robust estimation for joint modeling of the mean and disper-

sion trough trimming in order to reduce the influence of outliers. The paper is organized as

follows. In Section 2 we recall the weighted Generalized Trimmed Estimator (wGTE), we

define the maximum Extended Trimmed Quasi Likelihood (ETQL) estimator and discuss

its breakdown property. In Section 3 an approximate computational procedure for the

wGTE optimization is proposed. Section 4 compares the behavior of classical and robust

estimation on a simple data example. In Section 5 a simulation study is performed to

illustrate the effectiveness of the proposed estimator in comparison with the EQL. Finally,

conclusions are given in Section 7.

6.2 Maximum extended trimmed quasi-likelihood es-

timator

The definition of the weighted Generalized Trimmed Estimator (wGTE) given by Vandev

and Neykov (1998) is as follows. Let fi : Θ → R+, where Θ ⊆ Rq be an open set and

F = {fi(θ) for i = 1, . . . , n} be d–full. According to Vandev and Neykov (1993), the

set F is called d–full if for any subset of cardinality d of F , the supremum of this subset

is a subcompact function. A real valued function ϕ (θ) is called subcompact if the sets

Lϕ(θ) (C) = {θ : ϕ (θ) ≤ C} are contained in a compact set for any constant C.

Definition 6.1 The wGTE, θ̂kwGTE, of θ is defined as the solution of the optimization

problem

θ̂kwGTE := argmin
θ∈Θ

{
S(θ) =

k∑

i=1

wν(i)fν(i)(θ)

}
, (6.8)

where fν(1)(θ) ≤ fν(2)(θ) ≤ . . . ≤ fν(n)(θ) are the ordered values of fi at θ and ν =

(ν(1), . . . , ν(n)) is the corresponding permutation of the indices, which depends on θ, k ≤ n.

The weights wi = w(fi(θ)) ≥ 0 for i = 1, . . . , n are such that wν(k) > 0, and w(.) is a

non-negative decreasing function.
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The trimming parameter k determines the robustness properties of the wGTE as those

n−k functions fi(θ) with the largest values are excluded from the objective function (6.8).

The combinatorial nature of the optimization problem is emphasized by the representation

min
θ∈Θp

S(θ) = min
θ∈Θp

k∑

i=1

wν(i)fν(i)(θ) = min
θ∈Θp

min
I∈Ik

∑

i∈I
wifi(θ) (6.9)

= min
I∈Ik

min
θ∈Θp

∑

i∈I
wifi(θ), (6.10)

where Ik is the set of all k–subsets of the set {1, . . . , n}. Therefore, it follows that all

possible (nk) partitions of the set {f1, . . . , fn} have to be considered and θ̂kwGTE is defined

by the partition with the minimal value of S(θ). An exact computation of the wGTE is

not feasible for large data sets and therefore an approximation is proposed below.

The wGTE accommodates many statistical estimators. For instance, it reduces to the

Least Trimmed Squares (LTS) estimator of Rousseeuw (1984) if the set F is comprised of

the squared linear regression residuals and the weights are defined by wν(i) = w(fν(i)(θ̂) ≤
fν(k)(θ̂)) = 1, for i ≤ k, and otherwise 0. Similarly, the maximum Trimmed Likelihood

Estimator (TLE) of Neykov and Neytchev (1990) is derived if F is comprised of the negative

log-likelihoods. The finite sample breakdown point (BDP) of the wGTE which is a global

measure of robustness of a statistical estimator is characterized by Theorem 1 of Vandev

and Neykov (1998). Roughly speaking, the BDP is the smallest fraction of contamination

that can cause the estimator to take arbitrary large values. The BDP of the wGTE is not

less than 1
n
min{n−k, k−d} if F is d–full. This BDP is maximized for ⌊{n+ d+ 1} /2⌋ ≤

k ≤ ⌊{n+ d+ 2} /2⌋ when it approximately equals 1/2 for large n, where the notation ⌊a⌋
stands for the largest integer less than or equal to a. Therefore selecting the value of k

properly one can control the level of robustness of the wGTE. We note that the d-fullness

index ensures the existence of a solution and provides positive BDP of the optimization

problem (6.8) at any subset of d functions. See Müller and Neykov (2003), and Dimova and

Neykov (2004) for a general treatment. Further, the asymptotic properties of the wGTE

were studied by Č́ıžek (2008) for the case of twice differentiable functions f .
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Let θ = (β, λ) and replace fi(θ) := fi(β, λ) = −q+(yi;µi(β), φi(λ)) in (6.9). Then we

obtain a particular case of a wGTE which we will call the maximum Extended Trimmed

Quasi-Likelihood (ETQL) estimator.

Definition 6.2 The maximum ETQL estimator (β̂, λ̂) of (β, λ) is defined as

max
β,λ

Q+
trim(β, λ) = max

β,λ
max
I∈Ik

∑

i∈I
q+(yi;µi, φi) (6.11)

= max
I∈Ik

max
β,λ

∑

i∈I
q+(yi;µi, φi). (6.12)

The maximum ETQL estimate is thus the EQL estimate calculated from some k-subset of

the n cases. Therefore for all k-subsets the two interlinked GLMs given by (6.4) and (6.5)

have to be solved simultaneously and the ETQL estimates (β̂, λ̂) of (β, λ) is defined by

that k-subset with the maximal value of (6.11). This means that those n− k observations

with the largest deviance residuals are excluded from the loss function. Consequently, the

finite sample BDP of the maximum ETQL estimator can be derived as the lower finite

sample BDP of these two interconnected GLMs. Thus we have to determine the fullness

indices of the negative log-likelihoods sets of both GLMs and then the finite sample BDP

can be exemplified by the range of values of k (Vandev and Neykov, 1998; Müller and

Neykov, 2003). Because the negative log-likelihoods of the two GLMs (6.4) and (6.5)

are proportional to their corresponding unit deviance functions it is more convenient to

determine the fullness indices of these latest quantities. For fixed λ, the unit deviances

d(yi, µi) for i = 1, . . . , n are convex functions in both arguments (Jørgensen, 1997, p. 24-25,

49-50) and thus subcompact functions in µi. Similarly, for fixed β, we can conclude that

the dispersion gamma GLMs (6.5) unit deviances are subcompact functions in φi as well.

A direct prove follows easily. Indeed, denote by dγ(di, φi) = 2(di/φi + log(φi/di)− 1) the

gamma dispersion GLMs unit deviance. Its limit behavior with respect to the boundary

points is lim
φi→∞

dγ(di, φi) = lim
φi→0

dγ(di, φi) = +∞. Hence dγ(di, φi) is subcompact function

in φi for i = 1, . . . , n according to Lemma 4.1 of Dimova and Neykov (2004). Therefore

the sets of unit deviances of (6.4) and (6.5) are N (X) + 1 and N (Z) + 1 full, respectively,

according to Theorem 3 of Müller and Neykov (2003), where N (X) = max06=β∈Rp card{i ∈
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{1, . . . , m}; xTi β = 0} provides the maximum number of covariates, explanatory variables,

xi ∈ Rp lying in a subspace, the meaning of N (Z) is the same. If the observations xTi ,

respectively zTi , are linearly independent then N (X) = p − 1, N (Z) = q − 1, and these

are the minimal values for N (X) and N (Z). If the covariates are qualitative variables

such as factors with several levels, then N (X) and N (Z) are much larger. Thus the

quantity max(N (X),N (Z))+1 determines the minimal number of observations that ensure

the existence of solutions of the interlinked GLMs (6.4) and (6.5) with positive BDPs.

Hence, the finite sample BDPs of the mean and dispersion GLMs estimators equal to

min {n− k, k −N (X)− 1} /n and min {n− k, k −N (Z)− 1} /n according to Müller and

Neykov (2003). Therefore we have the following

Theorem 6.1 The finite sample BDP of the maximum ETQL estimator equals

1

n
min {n− k, k −max[N (X),N (Z)]− 1}

and attains its maximum at

⌊{n +max[N (X),N (Z)] + 1} /2⌋ ≤ k ≤ ⌊{n +max[N (X),N (Z)] + 2} /2⌋

which equals to 1
n
⌊{n−max[N (X),N (Z)]− 1} /2⌋, where ⌊a⌋ stands for the largest inte-

ger less than or equal to a.

Note that Nelder and Pregibon (1987) warn that aliasing of the parameters could occur

when Z = X is used in modeling both mean and dispersion. This problem might occur also

with the ETQL estimator because it is the EQL estimate calculated from some k-subset

of the n cases.

6.3 Computational procedure for the wGTE

We propose a computational algorithm to determine an approximate solution of the wGTE.

In order to ensure the existence of a solution to the optimization problem (6.9), we assume

that the set F is d–full and k ≥ d. Then the algorithm consists of carrying out finitely

many times a two-step procedure of a trial step followed by a refinement step:
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Trial step:

1. Let F old = {fi1(θ), . . . , fil(θ)} ⊂ F = {f1(θ), . . . , fn(θ)} where l ≥ d;

2. Let θ̂old be arbitrary or the minimizer of
l∑

j=1

fij (θ);

Refinement step:

3. Let F new = {fν(1)(θ), . . . , fν(k)(θ)} ⊂ F where fν(1)(θ̂
old) ≤ . . . ≤ fν(n)(θ̂

old) be

the sorted values fi(θ̂
old) for i = 1, . . . , n;

4. Let θ̂new be the minimizer of S(θ) =
k∑

i=1

fν(i)(θ) where fν(i) ∈ F new for i =

1, . . . , k;

5. Let θ̂old := θ̂new ;

6. Cycle steps 3 to 5, until convergence or a finite number of cycles is reached.

Proposition 6.1 On the basis of steps 3 and 4 S(θ̂new) ≤ S(θ̂old).

Proof of Proposition 6.1. From the definition of θ̂old and θ̂new it follows that

S(θ̂new) =

k∑

i=1

fν(i)(θ̂
new) ≤

k∑

i=1

fν(i)(θ̂
old) = S(θ̂old).�

Clearly, the convergence is guaranteed after a finite number of steps since there are only

finitely many k–subsets out of (nk) in all. We note that this is only a necessary condition

for a global minimum of the wGTE objective function. Actually, we will be using the

suggestion made by Rousseeuw and Van Driessen (1999b) Take many initial choices of

F old and apply the refinement step to each until convergence, and keep the solution with

lowest value of S(θ) of (6.8). There is no guarantee that the achieved solution will be the

global minimizer of (6.8) but according to our experiments the approximation is sufficiently

good.

An important issue is the choice of the sets F old for starting the algorithm. When the

data set is small, all possible subsets with the default size k can be considered. If the

cardinality of F is large, one can randomly partition F in a representative way into several
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non-overlapping subsets F1, . . . , Fm of size n∗ ≈ n/m. The trimming parameter k∗ for any

of these subsets can be chosen within the interval [d, n∗]. A recommended choice for k∗

is within the interval [d, ⌊(n∗ + d + 1)/2⌋] to guarantee a positive BDP of the estimators.

However, following the same reasoning as in Rousseeuw and Van Driessen (1999b), and

because θ̂old can be arbitrary, one could draw subsamples with a smaller size k∗∗ := d as

the chance to get at least one outlier free subsample is larger. In case of data replications,

k∗∗ must be much larger than d (Müller and Neykov, 2003). Thus within the trial steps

the initial estimate must be based on k∗∗ whereas within the refinement step the trimming

parameter must be k∗ = ⌊(n∗+d+1)/2⌋ in order to maximize their BDP. As a consequence

of the computational procedure of the GTE applied to each of the subsets F1, . . . , Fm, the

optimal subsets F new
opt(1), . . . , F

new
opt(m) each of cardinality k∗ are obtained. We remind that

the trial and refinement steps are performed finitely many times in order to obtain these

optimal subsets. Pooling the sets into F old
pooled = F new

opt(1) ∪ . . . ∪ F new
opt(m) with cardinality mk∗

we can compute a reliable initial estimate θ̂oldpooled for the refinement step over F with an

optimal trimming parameter k = ⌊(n + d + 1)/2⌋. In this way an approximate GTE and

a subset F final
opt with cardinality k are obtained.

One can recycle this procedure g times. As a consequence, g pooled sets F final
opt(1), . . . , F

final
opt(g),

each of cardinality k = ⌊(n + d + 1)/2⌋ would be obtained. Obviously, one must expect

a large overlap between these g sets. Pooling these sets into a merged set F old
merged with

cardinality ktrim > k we can get a reliable initial θ̂oldmerged estimate for the last refinement

step over F . In this way an approximate GTE, θ̂ktrimGTE of θ and the corresponding subset

F final ⊂ F with cardinality ktrim can be obtained. This final approximate GTE would

possess a BDP less than the highest, however, it would be more efficient as ktrim ≥ k.

On the other hand, the number of times each observation entered the optimal subsamples

F final
opt(i) for i = 1, . . . , g could serve as a self control in designing the subset F old

merged. Clearly,

a preference would be given to those observations with a relatively higher frequency of

inclusion.

Finally, the remaining n− k, respectively n− ktrim, observations that are dropped out

of F could be treated as outlying and need additional consideration. Special attention
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should be given to those cases with the lowest percentage of inclusion.

We note that particular cases of the ”refinement step” procedure have been developed

for the computational needs of various high BDP estimators: (i) the concentration steps

considered by Visek (1996), Rousseeuw and van Driessen(1999a), and Hawkins and Olive

(2002) within the linear LTS regression estimator, and Hawkins and Khan (2009) within

the nonlinear LTS regression estimator; (ii) the concentration steps proposed by Rousseeuw

and van Driessen(1999b), and Herwindiati et al. (2007) within the multivariate location

and scale Minimum Covariance Determinant and Minimum Vector Variance Estimators

framework; (iii) the concentration steps discussed by Neykov and Müller (2003), Gallegos

and Ritter (2005), Neykov et al. (2007), Garcia-Escudero et al. (2008), Cuesta-Albertos et

al. (2008), and Gallegos and Ritter (2010) within the trimmed likelihood and classification

trimmed likelihood estimators framework. In all these considerations the corresponding

set F of functions is comprised of regression residuals, various multivariate distances and

negative log likelihoods.

6.4 Example

As an illustrative example we consider a data set of Zuliani et al. (1983) that has also been

used by Smyth and Verbyla (1999). The data are available at http://www.statsci.org/data

/general/bloodcpk.html, and they contain the age, weight (kg) and blood CPK (creatine

phosphokinase) concentrations of 18 cross country skiers. The skiers are participants in a

24 hour cross-country relay. The blood CPK concentration was recorded 12 hours into the

relay. The CPK is an enzyme contained in muscle cells which is necessary for the storage

and release of energy. Leakage of the enzyme CPK into the blood is a symptom of muscle

stress.

Examining the relationship of the log-CPK concentrations and the age of each skier,

Smyth and Verbyla (1999) detect a decreasing linear trend, and a decreasing variability

with increasing age. Instead of stabilizing the variance via transformation they fit the blood

CPK concentrations to the age directly by a double generalized linear gamma model with
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a log-link. Smyth and Verbyla (1999) only used the age variable and not the information

of the weight of the skiers. As a result, the age variable is significant in both the mean

and the dispersion model. Here we additionally use the weight variable in the mean model.

Figure 6.1 (left column) shows the (condensed) output of the statistical analysis, using the

function fitjoint of the R package JointModeling.

### Analysis of original data:

> ori.Gamma <- fitjoint("glm",’CPK~Age+Weight’,’d~Age’,

family.mean = Gamma(link = "log"),data = bloodcpk)

# EQL: -97.51943

> summary(ori.Gamma$mod.mean)

# Mean Coefficients (output condensed)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.435063 1.021730 4.341 0.000582

Age -0.015482 0.005809 -2.665 0.017642

Weight 0.031938 0.012960 2.464 0.026289

Null deviance: 34.536 on 17 degrees of freedom

Residual deviance: 15.000 on 15 degrees of freedom

> summary(ori.Gamma$mod.disp)

# Dispersion Coefficients (output condensed)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.77186 0.98183 -0.786 0.443

Age -0.03749 0.02510 -1.494 0.155

Null deviance: 55.664 on 17 degrees of freedom

Residual deviance: 53.050 on 16 degrees of freedom

> anova(ori.Gamma$mod.mean,test="Chisq")

# Mean Analysis of Deviance Table (output condensed)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)

NULL 17 34.536

Age 1 14.011 16 20.525 0.0001818

Weight 1 5.525 15 15.000 0.0187495

> anova(ori.Gamma$mod.disp,test="Chisq")

# Dispersion Analysis of Deviance Table (output condensed)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)

NULL 17 55.664

Age 1 2.6143 16 53.050 0.199

### Analysis of modified data:

> bloodcpk$CPK[15] <- bloodcpk$CPK[15]+3000

# original value 420

> mod.Gamma <- fitjoint("glm",’CPK~Age+Weight’,’d~Age’,

family.mean = Gamma(link = "log"),data = bloodcpk)

# EQL: -107.2937

> summary(mod.Gamma$mod.mean)

# Mean Coefficients (output condensed)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.63500 1.71681 0.952 0.3560

Age 0.00468 0.01448 0.323 0.7510

Weight 0.06334 0.02257 2.807 0.0133

Null deviance: 27.190 on 17 degrees of freedom

Residual deviance: 15.000 on 15 degrees of freedom

> summary(mod.Gamma$mod.disp)

# Dispersion Coefficients (output condensed)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.56902 1.11748 -3.194 0.00565

Age 0.06446 0.02723 2.367 0.03088

Null deviance: 52.365 on 17 degrees of freedom

Residual deviance: 42.783 on 16 degrees of freedom

> anova(mod.Gamma$mod.mean,test="Chisq")

# Mean Analysis of Deviance Table (output condensed)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)

NULL 17 27.191

Age 1 0.0932 16 27.097 0.80651

Weight 1 12.0973 15 15.000 0.00526

> anova(mod.Gamma$mod.disp,test="Chisq")

# Dispersion Analysis of Deviance Table (output condensed)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)

NULL 17 52.365

Age 1 9.5827 16 42.783 0.025

Figure 6.1: Analysis of the blood CPK concentrations using the function fitjoint of the R

package JointModeling. Left: output for the original data; right: output for the modified

data.

The output shows that the parameter estimates of the mean model are significant

according to the Wald (t-) test statistics and the LR tests (deviance table). However, for
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the dispersion model the parameter estimates are not significant, see the probability tails

of the Wald and LR tests. This means that there is no heterogeneity model as the age of

the skiers is not an influential dispersion covariate. Almost the same results (not presented

here) are obtained using the function dglm from R package dglm.

To get an impression about the influence of outliers on the parameter estimation and

on the inference, we added the value 3000 to case number 15 of the response variable CPK.

The original data value is 420, and the range of the CPK values is from 200 to 1340. Thus,

in this case the modified value would be easily identifiable, and this experiment is only used

for illustrative purposes. In general, however, outliers or influential observations might not

be extreme along one coordinate (multivariate outliers), and then it is not straightforward

to identify them.

The output of the analysis of the modified data is shown in Figure 6.1 (right column).

The parameter estimates, as well as the inference, have changed drastically. For instance,

the parameter estimate for the covariate age is no longer significant in the mean model

but it is significant in the dispersion model according to the Wald tests and the LR test.

Similar results are obtained by simply deleting observation 15 from the EQL analysis.

Using this data example, we want to study the effect of the outliers in more detail.

Particularly, we are interested in estimating the number of observations to be trimmed,

and the effect of trimming on the estimates. We added a value 3000 to the response

variable CPK of s randomly selected cases for s = 2, 3 by using all possible combinations

for s (18 for s = 2, and 153 for s = 3). Then we compute the maximum ETQL estimates

of the new data by trimming t observations (for t = 0, 1, . . . , 6). The resulting estimates

are shown in Figure 6.2 for s = 2 and Figure 6.3 for s = 3. Each boxplot represents the

results of the estimated parameter, depending on the number t of trimmed observations.

The horizontal lines in the plots show the EQL estimates for the original data, while the

vertical lines indicate the “correct” number of trimmed observations (i.e.t = s). The plots

show that the parameter estimates are very close to the EQL estimates of the original

data (horizontal line) in the case t = s. If the trimming percentage is too low (t < s),

the variability of the parameter estimates increases considerably. The parameter estimates
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remain quite stable if the trimming percentage is chosen higher (t > s).

Clearly, the EQL/ETQL value (normalized by the sample size k) has to increase with

increasing trimming percentage, but also there a certain break can be seen when t is chosen

at least as large as s.
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Figure 6.2: Boxplots of the joint modeling parameter estimates (intercept, Age and Weight

in the mean model; intercept and Age in the dispersion model) when placing s = 2 outliers

at any positions of the response variable, and varying the number of trimmed observations.

Lower right panel: boxplots for the EQL value, normalized by the sample size.
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Figure 6.3: Boxplots for the joint modeling parameter estimates (intercept, Age andWeight

for the mean model; intercept and Age for the dispersion model) when placing s = 3 outliers

at any positions of the response variable, and varying the number of trimmed observations.

Lower right panel: boxplots for the EQL value, normalized by the sample size.
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6.5 Simulation experiments

We compare the performance of the EQL and the maximum ETQL estimator through a

simulation study in order to explore their behavior in situations of correct and incorrect

dispersion model specification. The estimators are applied to outlier-free and contaminated

data with different percentages of trimming.

Since the trial and refinement steps are standard EQL procedures, the wGTE algorithm

can be easily implemented using widely available software. We illustrate this in the joint

mean and dispersion modeling framework using the packages dglm of Smyth (2009) and

JointModeling of Ribatet and Iooss (2009) which were developed in R (http://www.R-

project.org).

6.5.1 Simulation design

The 1st experiment concerns the classical heteroscedastic normal linear regression model.

The regression model was generated according to

yi = 1 + xi1 + xi2 +
√
φiǫi for i = 1, . . . , 40

log(φi) = −4− 4xi3,

where xi1, xi2 and xi3 are uniformly distributed in the intervals [0,1] and ǫi is simulated

from a standard normal distribution. Data contamination is introduced by modifying four

generated values as follows: x37,3 := x37,3 − 5, x38,2 := x38,2 − 5, x39,1 := x39,1 + 5, and

y40 := y40 − 10. In this way three of the outliers are leverage points whereas the last one

is an outlier in the response variable. Both packages gave almost the same results.

In the 2nd experiment a gamma mean GLMs is used. The data sample of size 40 is

generated according to mean and dispersion models

log(µi) = 1 + xi1 + xi2 for i = 1, . . . , 40

log(φi) = −2− 2xi3,

where the covariates xi1, xi2 and xi3 are uniformly distributed in the intervals [−1, 1].
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Therefore the observations yi are Gamma(φiµi, φ
−1
i ) distributed with scale and shape pa-

rameters φiµi and φ
−1
i , respectively. Data contamination is introduced by replacing four

generated values as follows: x37,1 := x37,1 ± 14, x38,2 := x38,2 ± 20, x39,3 := x39,3 ± 20 and

y40 := y40±14, where ± means that the sign plus or minus is randomly selected. As before,

three outliers are leverage points whereas the last one is of type response outlier. We note

that digamma dispersion GLMs is used instead of gamma dispersion GLMs (6.5) in case

of gamma mean GLMs, see Smyth (1989), and Lee et al (2005). Thus the packages dglm

of Smyth (2009) was used to handle the computations.

In the 3rd experiment data are generated according to the Tweedie family of distribu-

tions with variance function of the form var(yi) = φiµ
θ
i with power parameter θ = 1, mean

µi and dispersion φi defined by

log(µi) = 1 + xi1 + xi2 for i = 1, . . . , 40

log(φi) = −4− 4xi3.

The covariates xi1, xi2 and xi3 are uniformly distributed in the intervals [0,1]. Data con-

tamination is introduced by modifying four generated values as follows: x37,3 := x37,3 − 5,

x38,2 := x38,2 ± 5, x39,1 := x39,1 ± 5, and y40 := y40 + 10. Similar as before, three outliers

are leverage points, the last one is a response outlier. The tweedie distribution from the

tweedie R package developed by Dunn (2009) was used for data generation whereas the

package dglm of Smyth (2009) was used to handle the computations. The Tweedie fam-

ily of distributions belongs to the exponential dispersion model which accommodates the

widely used GLMs. Gaussian, Poisson, gamma and inverse-Gaussian families are special

cases. Details can be found in Jørgensen (1997).

The simulation experiments were replicated 1000 times. As a consequence, a series of

estimates were obtained and their distributions are visualized in boxplots. The series of

boxplots for the intercept and slope parameters for both the mean and dispersion panels

provide a more detailed characterization of the estimates.
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6.5.2 Results and discussion of the 1st simulation experiment

The plots in Figures 6.4–6.6 present the results from the 1st experiment based on outlier-

free (non-contaminated) and contaminated data, and for correctly specified normal mean

and gamma dispersion GLMs, respectively. The results of the experiments with non-

contaminated data are given in the plot panels of Figure 6.4. From the upper plots one

can see both EQL and ETQL estimators perform well in fitting the mean model. The

lower panel plots shows that the EQL estimators perform well with respect to the disper-

sion parameter estimates. However, the variation of the ETQL estimates is larger and bias

is observed as the percentage of trimming increases. An obvious reason for this effect is the

reduction of sample size due to the special kind of trimming based on the concentration

procedure. The results given in the plots panels of Figure 6.5 are based on the experiments

with contaminated data. Figure 6.5 shows that the EQL estimator becomes completely

useless if part of the data (here 10% contamination) does not follow the model, while the

ETQL estimator fits well provided the trimming percentage n−k
n

100% is larger than the

percentage of the contamination. The ETQL estimates show the same effect of increased

variability for the dispersion model estimation with an increased percentage of trimming.

The plots of Figures 6.6 give an impression about the distributions of the trimmed ob-

servations when applying the ETQL estimator with different trimming levels within the

1000 experiments. Each boxplot summarizes for a specific observation the outcomes of the

1000 experiments, which are the relative frequencies that the observation is identified as

regular, non-outlying, within the computational procedure of the algorithm. Due to the

data generation, the last four observations are outliers, and they are correctly identified

in the majority of simulation runs and in the majority of the individual steps of the com-

putation, as long as the chosen trimming percentage is not too small. The best stability

of this outlier identification is reached for 10% trimming, which corresponds to the actual

outlier generation. We note that a similar simulation experiment was considered by Cheng

(2011) in order to study the small sample behavior of the restricted (residual) maximum

trimmed likelihood estimator.
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Figure 6.4: 1st simulation experiment without contamination: boxplots of the estimates

obtained from 1000 experiments for the joint normal mean and gamma dispersion GLMs

parameters. Lower right panel: boxplots for the EQL values, normalized by the sample

size.
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Figure 6.5: 1st simulation experiment with 10% contamination: boxplots of the estimates

obtained from 1000 experiments for the joint normal mean and gamma dispersion GLMs.

Lower right panel: boxplots for the EQL values, normalized by the sample size.
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Figure 6.6: 1st simulation experiment with 10% contamination: relative frequency distri-

bution that an observation is identified as regular within the computational procedure of

the algorithm within 1000 experiments.
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It is interesting to look at the effect of model misspecification on the EQL and ETQL

estimators. Figure 6.5 shows that if the mean model is wrong (because the trimming

percentage is zero or too small), then dispersion estimation is affected also. As soon as the

appropriate amount of trimming is used, the dispersion parameters are also reasonable.

On the other hand, one can check how the estimation of the mean parameters varies if

the dispersion is treated as constant. Since the data are heteroscedastic this might have

an effect on the mean estimation. In our context, this case reduces the EQL and ETQL

estimation problems to ordinary LSE and LTS estimation for the linear regression model.

Using the design of the 1st experiment, the plots presented in Figures 6.7 and 6.8 show the

resulting estimates for non-contaminated and contaminated data by varying the trimming

percentage among the 1000 simulation experiments. Similar to the previous results we

can see that the EQL estimator is useless if a part of the data (here 10% contamination)

does not follow the model. For the ETQL estimator the trimming percentage needs to

be sufficiently high in order to achieve stable results. For both the uncontaminated and

the contaminated data, the results improve if the percentage of trimming is increased.

Obviously, this corresponds to trimming data points that generate heteroscedasticity.
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Figure 6.7: 1st simulation experiment without contamination: boxplots for the estimates

obtained from 1000 experiments for the normal mean model; dispersion parameter treated

as constant.
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Figure 6.8: 1st simulation experiment with 10% contamination: boxplots of the estimates

obtained from 1000 experiments for the normal mean model; dispersion parameter treated

as constant.



Simulation experiments 117

6.5.3 Results and discussion of the 2nd simulation experiment

In order to provide a direct comparison with the 1st simulation experiment, we show

the same sequence of plots for this experiment. Figure 6.9 presents the results for the

uncontaminated data, where the EQL estimator is supposed to perform the best. Using the

ETQL estimator, the mean model parameters estimates are still comparable to the EQL

estimates for a moderate trimming percentage. However, the dispersion model is much

more sensitive to trimming. In case of 10% contamination, the results change drastically,

see Figure 6.10. The most precise and stable results are obtained for the ETQL with the

correct trimming percentage of 10%. Using a higher percentage causes increasing instability

especially for the dispersion parameters estimates. On the other hand, if trimming is too

low or zero, the estimates are incorrect.

Figure 6.11 shows the relative frequencies of identifying observations as regular for the

contaminated case. The trimming percentage used for the results in the upper left plot

is smaller than the contamination level. Accordingly, not all four outliers are regularly

identified. For the other plots the outliers were identified correctly in the vast majority of

experiments because the trimming level was high enough.
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Figure 6.9: 2nd simulation experiment without contamination: boxplots of the estimates

obtained from 1000 experiments for the gamma mean and dispersion GLMs. Lower right

panel: boxplots for the EQL values, normalized by the sample size.
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Figure 6.10: 2nd simulation experiment with 10% contamination: boxplots of the estimates

obtained from 1000 experiments for the gamma mean and dispersion GLMs. Lower right

panel: boxplots for the EQL values, normalized by the sample size.
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Figure 6.11: the relative frequency distribution that an observation is identified as regular

within the computational procedure of the algorithm within 1000 experiments for the

gamma mean and dispersion GLMs.
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Similar as before, we want to show the effect of model misspecification. Figures 6.10

show that a precise estimation of the mean model parameters implies reasonable dispersion

parameter estimates, and vice versa. When treating the dispersion parameter as unknown

constant, the parameter estimates of the mean model are relatively stable in case of un-

contaminated data for both the EQL and the ETQL estimator, in the latter case even for

different trimming percentages, see Figures 6.12. In the case of 10% contamination, from

the plots of Figures 6.13 we see the EQL fails completely. ETQL, on the other hand, gives

a very precise answer for different trimming percentages.
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Figure 6.12: 2nd simulation experiment without contamination: boxplots of the estimates

obtained from 1000 experiments for the gamma mean GLMs; dispersion parameter treated

as constant.
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Figure 6.13: 2nd simulation experiment with 10% contamination: boxplots of the estimates

obtained from 1000 experiments for the gamma mean GLMs; dispersion parameter treated

as constant.
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6.5.4 Results and discussion of the 3rd simulation experiment

For this experiment only the results for the 10% contamination data are presented, because

of the similarities with the 1st and 2nd simulation experiments for the uncontaminated

data and model misspecification effect. From the plots of Figure 6.14 we see that the

most precise and stable results are obtained for the ETQL with the correct trimming

percentage of 10%. Using a higher percentage of trimming causes increasing variability for

the dispersion parameter estimates due to the smaller sample size. On the other hand, if

trimming is too low or zero, the estimates are incorrect. Figure 6.15 shows the relative

frequencies of identifying observations as regular for the contaminated case. The trimming

percentage used for the results in the upper left plot is smaller than the contamination

level. Accordingly, not all four outliers are regularly identified. For the other plots the

outliers were identified correctly in the vast majority of experiments because the trimming

level was high enough.
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Figure 6.14: 3rd simulation experiment with 10% contamination: boxplots of the estimates

obtained from 1000 experiments for the Tweedie distribution with mean and dispersion

model and power equal to 1.
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Figure 6.15: the relative frequency distribution that an observation is identified as reg-

ular within the computational procedure of the algorithm within 1000 for the Tweedie

distribution with mean and dispersion model and power equal to 1.
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Usually, the percentage of outliers in real data is unknown. A technique for the selec-

tion the trimming percentage n−k
n
100% can thus be based on fitting the model across a

range of different percentages of trimming, and by looking for stability of the parameter

estimates. This suggests plotting the parameter estimates against the trimming percent-

age n−k
n

100%, where k varies within the interval [(n + max[N (X),N (Z)] + 1)/2, n], and

selecting properly that value of k for which the parameters estimates become stable so as

to guarantee simultaneously a positive BDP and a higher efficiency of the estimates. For

instance, one can proceed by an ETQL estimator, based on a decreasing range of values

for k, starting with k = n. In this way not only the unknown parameters but also the

outlier percentage in the data can be estimated robustly.

6.6 Summary and conclusions

We introduced a robust version of the EQL framework for joint modeling of mean and

dispersion based on the idea of trimming and characterized its breakdown point. The

computation of the estimator takes advantage of the same technology as used for its classical

counterpart, but here the estimation is based on subsamples only. Our algorithm consists of

a trial and a refinement step, following the ideas of the fast-LTS and fast-MCD algorithms

of Rousseeuw and Van Driessen (1999a, 1999b), and Neykov and Müller (2003).

An important choice for estimators based on trimming is the trimming percentage.

In the simulation experiments an approach has been shown how this tuning parameter

can be determined. As a by-product, data outliers are flagged. They contain important

information for the analyst because of their deviations from the assumed underlying model.

In more detail, the outliers are those n−k observations with the largest deviance residuals,

and they are excluded from the loss function (6.3), leading to the ETQL loss function (6.11).

After removing the identified outliers, all available diagnostic tools in the context of

GLMs can be used (e.g., McCullagh and Nelder, 1989). This is important for checking the

validity of the model and for the detection of structure in the (remaining) data.



Chapter 7

The Least Trimmed Quantile

Regression

Summary. The linear quantile regression estimator is very popular and widely used. It

is also well known that this estimator can be very sensitive to outliers in the explanatory

variables. In order to overcome this disadvantage, the usage of the least trimmed quantile

regression estimator is proposed to estimate the unknown parameters in a robust way. As

a prominent measure of robustness, the breakdown point of this estimator is characterized

and its consistency is proved. The performance of this approach in comparison with the

classical one is illustrated by an example and simulation studies.

7.1 Introduction

Consider the multiple linear regression model

yi = xTi θ + εi for i = 1, . . . , n, (7.1)

where yi is an observed response, xTi = (xi1, . . . , xip) is a vector of explanatory variables

(covariates, carriers), and θ is the underlying value of a p×1 vector of unknown parameters

θ. Classically, εi, i = 1, . . . , n, are assumed to be independent and identically distributed.

Denote by ri(θ) = yi − xTi θ the regression residuals.

127
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Koenker and Bassett (1978) define the quantile regression (QR) estimator as any vector

θ̂n(τ) such that

β̂n(τ) := arg min
θ∈Rp

n∑

i=1

ρτ (ri(θ)), (7.2)

where

ρτ (r(θ)) = |r(θ)|
[
τ1{r(θ)≥0} + (1− τ)1{r(θ)<0}

]

=





(τ − 1)r(θ) if r(θ) < 0,

τr(θ) if r(θ) ≥ 0,

0 < τ < 1, and 1{A} is the usual indicator function of the set A, which equals 1 if A is true

and 0 otherwise.

Different quantile regression estimates θ̂n(τ) can be obtained for different values of

τ . This offers the analyst a more complete statistical model than the mean regression,

and nowadays, quantile regression has widespread applications. It can be derived as the

maximum likelihood (ML) estimator of observations coming from an asymmetric Laplace

(double exponential) distribution (e.g., Koenker and Machado, 1999). The quantile regres-

sion estimator is robust to skewed tails and departures from normality. In addition, under

very general conditions, the asymptotic distribution of the vector of estimated coefficients

is multivariate normal, which permits standard inferences to be carried out (Koenker and

Bassett, 1978). The finite-sample distribution of quantile regression was also studied (e.g.,

Jurečková, 2010). Computational algorithms concerning quantile regression estimation are

based on linear programming techniques as discussed in Koenker (2005a), or maximization-

minorization techniques considered by Hunter and Lange (2000) and Chen (2004). The

package quantreg developed in R by Koenker (2005b) (http://www.R-project.org) facili-

tates the wide use of quantile regression. For more details about quantile regression see

Koenker (2005a).

Unfortunately, the quantile regression estimator, like other regression M-estimators, can

be highly sensitive to outliers in the explanatory variables, see He et al. (1990). Therefore,

many attempts based on the downweighting of distant observations appeared that led to a

more robust form of quantile regression (e.g., Hubert and Rousseeuw, 1998, and Giloni et



Introduction 129

al., 2006). Such procedures were shown to be robust in the regression with a small number

of uniformly-distributed or fixed-design regressors (see Giloni et al., 2006, for the case of

one and two regressors). The robustness of weighted quantile regression, however, dimin-

ishes in general with an increasing number of regressors, and even for a small number of

covariates, the robustly weighted quantile regression can be substantially biased by outliers

(e.g., Č́ıžek, 2011). This led to the development of alternative estimators of the quantile

regression model (7.1), which are generally based on saddle-point optimization problems

(e.g., Rousseeuw and Hubert, 1999, and Adrover et al., 2004). The robustness of these

procedures is independent of the complexity of the regression model and is proportional to

min{τ, 1 − τ}, where τ refers to the quantile of interest (see Adrover et al., 2004, for an

overview). The main disadvantages of these methods – the computational difficulties and

non-standard asymptotic distributions – are generally related to their definitions based on

nested optimization problems.

In this chapter, we consider an alternative approach to robust estimation in the frame-

work of quantile regression, the least trimmed quantile regression (LTQR), which is based

on trimming in order to reduce the influence of the outliers in the explanatory variables.

The proposed method extends the robust location estimator of the median theoretically

studied by Tableman (1994a,b) and the Least Trimmed Absolute deviation (LTA) estima-

tor studied empirically by Hawkins and Olive (1999): we generalize them to the general

quantile regression model (7.1), and additionally, prove the consistency of the proposed

method and thus also of LTA. Contrary to existing highly robust methods of quantile re-

gression discussed in the previous paragraphs, the LTA and proposed LTQR estimate the

regression quantiles for the data that are not trimmed from the objective function, that

is, the quantiles are determined for a subset of data. This allows us to achieve robustness

properties independent of the quantile τ of interest. However, the superior robustness

properties of the LTQR estimator impose also one constraint: although we can consis-

tently estimate the regression coefficients of all variables in the model (7.1), the intercept

will not be identified (i.e., the constant term will converge to another quantity than the

τth quantile of errors εi at xi = 0). If the intercept is of importance, it has to be identified
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by some of the existing procedures.

The paper is organized as follows. Section 2 recalls the generalized trimmed estimator,

which renders the proposed LTQR method, and discusses its computation. The LTQR

estimator is defined and its breakdown property is discussed in Section 3, while the con-

sistency of the proposed methods is discussed in Section 4. Section 5 demonstrates the

different behavior of classical and robust estimation on a simple example. In Section 6,

a simulation study is performed to illustrate the effectiveness of the proposed estimator

in comparison with the classical quantile regression. Finally, the conclusions are given in

Section 8 and proofs are provided in the Appendix.

7.2 The Generalized Trimmed Estimator

The LTQR estimator will be obtained as a special case of the Generalized Trimmed Esti-

mator (GTE) given by Vandev and Neykov (1998). To introduce it, note that GTE can

be defined for any regression model by means of an objective function fi : Θ → R+, where

Θ ⊆ Rq is an open set. In particular, the GTE estimator θ̂kn,GTE of θ is defined as the

solution of the optimization problem

θ̂kn,GTE := argmin
θ∈Θ

{
Sn,k(θ) = min

I∈Ik

∑

i∈I
wifi(θ)

}
, (7.3)

where Ik is the set of all k-subsets of the index set {1, . . . , n} and k is the trimming

constant determining the number k of observations and their function values fi(θ) kept in

the objective function from the total number n of observations. Consequently, the trimming

parameter k determines the robustness properties of the GTE as n− k observations with

the largest values of fi(θ) are excluded from the loss function.

The robustness properties of the GTE can be described, for example, by the finite-

sample breakdown point (BDP): it is a global measure of an estimator’s robustness char-

acterizing the minimum number of observations that, if arbitrarily modified, can cause

the estimates to increase above any bound. The BDP of the GTE is characterized by

Theorem 1 of Vandev and Neykov (1998) using the d-fullness technique. Dimova and
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Neykov (2004) proved that the BDP of the GTE is not less than 1
n
min{n − k, k − d}

if the set F = {fi(θ) : i = 1, . . . , n} is d-full (d = p if any p observations are linearly

independent, see Section 3 and the appendix for more details). The BDP is maximized for

k = ⌊(n+d+1)/2⌋, when it approximately equals 1/2 for large n. Further, the asymptotic

properties of the GTE estimator (7.3) were studied by Č́ıžek (2008) for the case of twice

differentiable functions f .

The optimization problem (7.3) defining the GTE is of combinatorial nature due to the

representation

min
θ∈Θp

Sn,k(θ) = min
θ∈Θp

min
I∈Ik

∑

i∈I
wifi(θ) = min

I∈Ik
min
θ∈Θp

∑

i∈I
wifi(θ). (7.4)

Therefore, it follows that all possible (nk) partitions of the set {f1, . . . , fn} have to be

considered and θ̂kn,GTE is defined by the partition with the minimal value of Sn,k(θ). Hence,

an exact computation of the GTE is infeasible for large samples. To get an approximative

GTE solution, an algorithm was developed in Neykov et al. (2012). It repeatedly (i)

sets s = 0, selects a small subset {fi1 , . . . , fik∗} of k∗ functions from F and forms Is =

{i1, . . . , ik∗}, (ii) minimizes the objective function
∑

i∈Is fi(θ) with respect to θ, and uses

the obtained estimate θ̂s, (iii) sets s = s+ 1, orders the functions of F in ascending order,

fν(1)(θ̂s) ≤ fν(2)(θ̂s) ≤ . . . ≤ fν(k)(θ̂s) ≤ . . . ≤ fν(n)(θ̂s), where ν(.) is the permutation of the

indices {1, 2, . . . , n}, and forms Is = {ν(1), . . . , ν(k)}; the steps (ii) and (iii) are repeated

as long as the newly obtained estimates θ̂s produce smaller values of the objective function
∑

i∈Is fi(θ).

To fully specify the algorithm, the size and choice of the initial subsets have to be

specified (all possible subsets of size k∗ = k can be considered to obtain the precise instead

of an approximative solution only in very small samples). First, the trial subsample size

k∗ should be greater than or equal to d, which is necessary for the existence of (7.3),

but the chance to get at least one good subsample of data points is larger if k∗ = d.

Next, the initial subsets of observations are traditionally chosen as random subsamples of

size k∗. As this requires a large number of initial subsets to be drawn to obtain a good

approximation and because the QR estimator used from Section 7.3 on possesses some
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robustness properties if there are no leverage points (cf. Giloni et al., 2006), we combine

the random and a deterministic choice of initial subsamples. Specifically, we draw a number

of initial subsamples of size k∗ randomly, and additionally, ninit initial subsamples are taken

as the ith observation and its (k∗ − 1)-nearest neighbors in the space of the explanatory

variables, i = 1, . . . , ninit. The algorithm could be further accelerated for large data sets by

applying the partitioning and nesting techniques as in Rousseeuw and van Driessen (1999,

2006).

7.3 The Least Trimmed Quantile Regression Estima-

tor

In this section, the Least Trimmed Quantile Regression (LTQR) estimator is introduced

and the finite-sample BDP properties of the linear LTQR estimator are discussed. The

LTQR estimator is a particular form of the GTE (7.3) that, contrary to many existing

variants, employs a non-differentiable objective function fi(θ) = ρτ (ri(θ)).

Definition 7.1 The LTQR estimator is defined by

θ̂kn(τ) := argmin
θ

{
Qn,k(θ) = min

I∈Ik

∑

i∈I
ρτ (ri(θ))

}
, (7.5)

where Ik is the set of all k–subsets of the set {1, . . . , n}, ρτ (ri(θ)) is defined by (7.2), and

0 < τ < 1.

From this definition, it can be seen that the maximum LTQR estimator is the classical

QR estimator calculated for some k-subset of the n cases. Consequently, the LTQR esti-

mator includes the quantile regression estimator (7.2) as a special case for k = n, and the

LTA estimator for τ = 0.5. As the linear LTQR estimator is a particular case of the GTE,

its finite-sample BDP can be derived from the finite-sample BDP of the GTE.

Theorem 7.1 Let N (X) = max06=θ∈Rp card{i ∈ {1, . . . , n}; xTi θ = 0}. Then the BDP

of the linear LTQR estimator equals 1
n
min {n− k, k −N (X)− 1}. The BDP attains its
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maximum and equals to 1
n
⌊{n−N (X)− 1} /2⌋ for k such that ⌊{n+N (X) + 1} /2⌋ ≤

k ≤ ⌊{n+N (X) + 2} /2⌋.

The quantity N (X), introduced by Müller (1995), provides the maximum number of

explanatory variables xi ∈ Rp lying in a subspace. If any p observations xTi are linearly

independent, then N (X) = p − 1, which is the minimal value for N (X). When the

covariates are qualitative variables such as factors with several levels, N (X) can be much

larger.

As N (X) is bounded and independent of n, the most robust choice of trimming k =

⌊{n+N (X) + 1} /2⌋ guarantees a BDP which will be asymptotically equal to 1/2 and

independent of τ . This is possible because LTQR estimates the quantiles only within the

subset of observations that are not trimmed from the objective function, and as shown

in the following section, it does not identify the intercept in model (7.1). On the other

hand, the proof of Theorem 1 (in the Appendix) shows that the size of the compact set

containing the LTQR estimates in the presence of contamination does depend on τ by

means of min{τ, 1− τ}−1. Although the BDP can reach 1/2 for any τ , the maximum bias

caused by contamination will be smallest for τ = 1/2, it will increase as τ moves away

from 1/2, and could be arbitrarily large if one requires τ → 0 or τ → 1.

7.4 Consistency of the LTQR estimator

Here it will be shown that the LTQR estimator (7.5) is a consistent estimator of the slope

parameters in model (7.1). Moreover, the constant identified by the LTQR estimator will

be found.

Let us now assume for the sake of simplicity that the distribution function F of the

error term εi in (7.1) has an infinite support. Further, as the trimming constant k defining

the LTQR estimator generally depends on the sample size n, we will write kn to indicate

this and assume limn→∞ kn/n = λ ∈ (0, 1〉 exists. In the location model, that is, in model

(7.1) containing only the constant term, Tableman (1994a) then showed that the LTQR
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estimator with τ = 0.5 identifies the median on the shortest interval ∆ such that P (yi ∈
∆) = λ. To formalize this statement in the general case, let us first state assumptions on

the data generating process.

Assumption D. The vectors (xi, εi) form a sequence of independent and identically dis-

tributed random vectors with the finite (1 + δ)th moments for some δ > 0.

Assumption F. Let the distribution function F be continuous, strictly increasing on its

support, and having a differentiable density function f , which is supposed to be unimodal

and bounded on its support.

Let us recall that, for an interval ∆(a, λ) = 〈F−1(a), F−1(a+ λ)〉, a ∈ (0, 1− λ), and a

fixed τ ∈ (0, 1), Tableman (1994a, p. 390) proved in the location model that LTA applied

to univariate data following the distribution function F converges to and thus consistently

estimates

µ∗(τ) = F−1(a∗(τ) + τλ), (7.6)

where a∗(τ) = argmina∈(0,1)
∫
∆(a,λ)

ρτ (ε− F−1(a+ τλ))dF (ε).

Assuming that the intercept is the first element of the parameter vector θ, we will

now show in the regression case (7.1) that the LTQR estimator consistently estimates

the parameter vector θ∗(τ) = (µ∗(τ), 0, . . . , 0)T + θ, where the parameter θ∗(τ) obviously

equals to θ for all its elements, but the first one. The constant term obtained by the LTQR

estimator thus corresponds to θ1 + µ∗(τ), where in general µ∗(τ) 6= 0 (µ∗(τ) = 0 if F is

symmetric and τ = 1/2, for instance).

Theorem 7.2 Let Assumptions D and F hold and let τ ∈ (0, 1) be fixed. Assuming θ ∈ B

and θ∗(τ) = (µ∗(τ), 0, . . . , 0)T + θ, where µ∗(τ) is defined in (7.6) and B is a compact

parametric space, the LTQR estimator defined for kn = [λn] and λ ∈ (0, 1〉 consistently

estimates θ∗(τ), β̂kn
n (τ) → β∗(τ) in probability as n→ ∞.

The theorem shows that, under Assumption F, the LTQR estimator correctly identifies

the coefficients of the regression variables, but provides a different estimate of the constant

term. To obtain the intercept term representing the classical τth quantile, one can use
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the residuals ri(θ̂
kn
n (τ)) from the LTQR estimator fit, compute their empirical τth quantile

qτ , and add qτ to the LTQR estimator intercept estimate. A possible caveat of such a

procedure is its robustness: this newly estimated intercept has (asymptotically) a BDP

bounded by min{τ, 1 − τ}, which is irrelevant for τ close to 0.5, but rather limiting for

quantiles τ close to 0 or 1.

7.5 Examples

Since the trial and refinement steps of the GTE-LTQR algorithm are standard quantile

regression procedures, the GTE algorithm can be easily implemented using widely available

software. We illustrate this using the package quantreg of Koenker (2005), which was

developed in R (R Development Core Team, 2011). In particular, we first compare the

performance of classical linear quantile regression and the LTQR estimator through a real

dataset and a simulation study. Later, some robustness properties of LTQR and existing

robust methods are compared.

7.5.1 Star cluster CYB OB1 dataset

First, the well-known dataset on the star cluster CYB OB1 consisting of 47 observations

is considered, which was already analyzed by Adrover et al. (2004) and Rousseeuw and

Leroy (1987). In the upper left corners of the plots of Figure 7.1 one can see four points

with high leverage that do not follow the trend of the data majority. The observations are

plotted as tiny black bullets on all of the plots. Here we focus on estimating the regression

quantiles τ of 0.25, 0.50, and 0.75 by both the classical QR estimator proposed by Koenker

and Bassett (1978) and by the LTQR estimator using different trimming percentages. The

upper plots show the results of the classical estimator for all data points (upper left) and

for a reduced dataset where the four leverage points are deleted (upper right). It is evident

that the leverage points have a strong influence on the classical estimator.

The remaining plots in Figure 7.1 show the results of the LTQR estimator on the original
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data, with 4%, 9%, 11%, and 17% trimming. This corresponds to trimming 2, 4, 5, and 8

observations, respectively. The trimmed observations are marked by symbols: tiny squares

for τ = 0.25, upside-down triangles for τ = 0.50, and normal triangles for τ = 0.75.

The corresponding LTQR regression lines are influenced by the leverage points in case

the trimming percentage is too low (4%). For 9% trimming the four leverage points are

identified as outliers and we obtain practically the same result as for the classical method

applied to the reduced data. If the trimming percentage is chosen higher (11%, 17%),

additional observations are identified as outliers, but the regression lines are very stable.

It is interesting to see that not always the same additional observations are trimmed: this

depends on the considered regression quantile τ . This phenomenon is corresponding to the

definition of regression outliers, where observations that do not follow the assumed model

can be treated as outliers. We can also see that even the LTQR fits for τ = 0.75 with 11%

and 17% of trimming are not influenced by the outliers like, for example, the maximum

depth estimator in Adrover et al. (2004, Figure 2). The LTQR regression lines are similar

to those of the robustified Koenker and Bassett (RobKB) method in Adrover et al. (2004,

Figure 1), but look more plausible and stable because the LTQR median regression lines

will intersect both with the τ = 0.25 and τ = 0.75 fitted lines for large values of the

covariate, whereas the RobKB median regression line intersects with the τ = 0.75 fitted

line for small covariate values and with the τ = 0.25 fitted line for large covariate values.
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Figure 7.1: Star data: 0.25, 0.50, and 0.75 regression quantiles from Koenker and Bassett

estimate, based on whole data (upper left) and on data without the four extreme points

(upper right); LTQR fits with 4%, 9%, 11% and 17% of trimming (remaining plots).
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7.5.2 Simulation experiments

We compare the performance of the QR and LTQR estimators through a simulation study

within the classical heteroscedastic multiple linear regression model. The data were gen-

erated according to the model

yi = β0 + β1xi1 + β2xi2 + σiεi for i = 1, . . . , 100,

σi =
√

exp(0.11(xi1 + xi2)),

where β0 = β1 = β2 = 0 can be chosen without loss of generality because of the regression

equivariance of LTQR, εi ∼ N(zα, 1), and zα is the α–quantile of N(0,1). (Note that this

traditional form of heteroscedasticity implies a slight nonlinearity of the QR regression

lines for τ 6= 0.5.)

Two distribution types for the covariates are considered: in the 1st experiment, the

covariates xi1 and xi2 are uniformly distributed on the interval [−10, 10], that is, xij ∼
U[−10, 10] for j = 1, 2; in the 2nd experiment, the covariates xi1 and xi2 are normally

distributed, that is, xij ∼ N(0, 1) for j = 1, 2. Data contamination is introduced by

modifying the first m = ⌊100ǫ⌋ observations for ǫ = 0.1, 0.2, 0.3 as follows (r = 2, 3, 4): in

the 1st experiment, xij ∼ U[−30,−20] for j = 1, 2 and yi ∼ U[−10r,−10r + 10]; in the

2nd experiment, (xi1, xi2, yi)
T ∼ N3(µ,Σ) where µ = (−10,−10,−10r)T and Σ = 3I3 for

i = 1, . . . , m. In this way all those generated outliers are bad leverage points of different

magnitude. As the results are similar across different choices of r, we present the 1st

experiment with r = 2 and the 2nd experiment with r = 3.

All simulation experiments were replicated 1000 times to explore the small sample

behavior of the classical QR and LTQR estimators for the different quantile values τ =

(0.5, 0.75, 0.90) and different trimming percentages over the clean and contaminated data.

Subsequently, the simulated estimates were obtained and summarized in boxplots, see

Figures 7.2–7.9. The plot panels for the upper rows of the figures show the results for

the intercept term β0, while the middle and bottom rows present the results of the slope

parameters β1 and β2, respectively. The “correct” trimming percentages are indicated by
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dotted vertical lines, and the true simulated parameters are indicated by horizontal dashed

lines.

Figures 7.2 and 7.3 demonstrate the performance in the uncontaminated case for both

uniformly and normally distributed regressors (QR corresponds to 0% trimming). One can

see that, when increasing the trimming percentage, the intercept estimates are unbiased

for τ = 0.5 (the error distribution is symmetric), but the bias for the regression quantiles

τ = 0.75 and τ = 0.90 increases with the amount of trimming. The reason for this effect

was given in Section 4, where we noted that LTQR identifies the sum of the intercept and

µ∗(τ) = F−1(a∗(τ) + τλ) (see equation (7.6)), which depend both on the quantile τ and

the amount of trimming λ = limn→∞ kn/n. The estimates of the slopes are presented on

the lower plot panels. Both QR and LTQR estimators are unbiased in agreement with

the theory and perform well, although the variability of the estimates increases for larger

amounts of trimming. This is caused by LTQR using less and less observations due to a

higher amount of trimmed data points.

Figures 7.4–7.9 present the results for the 1st and 2nd experiment corresponding to

an increasing proportion of outliers ǫ = 0.1, 0.2, 0.3. When choosing the same trimming

percentage as the contamination level, the resulting estimates are very precise – compa-

rable to the uncontaminated case. Similarly, if the trimming is chosen higher than the

contamination level (i.e., 1 − λ ≥ ǫ), we observe essentially the same picture as for the

uncontaminated case. On the other hand, the use of smaller trimming percentages (i.e.,

1− λ < ǫ) has an immediate effect on the quality of the estimates and this becomes more

severe for high contamination levels. In such cases, both bias and variance of the estimates

increase dramatically because the resulting procedure has not sufficient robustness.

Further, these boxplots on Figures 7.4–7.9 also reveal that the variation in any panel

depends on the chosen trimming percentage. In general, the smallest variation is obtained

by choosing the exact trimming percentage corresponding to the contamination level in

the data. In practice, it is preferable to be conservative, and in case of doubts, choose a

higher trimming proportion than necessary (and thus a bit higher variance of estimates)

to prevent a substantial bias caused by the lack of robustness.
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Figure 7.2: Boxplots of the estimates based on the originally generated data (0% contam-

ination) and uniformly distributed covariates.
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Figure 7.3: Boxplots of the estimates based on the originally generated data (0% contam-

ination) and normally distributed covariates.
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Figure 7.4: Boxplots of the estimates for the 1st experiment with 10% contamination and

uniformly distributed covariates.
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Figure 7.5: Boxplots of the estimates for the 2nd experiment with 10% contamination and

normally distributed covariates.
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Figure 7.6: Boxplots of the estimates for the 1st experiment with 20% contamination and

uniformly distributed covariates.
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Figure 7.7: Boxplots of the estimates for the 2nd experiment with 20% contamination and

normally distributed covariates.
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Figure 7.8: Boxplots of the estimates for the 1st experiment with 30% contamination and

uniformly distributed covariates.
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Figure 7.9: Boxplots of the estimates for the 2nd experiment with 30% contamination and

normally distributed covariates.
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The percentage of outliers in real data is of course unknown or can be only roughly

estimated. A technique for automatically selecting the trimming parameter kn = [λn] or the

trimming percentage [(1− λ)n]100% can be developed for LTQR in a straightforward way

by mimicking the procedure of Č́ıžek (2010) for the (reweighted) LTS regression estimator,

which is in turn an adaptation of the method of Gervini and Yohai (2002). One only needs

to take the asymmetric Laplace distribution instead of the normal one.

7.5.3 Comparison with other robust regression quantile estima-

tors

In order to study the small sample behavior of the proposed estimator and to compare

it with some robust regression quantile estimators considered by Rousseeuw and Hubert

(1999) and Adrover et al. (2004), we estimated the maximum effect of the point contami-

nation on the LTQR estimator in terms of the mean squared errors. The simulation experi-

ment closely follows that of Adrover et al. (2004). Each experiment consists of n = 50 data

points. The data generation is based on a multiple linear regression model yi = βT
0 xi + ui

for i = 1, . . . , n, where xT
i := (1, xi1, . . . , xi,p−1), the p − 1 covariates follow independent

unit normals, ui ∼ N(zα, 1), zα is the α–quantile of N(0, 1), and β0 = 0, which can be

chosen without loss of generality because of the regression equivariance of LTQR. The

point contamination is introduced via replacement of the last m = ⌊ǫn⌋ observations by

the following outliers: yi := y0 = 5b and xT
i := xT

0 = (1, 5eT1 ) ∈ Rp for i = n−m+1, . . . , n

for various values of ǫ (see Table 7.1), where e1 is the first element of the canonical basis

of Rp−1. As in Adrover et al. (2004), the contamination slope b varies over a large grid

from 0 to 10 with step 0.1 in order to search for the least favorable situations, and the

experiment was performed for the number of regressors p = 2 and p = 5. Each simulation

experiment was replicated 500 times. The trimming parameter kn of the LTQR estimator

is set equal to ⌊(1− ǫ)n⌋ and also to a slightly lower value ⌊(1− ǫ− 0.1 ∗ (1− τ))n⌋. The
maximum mean of the squared errors ‖β̂kn

n − β0‖2 (MaxMSE) is used as an error criterion

and its values for different quantiles are presented in Table 7.1.
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In the case of LTQR, MaxMSE is computed for the slope coefficients as well as for all

coefficients including intercept: as LTQR does not consistently estimate the intercept, the

MaxMSE computed for the whole coefficient vector necessarily reflects also its intercept

bias, which is not directly related to the bias due to contamination. Additionally, we

include results for the LTQR using larger percentages of trimming 1−λ = ǫ+0.1 ∗ (1− τ)

than the contamination levels. This is done because in practice the exact contamination

level is unknown (even though it can be estimated as discussed in the previous section) and

thus a more realistic procedure is to use a larger trimming than expected contamination.

These values for LTQR can be compared to the results for the classical Koenker–Bassett

(K-B), the robustified Koenker–Bassett (RobKB) estimator of Adrover et al. (2004), and

other alternatives such as the maximum depth estimator (MaxDep) of Rousseeuw and

Hubert (1999). We implemented those estimators, but – because of the limited information

concerning the estimation algorithms – we also report the original results of Adrover et

al. (2004), who report the median of the squared errors. The FORTRAN software developed

by Van Aelst et al. (2002) was used to handle the MaxDep computations.

As the LTQR estimator for 1 − λ = 0, that is for kn = n, reduces to the classical

Koenker–Bassett estimator, its values for no contamination case ǫ = 0 can be used as

a reference for the mean squared errors of QR, see Table 7.1. For the positive levels

of contamination, the LTQR performance is proportional to the level of contamination

ǫ, but does not depend substantially on the estimated quantile. This is most visible if

the contamination level ǫ ∈ (0.10, 0.12) is considered: the MaxMSE of LTQR increases

only by 50% if τ = 0.50 grows to 0.90. On the other hand, the most robust alternative

RobKB (cf. Adrover et al., 2004) increases its bias ǫ ∈ (0.10, 0.12) by 50–100% if τ = 0.50

changes to 0.75 and grows above any bound if τ = 0.90 as it reaches its breakdown point

10% at this point. Thus, LTQR generally outperforms the other methods for τ > 0.5

and higher contamination levels as a consequence of its breakdown point independent

of the actual quantile (although BDP itself does not quantify the bias of an estimator).

Additionally, LTQR performs better than competing methods at higher quantiles such as

τ = 0.90 irrespective of the contamination level. On the other hand, RobKB and MaxDep
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perform better for quantiles closer to τ = 0.50 and lower contamination levels. This can be

expected especially in the case of RobKB as methods based on the pairwise differences or

comparisons of observations typically outperform the corresponding methods minimizing

plain sums of functions of individual observations (e.g., compare least trimmed squares

and least trimmed differences estimator of Stromberg et al., 2000).
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Table 7.1: The Monte Carlo maximum mean squared errors based on the LTQR estimator

of the slope (LTQR ‘no intercept’), LTQR estimator of the intercept and slope (LTQR with

‘intercept’), maximum depth estimator (MaxDep), robustified Koenker-Bassett (RobKB)

estimator, and Koenker-Bassett (K-B) estimator in samples of n = 50 observations. For

LTQR, the trimming parameter equals kn = ⌊λn⌋, where the fraction of trimmed obser-

vations 1 − λ equals exactly to the contamination level ǫ or is slightly larger ǫ+ δ, where

δ = 0.1 ∗ (1− τ).

MaxMSE LTQR [trimming 1− λ] MaxDep RobKB K-B MaxDep RobKB

no intercept intercept results of

p τ ǫ [ǫ] [ǫ+ δ] [ǫ] [ǫ+ δ] Adrover et al. (2004)

2 0.50 0.00 0.04 0.05 0.08 0.09 0.10 0.09 0.07 0.10 0.10

0.10 0.45 0.39 0.53 0.48 0.19 0.18 0.21 0.20

0.20 1.03 0.94 1.20 1.11 0.84 0.81 0.79 0.97

0.75 0.00 0.05 0.06 0.09 0.12 0.11 0.07 0.10 0.11

0.06 0.28 0.25 0.34 0.31 0.16 0.24 0.21

0.12 0.66 0.55 0.76 0.64 0.38 1.82 0.57

0.20 1.07 0.94 1.24 1.10 1.43

0.90 0.00 0.07 0.08 0.15 0.15 0.16 0.11 0.14 0.14

0.02 0.15 0.12 0.22 0.19 0.17 0.23 0.16

0.04 0.25 0.20 0.31 0.28 0.26 0.77 0.26

0.08 0.53 0.42 0.61 0.52 1.16

0.10 0.64 0.54 0.74 0.63 117.

5 0.50 0.00 0.17 0.20 0.21 0.24 0.26 0.29 0.19 0.37 0.38

0.10 0.78 0.77 0.87 0.87 0.65 0.61 0.74 0.66

0.20 2.64 2.65 2.93 2.95 4.14 2.89 4.60 2.40

0.75 0.00 0.20 0.23 0.25 0.29 0.38 0.21 0.36 0.36

0.06 0.54 0.48 0.61 0.55 0.46 0.77 0.54

0.12 1.22 1.10 1.33 1.21 0.89 2.87 1.70

0.20 2.91 2.78 3.24 3.07 4.13

0.90 0.00 0.30 0.31 0.37 0.42 0.46 0.34 0.48 0.38

0.02 0.40 0.34 0.47 0.45 0.52 0.71 0.44

0.04 0.54 0.46 0.61 0.56 0.66 3.00 0.87

0.08 0.98 0.81 1.08 0.93 2.86

0.10 1.24 1.04 1.35 1.17 119.
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Summary and conclusions

A robust version of the linear quantile regression estimator is introduced which is based

on the idea of trimming. The breakdown point and the consistency of the proposed es-

timator are characterized. The computation of the estimator is taking advantage of the

same technology as used for its classical counterpart, but here the estimation is based on

subsamples only. The used algorithm consisting of a trial and a refinement step (Neykov

et al., 2012) follows the ideas of the FAST-LTS and FAST-MCD algorithms of Rousseeuw

and van Driessen (1999, 2006) and Neykov and Müller (2003). The new estimator gener-

ally performs very well, which is confirmed by an example, by simulation studies, and by

a comparison to other proposals.

An important choice for estimators based on trimming is the trimming percentage. In

the numerical experiments, it has been shown that a trimming percentage lower than the

contamination level can lead to very poor estimates, but any higher trimming percentage

gives very reasonable results. Therefore, a general rule is to work with a conservative choice

of the trimming percentage or to estimate the amount of trimming similarly to Č́ıžek (2010)

and Gervini and Yohai (2003).

Appendix: Proofs

The BDP will be derived using the d-fullness technique proposed by Vandev (1993). Ac-

cording to Vandev and Neykov (1998), the set F = {fi(θ); i = 1, . . . , n} is called d-full if

the function g(θ) = maxj∈Jfj(θ), θ ∈ Θ, is subcompact for every subset J ⊂ {1, . . . , n}
of cardinality d. A function g : Θ → R, Θ ⊆ Rq, is called subcompact if its Lebesgue

set Lg(C) = {θ ∈ Θ : g(θ) ≤ C} is contained in a compact set for every real con-

stant C. The d-fullness index ensures the existence of a solution and provides positive

BDP of the optimization problem (7.3) at any subset of functions with size k ≥ d.

Proof of Theorem 7.1: As the linear LTQR estimator is a particular case of the

GTE, its finite-sample BDP equals to 1
n
min{n − k, k − d}, provided the set of functions
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F = {ρτ (ri(β)); i = 1, . . . , n} is d-full, Dimova and Neykov (2004). Now we are ready to

show that the set F is d = N (X) + 1-full for any fixed τ ∈ (0, 1), where N (X) is defined

as N (X) = max06=β∈Rp card{i ∈ {1, . . . , n}; xTi β = 0}. Let D be an arbitrary constant and

τ be fixed. Then for any subset J ⊂ {1, . . . , n} of cardinality N (X) + 1, the set

{β ∈ Rp : max
j∈J

ρτ (x
T
j β − yj) ≤ D}

=

{
β ∈ Rp : max

j∈J

[∣∣xTj β − yj
∣∣
(
τ1{xT

j β−yj≥0} + (1− τ) 1{xT
j β−yj<0}

)]
≤ D

}

⊆
{
β ∈ Rp : min(τ, 1− τ)max

j∈J

∣∣xTj β − yj
∣∣ ≤ D

}

=

{
β ∈ Rp : max

j∈J

∣∣xTj β − yj
∣∣ ≤ D

min(τ, 1− τ)

}

⊆
{
β ∈ Rp : max

j∈J

(∣∣xTj β
∣∣− |yj|

)
≤ D

min(τ, 1− τ)

}

⊆
{
β ∈ Rp : max

j∈J

∣∣xTj β
∣∣ ≤ D

min(τ, 1− τ)
+ max

j∈J
|yj|
}

⊆
{
β ∈ Rp :

1

N(X) + 1
βT
∑

j∈J
xjx

T
j β ≤

[
D

min(τ, (1− τ))
+ max

j∈J
|yj|
]2}

is contained in a compact set. Indeed, the last set is bounded because J is of cardinality

N (X) + 1 and the definition of N (X) implies that the matrix
∑

j∈J xjx
T
j has full rank.

This last set is closed as the quadratic form βT
∑

j∈J xjx
T
j β is a continuous function in β.

Hence it is compact because it is closed and bounded.

Therefore, the finite sample BDP of the linear LTQR estimator is

1
n
min {n− k, k −N (X)− 1}. This BDP is maximized for ⌊{n+N (X) + 1} /2⌋

≤ k ≤ ⌊{n +N (X) + 2} /2⌋ and equals to 1
n
⌊{n−N (X)− 1} /2⌋. �

Proof of Theorem 7.2: Let Qλ(β) = E[ρτ (ri(β)) · 1{ρτ (ri(β))≤G−1
β

(λ)}] be the asymptotic

form of Qn,kn(β) defined in (7.5), where Gβ and G−1
β are the distribution and quantile

functions of ρτ (ri(β)) (the uniform convergence of Qn,kn(β) to Qλ(β) under Assumptions

D and F is derived in Lemmas 2.1 and A.1 of Č́ıžek, 2008).

Now, considering an interval ∆(a, λ) = 〈F−1(a), F−1(a + λ)〉 for a ∈ (0, 1 − λ) and

a fixed τ ∈ (0, 1), Tableman (1994a, p. 390) proved in the location model that Qλ(µ)

applied to univariate data following the distribution function F has a unique minimum at
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µ∗(τ) = F−1(a∗(τ)+τλ), where a∗(τ) = argmina∈(0,1)
∫
∆(a,λ)

ρτ (ε−F−1(a+τλ))dF (ε) (the

proof is given for τ = 0.5 by an argument, which directly applies also to general τ ∈ (0, 1)).

This result can be employed in the regression model (7.1). Conditionally on a given

value of covariates x, the distribution function of the response y equals Fy|x(t) = F (t −
xT θ), t ∈ R, and the corresponding quantile function equals F−1

y|x(u) = F−1(u)+xT θ. There-

fore, Qλ|x(β) = E[ρτ (ri(β)) ·1{ρτ (ri(β))≤G−1
β

(λ)}|x] is minimized at µ∗(τ)+xT θ (conditionally

on x). Consequently, Qλ(β) is minimized at β∗(τ) = (µ∗(τ), 0, . . . , 0)T + θ unconditionally

if the intercept is supposed to be the first element of the parameter vector β.

The limit Qλ(β) of the LTQR estimator objective function identifies the parameter vec-

tor β∗(τ). To prove the consistency of the LTQR estimator, we can apply now Theorem 3.1

of Č́ıžek (2008): since we verified the identification condition for β∗, assume Assumptions D

and F, and {ρτ (ri(β)) = max{τri(β),−(1−τ)ri(β)}|β ∈ Rp} forms a Vapnik-Chervonenkis

class of functions (van der Vaart and Wellner, 1996, Lemmas 2.6.15 and 2.6.18), we only

need to check Assumption D3 of Č́ıžek (2008). This is however verified under Assumptions

D and F by Lemma 2 of Č́ıžek (2006). Thus, Theorem 3.1 of Č́ıžek (2008) implies the

claim of the theorem. �



Chapter 8

Ultrahigh dimensional variable

selection through the penalized

maximum trimmed likelihood

estimator

Summary. The Penalized Maximum Likelihood Estimator (PMLE) has been widely used

for variable selection in high-dimensional data. Various penalty functions have been em-

ployed for this purpose, e.g., Lasso, weighted Lasso, or smoothly clipped absolute deviations

(SCAD). However, the PMLE can be very sensitive to outliers in the data, especially to

outliers in the covariates (leverage points). In order to overcome this disadvantage, the

usage of the Penalized Maximum Trimmed Likelihood Estimator (PMTLE) is proposed

to estimate the unknown parameters in a robust way. The computation of the PMTLE

takes advantage of the same technology as used for PMLE but here the estimation is based

on subsamples only. The breakdown point properties of the PMTLE are discussed using

the notion of d–fullness. The performance of the proposed estimator is evaluated in a

simulation study for the classical multiple linear and Poisson linear regression models.

155
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8.1 Introduction

Let (yi, x
T
i ), for i = 1, . . . , n, be identically and independently distributed observations,

where yi is the ith observation of the response variable Y and xTi = (x11, x12, . . . , x1p) is

the ith row of the covariates matrix X . Assume that yi depends on xi through a linear

predictor ηi(θ) = xTi θ via the objective function L(ηi(θ), yi). For instance, L(ηi(θ), yi)

might be a probabilistic model such as likelihood, quasi-likelihood or another discrepancy

function related with the ith observation. Without loss of generality, we shall assume that

L(ηi(θ), yi) is the log-likelihood. The Maximum Likelihood Estimator (MLE) is defined as

θ̂n,MLE := argmax
θ

{
ℓn(θ) =

n∑

i=1

L(ηi(θ), yi)

}
. (8.1)

The Penalized MLE (PMLE) is defined as

θ̂n,PMLE := argmax
θ

{
ℓn(θ)− n

p∑

j=1

pλ(|θj |)
}
. (8.2)

Here, pλ(.) is a penalty function indexed by the regularization parameter λ ≥ 0. Due to

the penalty function, some of the components of θ are shrunk to zero automatically and

thus variables selection is performed. A large value of λ tends to choose a simple model

whereas a small value of λ inclines to a complex model. In real applications the parameter

λ is not known. It may be chosen by cross-validation or using an information criterion like

the Bayesian Information Criterion (BIC), see Bühlmann and van der Geer (2011).

Commonly used penalty functions are the L1 penalty pλ(|θj |) = λ |θj | called LASSO

(least absolute shrinkage and selection operator) by Tibshirani (1996), the Lq-norm penalty

pλ(|θ|) = λ |θj |q for 0 < q ≤ 2, (Frank and Friedman, 1993), the smoothly clipped absolute

deviation (SCAD) penalty (Fan and Li, 2001), which is a quadratic spline

pλ(|θ|) =





λ|θ| if |θ| < λ,

(a2−1)λ2−(|θ|−aλ)2

2(a−1)
if λ ≤ |θ| < aλ,

(a+1)λ2

2
if |θ| ≥ aλ,

(8.3)

where a = 3.7, or the minimum concavity penalty (MCP) p′λ(|θj |) = (λ− |θ| /a)+ con-

sidered by Zhang (2008). The SCAD and MCP are non-convex penalty functions which
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possess the oracle property. This means that the important variables can be correctly

selected with a high probability whereas the remaining variables will be dropped from the

model. Antoniadis et al. (2011) gave a discussion about many other penalty functions

and selection criteria for the regularization parameter λ for the generalized linear models

(GLMs) framework.

The problem (8.2) is a convex optimization problem if the ℓn(θ) is concave and the

L1 penalty is used. In general, for fixed parameter λ, the penalized likelihood with SCAD

penalty function is non-convex and thus special algorithms have been developed to obtain a

solution. For instance, Zou and Li (2008) propose an effective locally linear approximation

algorithm (LLA) for optimization of (8.2) with the SCAD penalty function. The idea is to

approximate (majorize) the SCAD function by a linear function at the mth iteration

pλ(|θ|) ≈ pλ(|θ(m)|) + p′λ(|θ(m)|)(|θ| − |θ(m)|). (8.4)

As a consequence the penalized maximum likelihood (8.2) reduces to

ℓn(θ)− n

p∑

j=1

w
(m)
j |θj | , (8.5)

where w
(m)
j = p′λ(|θ(m)

j |). By the quadratic approximation of ℓn(θ) at θ(m) this optimiza-

tion problem becomes weighted L1 penalized least squares closely related with the adaptive

LASSO estimation procedure (Zou, 2006) that produce sparse fits and performs variable

selection automatically. The LLA algorithm is implemented as a function in the R (R De-

velopment Core Team, 2012) package SIS of Fan et al. (2009). Zou and Li (2008) discussed

also other iterative approaches for solving the corresponding weighted L1 penalized least

squares problem efficiently by the least angle regression (LARS) algorithm (Efron et al.,

2004).

For further consideration we use a well known result of Green (1984) concerning com-

putational aspects of the MLE in fitting probabilistic regression models. Because the

log-likelihood ℓn(θ) is a composite function of the linear predictors ηi(θ), the Fisher scor-

ing algorithm for maximization of ℓn(θ) reduces to an iteratively re-weighted least squares
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(IRLS) algorithm. Thus the optimization problem (8.5) at the (m+ 1)th iteration can be

replaced by the following weighted least squares problem with weighted L1 penalty

(z(m) −Xθ)TA(m)(z(m) −Xθ) + n

p∑

j=1

w
(m)
j |θj | , (8.6)

where z = A−1u + η is an adjusted dependent variable, u = (∂ℓn(θ)/∂η), η = Xθ and

A = (uuT ), and all these elements are evaluated at the current value θ(m). The working

weight matrix A is diagonal as the observations are independent.

Hence an efficient standard regression procedure with L1 penalty, e.g., based on the

LARS algorithm of Efron et al. (2004) or the coordinate descent algorithm (Friedman et al.,

2007; Friedman et al., 2010), can be adapted to calculate θ̂n,PMLE via an IRLS algorithm.

A discussion about the applicability and implementation of these two approaches for the

penalized logistic regression model with the LLAmajorant (surrogate) of the SCAD penalty

function is presented by Breheny and Huang (2011). Computational algorithms within

high-dimensional settings are discussed also in Bühlmann and van der Geer (2011), and

also in the review paper of Fan and Lv (2010).

It is well known that the least squares estimator, the MLE and quasi-likelihood es-

timators can be highly sensitive to a small proportion of observations that departs from

the model (Huber, 1981; Hampel et al., 1986; Maronna et al., 2006). Therefore the pe-

nalized least squares estimator and MLE are non-robust against outliers in the data too.

To overcome this problem, the penalized M-estimator has been employed (Fan and Li,

2001; Fan and Lv, 2010). However, within regression models, M-estimators are not robust

against outlying observations in the covariates, the so called leverage points, and there-

fore penalized M-estimators are not robust in such settings as well. We remind that only

some redescending M-estimators are robust in linear regression settings with fixed designs

(Mizera and Müller, 1999).

Several robust alternatives of the MLE that are robust simultaneously against outliers in

the response and covariates have been developed, e.g., the weighted MLE of Markatou et al.

(1997) and the maximum Trimmed Likelihood Estimator (TLE) of Neykov and Neytchev
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(1990). To our knowledge, none of these estimators have been used in high dimensional

data modeling. Thus, the goal of this chapter is to develop an alternative of the penalized

MLE for variable selection based on the penalized maximum TLE (PMTLE) in order to

reduce the influence of the outliers in the covariates. The TLE is looking for that subsample

of k > n/2 observations out of n with the optimal likelihood. The trimming number of

observations can be chosen by the user in appropriate bounds to get a high breakdown

point (BDP) and optimal efficiency. Because the TLE accommodates the classical MLE,

the variable selection methodology, which is based mainly on the penalized MLE, can

be adapted and further developed. In this chapter the superiority of this approach in

comparison with the penalized MLE is illustrated.

The paper is organized as follows. In Section 2 we define the Generalized Trimmed

Estimator (GTE), consider its penalized version and characterize its finite sample BDP.

The applicability of the PMTLE is considered for the iterative sure independence screening

(ISIS) framework of Fan et al. (2009) in Section 3. In Section 4 a simulation study is

performed to illustrate the effectiveness of the proposed estimator in comparison with the

ISIS procedure for the classical multiple and Poisson linear regression models. Finally,

conclusions are given in Section 5.

8.2 Penalized maximum trimmed likelihood estima-

tor

For introducing the Penalized Maximum Trimmed Likelihood Estimator (PMTLE), we first

need to review the definition and some properties of the Generalized Trimmed Estimator

(GTE) introduced by Vandev and Neykov (1998). Let fi : Θ
p → R+, where Θp ⊆ Rp is an

open set.

Definition 1. The GTE θ̂kn,GTE of θ is defined as the solution of the optimization problem

θ̂kn,GTE := arg min
θ∈Θp

{
Sn,k(θ) = min

I∈Ik

∑

i∈I
fi(θ)

}
, (8.7)
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where Ik is the set of all k-subsets of the index set {1, . . . , n} and k is the trimming

constant.

The trimming parameter k determines the robustness properties of the GTE as n− k

functions with the largest values of fi(θ) are excluded from the loss function. The BDP

of the GTE is not less than 1
n
min{n − k, k − d} if the set F = {fi(θ) : i = 1, . . . , n}

is d-full. F is called d–full if for any subset of cardinality d of F , the supremum of this

subset is a subcompact function. A real valued function ϕ (θ) is called subcompact if the

sets Lϕ(θ) (C) = {θ : ϕ (θ) ≤ C} are contained in a compact set for every real constant

C. Details can be found in Vandev and Neykov (1998), Müller and Neykov (2003), and

Dimova and Neykov (2004). Thus, if one wants to study the BDP of the GTE, one has to

find the fullness parameter d of F and then the BDP can be exemplified by the range of

values of k. The BDP is maximized for k = ⌊(n+ d+1)/2⌋, when it approximately equals

1/2 for large n. Therefore, by selecting the value of k properly one can control the level

of robustness of the GTE. Further, the asymptotic properties of the GTE estimator (8.7)

were studied by Č́ıžek (2008) for the case of twice differentiable functions fi(θ).

The optimization problem (8.7) defining the GTE is of combinatorial nature,

min
θ∈Θp

Sn,k(θ) = min
θ∈Θp

min
I∈Ik

∑

i∈I
fi(θ) = min

I∈Ik
min
θ∈Θp

∑

i∈I
fi(θ). (8.8)

Therefore, it follows that all possible (nk) partitions of the set {f1, . . . , fn} have to be

considered and θ̂kn,GTE is defined by the partition with the minimal value of Sn,k(θ). Hence,

an exact computation of the GTE is not feasible for large samples. To get an approximative

GTE solution, an algorithm was developed by Neykov et al. (2012a). It repeatedly (i)

sets s = 0, selects a small subset {fi1 , . . . , fik∗} of k∗ functions from F and forms Is =

{i1, . . . , ik∗}, (ii) minimizes the objective function
∑

i∈Is fi(θ) with respect to θ, and uses

the obtained estimate θ̂s, (iii) sets s = s+ 1, orders the functions of F in ascending order,

fν(1)(θ̂s) ≤ fν(2)(θ̂s) ≤ . . . ≤ fν(k)(θ̂s) ≤ . . . ≤ fν(n)(θ̂s), where ν(.) is the permutation of the

indices {1, 2, . . . , n}, and forms Is = {ν(1), . . . , ν(k)}; the steps (ii) and (iii) are repeated

as long as the newly obtained estimates θ̂s produce smaller values of the objective function
∑

i∈Is fi(θ).
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The trial subsample size k∗ should be greater than or equal to d, which is necessary

for the existence of (8.7). However, the chance to get at least one good subsample of data

points is larger if k∗ = d. Obviously, only for very small samples all possible subsets of size

k∗ = k can be considered to obtain the precise instead of an approximative solution. The

algorithm could be further accelerated for large data sets by applying the partitioning and

nesting techniques as discussed by Neykov et al. (2012a).

Particular cases of the GTE are the least trimmed squares (LTS) estimator (Rousseeuw,

1984) if f(θ) in (8.7) is replaced by the squared regression residuals, the least median of

squares (Rousseeuw, 1984), the maximum trimmed likelihood estimator (TLE) (Neykov

and Neytchev, 1990) if f(θ) = −L(ηi(θ); yi), the least trimmed quantile regression (Neykov

et al., 2012b), the extended trimmed quasi-likelihood estimator (Neykov et al., 2012a), to

name a few.

For high dimensional statistical optimization problems, where p is large in comparison

with the sample size n, we need to consider a penalized version of the GTE.

Definition 2. The penalized GTE is defined as

min
θ∈Θp

SP
n,k(θ) = min

θ∈Θp

{
min
I∈Ik

∑

i∈I
fi(θ) + k

p∑

j=1

pλ(|θj |)
}

(8.9)

= min
I∈Ik

{
min
θ∈Θp

[∑

i∈I
fi(θ) + k

p∑

j=1

pλ(|θj |)
]}

(8.10)

= min
I∈Ik

{
min
θ∈Θp

∑

i∈I

[
fi(θ) +

p∑

j=1

pλ(|θj |)
]}

. (8.11)

One can see that the penalized GTE refers to a penalized optimization problem, however,

defined over all k-subsets. Thus the aforementioned algorithm can be used to obtain an

approximate solution. For fixed λ, the BDP of the penalized GTE can be characterized

via the d-fullness index of the set of functions Fλ = {fi(θ) +
∑p

j=1 pλ(|θj |), i = 1, . . . , n}.
Let F be d-full. Due to the inclusion

{θ ∈ Rp : max
j∈J

(fj(θ) +

p∑

l=1

pλ(|θl|)) ≤ C} ⊆ {θ ∈ Rp : max
j∈J

fj(θ) ≤ C}

it follows that Fλ is d-full because F is d-full. We see that the set Fλ is even 1-full provided
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the set {θ ∈ Rp :
∑p

l=1 pλ(|θl|) ≤ C} is contained in a compact set. For the convex

penalty functions such as L1 this is obvious, whereas for the non-convex function such as

SCAD the generalized d-fullness technique (Dimova and Neykov, 2004) can be employed.

From a computational point of view, the LLA defined by (8.4) can be used to get an

approximate solution of the penalized GTE with SCAD penalty function. As the LLA is

a convex majorant of the SCAD function, this ensures d-fullness of the corresponding set

of functions Fλ. Therefore we conclude that a solution of the penalized GTE always exists

if the set of functions Fλ is d-full. We note that this solution may not be unique and thus

additional conditions are required to achieve this.

From the penalized GTE definition it follows that when k = n, and for suitable choices

of fi(θ) and pλ(.), we can derive different penalized estimators such as the LASSO of Tib-

shirani (1996), the penalized L1-likelihood of Tibshirani (1997), the penalized likelihood

with the SCAD function of Fan and Li (2001), the LAD-LASSO of Wang et al. (2007), or

the penalized M-estimator (Fan and Li, 2001). The lack of robustness with respect to out-

lying leverage points in the regression framework is the main weakness of these estimators.

Exceptions are the high BDP penalized MCD estimator (Croux and Haesbroeck, 2010)

and the penalized LTS estimator (Alfons et al., 2012) which are defined over subsamples.

These estimators can also be derived from the penalized GTE by substituting fi(.) with

the Mahalanobis distances and squared regression residuals, respectively.

Definition 3. The PMTLE is defined as a particular case of the penalized GTE when the

function fi(θ) in (8.9) is replaced by the negative log-likelihood of the ith observation.

The PMTLE can attain the highest BDP provided the set Fλ of penalized negative

log-likelihoods is d–full. As the set Fλ inherits the index of fullness of F , it is sufficient to

derive the index of fullness of the set F comprised by the negative log-likelihoods.

We remind that in the classical settings, when p < n, the d–fullness indices of various

sets of functions have been characterized. For instance, Vandev and Neykov (1993) de-

termined the index of fullness d = p for the set of p-variate normal distributions. Müller

and Neykov (2003) related the index of fullness of the negative log-likelihoods sets of the
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linear logistic, Poisson and r-th power exponential distribution regression models with the

quantity N (X) + 1, where N (X) = max06=θ∈Rp card{i ∈ {1, . . . , n}; xTi θ = 0} provides

the maximum number of covariates xi ∈ Rp lying in a subspace, Müller (1995). If the

observations xTi are linearly independent then N (X) = p − 1, and this is the minimal

value for for N (X). If the covariates are qualitative variables such as factors with several

levels, then N (X) is much larger. Neykov et al. (2012a) derived the index of fullness

d = max(N (X),N (Z))+ 1 of the set of extended quasi-log-likelihoods where X and Z are

the mean and dispersion models covariates data matrices. Neykov et al. (2012b) charac-

terized the index of fullness d = N (X) + 1 of the quantile linear regression residuals set.

Hence the indices of fullness of the corresponding Fλ sets with convex penalty functions

are available for direct use. As consequence of this, the BDP of the PMTLE for the above

probabilistic models equals 1
n
min {n− k, k −N (X)− 1}. If the parameter of trimming

k satisfies the inequalities ⌊{n+N (X) + 1} /2⌋ ≤ k ≤ ⌊{n +N (X) + 2} /2⌋ the BDP is

maximized and equals 1
n
⌊{n−N (X)− 1} /2⌋. Obviously, the BDP of the PMTLE can

be small in modeling experimental data with qualitative (categorical) covariates. Thus the

PMTLE is more suitable for data with continuous covariates.

Now the question is how to proceed with the characterization of the BDP in high-

dimensional data when p >> n. As Bühlmann and van der Geer (2011) pointed out: ”The

philosophy that will generally rescue us, is to ‘believe’ that in fact only a few coordinates

of the θ are non-zero”. Armed with this ‘belief’ we postpone the BDP discussion of the

PMTLE to the next section.

In order to reduce the outlier’s influence on the selection of the penalization parameter λ

we recommend the usage of the penalized BIC based on trimming, defined by PTBIC(λ) =

−2 log(SP
n,k(θ̂))+df(λ) log(k) where S

P
n,k(θ̂) is the PMTLE and df(λ) are the model degrees

of freedom given by the non-zero estimated components of θ̂. Obviously, PTBIC reduces

to BIC if k = n and λ = 0.

In the next section, the applicability of the PMTLE is investigated, and its BDP prop-

erties for the ultrahigh dimensional multiple linear regression and Poisson regression model

are considered.
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8.3 Robust SIS and ISIS based on trimming

The usage of penalization is limited in ultrahigh dimensional settings. According to Fan

and Lv (2008), the ultrahigh dimensionality concerns with variable selection in the cases

when p is much larger than n, i.e., log(p) = O(nα) for some 0 < α < 1. In this section we

focus on the so called sure independence screening (SIS) technique and its variations for

variable selection developed by Fan et al. (2009). SIS is a preprocessing technique which

aims at a drastic reduction of the number of covariates to a dimension less than the sample

size by conventional marginal utility methods, with the hope to catch the most informative

covariates, and then to use a penalization technique to select the carriers, see Fan and Lv

(2010). Such a two-stage procedure is acceptable because the penalty based variable selec-

tion techniques work reasonably well with a moderate number of covariates. Fan and Lv

(2008), Fan et al. (2009), and Fan and Lv (2010) have provided theoretical results that all

important covariates can be selected by such a procedure with high probability. Unfortu-

nately, the SIS techniques that rely on MLE, quasi-likelihood and robust M-estimators of

Huber (1981), are not resistant against outliers in the covariates, and so their applicability

is of limited use. This can be overcome by replacing these estimators by their high BDP

counterparts based on trimming. The usage of the PMTLE for the classical multiple linear

and Poisson regression models will be demonstrated in the following. In order to aid the

presentation, we briefly review the SIS formulation, following closely Fan et al. (2009).

8.3.1 Variable ranking by marginal utility

Without loss of generality, we shall assume that L(.) is the negative log-likelihood, although

other loss functions such as the quasi-likelihood, the least squares can be used. Let us define

the marginal utility of the jth covariate Xj, for j = 1, . . . , p, by

L0 = min
θ0

1

n

n∑

i=1

L(yi, θ0), (8.12)

Lj = min
θ0,θj

1

n

n∑

i=1

L(yi, θ0 + xijθj), (8.13)
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where Lj is the loss function of using θ0 + xijθj to predict yi.

The idea behind SIS is to compute the marginal utilities L1, . . . , Lp, rank them in as-

cending order, Lν(1) ≤ . . . ≤ Lν(q) ≤ . . . ≤ Lν(p), where (ν(1), . . . , ν(p)) is the permutation

of the indices (1, . . . , p), and select the q-vector of covariates (Xν(1), Xν(2), . . . , Xν(q)) for

further consideration. In this way the covariate Xj is selected by SIS according to the

magnitude of its marginal utility. Computing the Lj is fast as the fitting model has two

parameters only, and so even for ultrahigh dimensional data this is not an intensive com-

putational problem. Fan and Lv (2008) recommend to take q = ⌊n/ logn⌋ for multiple

regression and q = ⌊n/(2 logn)⌋ for Poisson regression. The parameter q is usually chosen

large enough but q < n to ensure the sure screening property. As q is specified in advance,

only the q smallest marginal utilities have to be ordered, and an ordering of the remaining

values is not required, hereby saving computation time. We note that the influence of θ0

can be excluded by the marginal utility via the marginal likelihood ratio LRj = L0 − Lj

that assesses the increments of the log-likelihood and equals the deviance differences for

GLMs. Obviously this will not change the ordering of Lj . For the multiple regression

model this is equivalent to centering the dependent variable by its mean. On the other

hand, the covariates have to be standardized to reduce the influence of their magnitude.

8.3.2 Penalized pseudo-likelihood

The subset of variables selected by SIS may still include many unimportant covariates.

To improve performance, Fan et al. (2009), and Fan and Song (2010) recommend the

usage of the penalized likelihood to further delete unimportant variables. By reordering

the covariates if necessary, we may assume without loss of generality that X1, . . . , Xq are

the covariates recruited by SIS. Let xi,q = (xi1, . . . , xiq)
T and redefine θ = (θ1, . . . , θq)

T .

Minimization of the penalized log-likelihood

1

n

n∑

i=1

L(yi, θ0 + xTi,qθ) +

q∑

j=1

pλ(|θj |), (8.14)
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will yield a sparse regression parameter estimate θ, where the regularization parameter

may be chosen by cross-validation. Let us denote the nonzero components of θ by M̂.

Fan et al. (2009) refer to this two-stage procedure as SIS-Lasso or SIS-SCAD, depending

on the choice of the penalty function. The screening stage solves only bivariate optimiza-

tion, see (8.13), whereas the fitting part solves only the optimization problem (8.14) with

moderate size q. This is an attractive feature in ultrahigh dimensional statistical learning.

8.3.3 Robust SIS-SCAD based on trimming

The two-stage SIS-SCAD estimation procedure are based on the MLE and penalized MLE

which are not robust against outlying observations in the covariates in probabilistic re-

gression models. A naive approach would be to replace the optimization problems (8.12),

(8.13) and (8.14) by their counterparts based on trimming and to solve them separately to

get the corresponding extremes keeping the trimming parameter k at the lowest possible

levels to guarantee maximal BDP. This means that the GTE algorithm needs to be used

in p+ 2 separate optimization problems.

However, the GTE combinatorial optimization principle dictates that the two-stage

SIS-SCAD estimation procedure has to be applied to all k-subsets in order to get that

k-subset with the optimal value of the objective function (8.14). In this way we formally

define the two-stage Trimmed SIS-SCAD (TSIS-SCAD) estimation procedure as follows:

min
I∈Ik





SIS procedure



Ltrim
0 := min

θ0

1
k

∑
i∈I
L(yi, θ0)

Ltrim
j := min

θ0,θj

1
k

∑
i∈I
L(yi, θ0 + xijθj)

(X1, . . . , Xq) := (Xν(1), Xν(2), . . . , Xν(q))

SIS− SCAD procedure

SP,trim
k,n := min

θ0,θ

(
1
k

∑
i∈I
L(yi, θ0 + xTi,qθ) +

∑q
j=1 pλ(|θj |)

)
.

(8.15)

Therefore, for all k-subsets the linked optimization problems (8.15) have to be solved

subsequently and the penalized TSIS-SCAD estimate is defined by that k-subset with the
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minimal value of SP,trim
k,n . Because this is not feasible for large data sets, an approximate

estimate can be obtained by the use of the GTE algorithm. Obviously, the covariates

have to be standardized using the means and standard deviations computed from each

subset in order to reduce the influence of their magnitude as the GTE algorithm consists

of optimization problems over data subsets.

An important choice for the algorithm is the trimming parameter k which controls the

identifiability of the model parameters and determines the finite sample BDP of the esti-

mator. Since here we will only consider simple linear and Poisson regression models, the

d-fullness index of Fj = {L(yi, θ0 + xijθj) for i = 1, . . . , n} is N (Xj) + 1 for j = 1, . . . , p,

according to Müller and Neykov (2003). Thus, the finite sample BDP of the TLE utility

estimator equals

1
n
min {n− k, k −N (Xj)− 1}, whereas for the penalized TSIS-SCAD estimator the finite

sample BDP is 1
n
min {n− k, k −N (Xn×q)− 1}, see Müller and Neykov (2003). There-

fore, the finite sample BDP of the two-stage TSIS-SCAD estimation procedure equals

1
n
min {n− k, k −D − 1} where D = max[maxj N (Xj),N (Xn×q)]. This BDP is maxi-

mized for ⌊{n+D + 1} /2⌋ ≤ k ≤ ⌊{n+D + 2} /2⌋ and equals 1
n
⌊{n−D − 1} /2⌋.

Instead of assigning a minimal value of the trimming parameter k to gain maximal BDP

we prefer to take a subset of data of size k = ⌊αn⌋ for α ∈ (0.5, 1], provided all covariates

are continuous. For instance, the choice α = 0.80 ensures simultaneously a resistance

against 20% outliers in the data and leads to a higher efficiency of the estimator.

8.3.4 Iterative feature selection

Independent variable screening as it is done in the SIS procedure may have poor perfor-

mance if variables are marginally weakly correlated with the response variable but jointly

related with the response, or if a variable is jointly uncorrelated with the response but its

marginal correlation with the response is higher than for some other important variable.

These problems are addressed by iterative SIS (ISIS) proposed by Fan and Lv (2008), Fan

et al. (2009), and Fan and Song (2010) which incorporates the joint covariance information.
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In the first step of ISIS, the two stage SIS-SCAD procedure is performed to select the

subset M̂1 of covariates. Then Fan et al. (2009) propose to compute the following loss

function in order to assess the importance of the covariate Xj which has not been included

by the SIS-SCAD procedure:

L
(2)
j = min

θ0,θM̂1
,θj
n−1

n∑

i=1

L(yi, θ0 + xT
i,M̂1

θM̂1
+ xijθj), (8.16)

for j ∈ M̂c
1 = {1, . . . , p} \ M̂1, where xi,M̂1

is the sub-vector of xi consisting of those

elements in M̂1.

The optimization problem (8.16) is low-dimensional and thus easy to solve. The addi-

tional contribution of variable Xj given the existence of variables in M̂1 can be assessed

by the marginal likelihood ratio test (difference by the two deviance functions for the GLM

setting):

LLR
j = min

θ0,θM̂1

n−1

n∑

i=1

L(yi, θ0 + xT
i,M̂1

θM̂1
)− L

(2)
j . (8.17)

After ordering of LLR
j in ascending order for j ∈ M̂c

1 we take the indices corresponding to

the smallest m2 elements and form the set Â2.

The above pre-screening step is followed by the penalized likelihood for obtaining a

sparse estimate

θ2 = argmin
θ0,θM̂1

,θ
Â2


n−1

n∑

i=1

L(yi, θ0 + xT
i,M̂1

θM̂1
+ xT

i,Â2
θÂ2

) +
∑

j∈M̂1∪Â2

pλ(|θj |)


 . (8.18)

As a result we obtain a new estimated set M̂2 of active indices consisting of those

indices of θ2 that are non-zero. Thus, this procedure allows to delete variables from the

previously selected features with indices in M̂1. The process, which iteratively recruits

and deletes features, can then be repeated until we obtain a set of indices M̂l which either

has reached the prescribed size q, or satisfies M̂l = M̂l−1. In this way a final estimated

parameter vector θl is obtained.

In their R package SIS, Fan et al. (2009) chose k1 = ⌊2q/3⌋, and thereafter at the rth

iteration, they take mr = q − |M̂r−1|. This ensures that the iterated versions of SIS take

at least two iterations to terminate.
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8.3.5 Robust iterated variable selection based on trimming

Similar to robustifying the two-stage SIS-SCAD estimation procedure, we could replace

the optimization problems (8.16) and (8.18) by their counterparts based on trimming and

solve them for all k-subsets out of n cases in order to get that k-subset with the optimal

objective value of (8.18). This way we formally define the two-stage Trimmed ISIS-SCAD

(TISIS-SCAD) estimation procedure as

min
I∈Ik





ISIS procedure



Ltrim
0,M̂1

= min
θ0,θM̂1

k−1
∑
i∈I
L(yi, θ0 + xT

i,M̂1
θM̂1

)

L
(2,trim)
j = min

θ0,θM̂1
,θj
k−1

∑
i∈I
L(yi, θ0 + xT

i,M̂1
θM̂1

+ xijθj)

ISIS− SCAD procedure

S̃P,trim
k,n = min

θ0,θM̂1
,θ

Â2

(
k−1

∑
i∈I
L(yi, θ0 + xT

i,M̂1
θM̂1

+ xT
i,Â2

θÂ2
)

+
∑

j∈M̂1∪Â2

pλ(|θj |)
)

(8.19)

Therefore for all k-subsets the linked optimization problems (8.19) have to be solved

subsequently and the penalized TISIS-SCAD estimate is defined by the k-subset with the

minimal value of S̃P,trim
k,n . This procedure would not be computationally feasible for larger

data sets, and therefore an approximate estimate can be obtained by the use of the GTE

algorithm. Again the variable standardization has to be done within the subsets.

Let r = |M̂1 ∪ Â2| be the cardinality of M̂1 ∪ Â2 and M̂∗
1 = M̂1 + 1. Similar to the

previous section we can conclude that the corresponding utility sets are (N (Xn×r)+1) and

(N (Xn×M̂∗
1
) + 1) full, and these are the minimal numbers of observations that guarantee

identifiability of θ (Müller and Neykov, 2003). Hence, the finite sample BDP of the TLE

utility estimator defined by (8.19) equals 1
n
min

{
n− k, k −N (Xn×M̂∗

1
)− 1

}
whereas for

the penalized maximum trimmed ISIS-SCAD estimator it is 1
n
min {n− k, k −N (Xn×r)− 1}.

Using the notation D̃ = max[N (Xn×M̂∗
1
),N (Xn×r)], the BDP of the two-stage TISIS-

SCAD estimation procedure (8.19) equals 1
n
min

{
n− k, k − D̃ − 1

}
. This BDP is maxi-

mized for
⌊{
n+ D̃ + 1

}
/2
⌋
≤ k ≤

⌊{
n+ D̃ + 2

}
/2
⌋
and equals
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1
n

⌊{
n− D̃ − 1

}
/2
⌋
.

As mentioned above, one can select k = ⌊αn⌋ with α = 0.80, for instance.

8.4 Simulation study

In this section, we study the performance of SIS-SCAD, ISIS-SCAD and their trimmed

counterparts on simulated data for the multiple and Poisson linear regression framework.

Two different data configurations are presented and discussed.

8.4.1 Performance measures

According to the simulation designs described in the next sections we generate training

data without and with contamination, and estimate the regression parameters θ with the

different methods. In addition, n test set observations are generated according to the same

scheme but without outliers. We denote the test set covariates by x̃i and the response

by ỹi, for i = 1, . . . , n. The predictions η̃i = x̃Ti θ̂ for the linear regression model, and

log(η̃i) = x̃Ti θ̂ for Poisson regression are evaluated by the root mean squared error of

prediction (RMSEP),

RMSEP(θ̂) =

√√√√ 1

n

n∑

i=1

(ỹi − η̃i)2.

The RMSEP is computed for each estimator and simulated test data set, and we report

averages and medians over all simulations. Further, we compare also with the so called

oracle estimator, where the true regression coefficients θ are used for the evaluation.

We evaluate the methods also according to their ability to select the correct variables,

using the false positive rate (FPR) and the false negative rate (FNR). False positives refer

to variables that are selected by the method, while their coefficients in the simulation

design are zero. In contrast, a false negative is a coefficient estimated as zero, while it was
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generated as non-zero. Formally, FPR and FNR can be defined as

FPR(θ̂) =
|{j ∈ {1, . . . , p} : θ̂j 6= 0 ∧ θj = 0}|

{j ∈ {1, . . . , p} : θj = 0} (8.20)

FNR(θ̂) =
|{j ∈ {1, . . . , p} : θ̂j = 0 ∧ θj 6= 0}|

{j ∈ {1, . . . , p} : θj 6= 0} (8.21)

These rates are computed for each simulated data set, and we will report average numbers

over all simulations. The better the sparseness structure is identified by the method, the

smaller these rates should be.

In order to compare the simulation results with those of Fan et al. (2009) for the

Poisson regression model, we also report the median values of the evaluation measures

||θ−θ̂||1 =
∑p

i=0 |θj−θ̂j | and ||θ−θ̂||2 = (
∑p

i=0(θj−θ̂j)2)1/2, the AIC - Akaike’s information

criterion, and the BIC - Bayesian information criterion.

8.4.2 Simulation design - multiple linear regression

We use the 3rd simulation design considered in Alfons et al. (2012) where the sparse

LTS regression estimator with L1 penalty (L1-penalized trimmed LTS, trimmed LASSO)

was introduced. We compare their estimator with the SIS-SCAD and its trimmed version

TSIS-SCAD, because SIS-SCAD exhibits better performance than SIS-LASSO according

to the simulation study (without contamination) of Fan et. al. (2009). We note that Fan

et al. (2009) denote SIS-SCAD and ISIS-SCAD as Van-SIS and Van-ISIS.

In this setting, we generate n = 100 observations from a p-dimensional normal dis-

tribution Np(0,Σ), with p = 1000. The covariance matrix Σ = (Σij)1≤i,j≤p is given

by Σij = 0.5|i−j|, creating correlated predictor variables. The coefficient vector θ =

(θ1, . . . , θp)
T has components θ1 = θ7 = 1.5, θ2 = 0.5, θ4 = θ11 = 1, and θj = 0 for

j ∈ {1, . . . , p}\{1, 2, 4, 7, 11}.
The response variable is generated according to the multiple linear regression model

yi = xTi θ + εi, where the error terms εi follow a normal distribution with µ = 0 and

σ = 0.5. We apply the same contamination scheme as Alfons et al. (2012), see also Khan

et al. (2007), who proposed:
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1. No contamination

2. Vertical outliers: 10% of the errors terms in the regression model follow a normal

N(20, σ2), instead of a N(0, σ2).

3. Leverage points: Same as in 2., but the 10% contaminated observations contain

high-leverage values, by drawing the predictor variables from independent N(50, 1)

distributions.

The results of the simulation experiment are given in Table 8.1. The first and second

row of this table are taken from Table 3 of Alfons et al. (2012) in order to make a

comparison. L1-LTSraw is the result of the L1-penalized trimmed LTS procedure, and L1-

LTS is a reweighted version of the estimator (see Alfons et al., 2012). The means (mean)

and medians (med), respectively, of the RMSEP, FPR and FNR over 500 simulation runs

are reported for every method; ISIS-SCAD is denoted by ISIS, and its trimmed version by

TISIS-XX, where XX shows the percentage of trimming - 10, 20, 25.

The results based on the means and medians are almost the same in our simulation

experiments. Larger differences could refer to possible problems with the algorithm. We

see that the performance of the ISIS-SCAD estimator is excellent for the scenario without

contamination, and the RMSEP is close to the oracle estimator. However, ISIS-SCAD

breaks down in the presence of vertical outliers or leverage points, whereas the robust

methods L1-LTS and TISIS are stable. TISIS shows excellent performance: the RMSEP is

close to the oracle estimator, and the false positive and false negative rates are very small.

Moreover, the different trimming percentages result in about the same performance.

8.4.3 Simulation design - Poisson regression

The simulation configurations of this section are the same as in Fan et al. (2009). The

following three settings of covariates X1, . . . , Xp and regression coefficients θ0, θ1, . . . , θp,

for p = 1000 and sample size n = 200 are generated:
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1. X1, . . . , Xp are independent and identically distributed N(0, 1) random variables;

θ0 = 5, θ1 = −0.5423, θ2 = −0.5314, θ3 = −0.5012, θ4 = −0.4850, θ5 = −0.4133,

θ6 = −0.5234, and θj = 0 for j > 6;

2. X1, . . . , Xp are jointly Gaussian, marginally N(0, 1), and with cor(Xi, X4) = 1/
√
2

for all i 6= 4 and cor(Xi, Xj) = 1/2 if i and j are distinct elements of {1, . . . , p}\{4};
θ0 = 5, θ1 = θ2 = θ2 = 0.6, θ4 = −0.9

√
2; and θj = 0 for j > 4;

3. X1, . . . , Xp are jointly Gaussian, marginally N(0, 1), and with cor(Xi, X5) = 0 for all

i 6= 5, corr(Xi, X4) = 1/
√
2 for all i /∈ {4, 5}, and cor(Xi, Xj) = 1/2 if i and j are

distinct elements of {1, . . . , p}\{4, 5};
θ0 = 5, θ1 = θ2 = θ2 = 0.6, θ4 = −0.9

√
2, θ5 = 0.15, and θj = 0 for j > 5.

The first case with independent predictors is the simplest situation for variable selection.

Here, the coefficients θ1, . . . , θ6 were generated as
(

logn√
n
+ |Z|/8

)
U with Z ∼ N(0, 1) and

U = 1 with probability 0.5 and U = −1 with probability 0.5, independently of Z. The last

two cases are more complicated because of serial correlations. Even more, although θ4 6= 0,

the choices of the other regression coefficients in Cases 2 and 3 ensure that cor(X4, Y ) = 0,

which makes variable selection more difficult. The coefficient θ0 = 5 is used to control an

appropriate signal-to-noise ratio.

The data (xTi , yi) for i = 1, . . . , 200 are independent copies of a pair where yi is condi-

tionally on xi distributed as Poisson(µ(x)), where log(µ(x)) = θ0 + xTi θ.

We apply the following contamination scheme:

1. No contamination

2. Vertical outliers: 10% and 20% data contamination is introduced by changing re-

spectively the first 20 and 40 observations to yi := yi + exp(7), for i = 1, . . . , 20,

respectively 40.

3. Leverage points: 10% and 20% data contamination is introduced by modifying re-

spectively the first 20 and 40 rows of the covariates matrix according to xij :=
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−3Bjsign(xij) for i = 1, . . . , 20, where Bj = max
1≤i≤n

(|xij |) for j = 1, . . . , p.

Following the suggestion of Fan et al. (2009), we perform the computation for ISIS-

SCAD and TISIS-SCAD with q =
⌊

n
2 logn

⌋
= 18 as a sensible choice based on asymptotic

results. The final regularization parameter for the SCAD penalty was chosen via 10-fold

cross-validation as recommended by Fan et al. (2009). However, the BIC is used to choose

the SCAD regularization parameter at each intermediate stage of the ISIS procedures in

the three cases.

The estimators were applied to the training data and evaluated on the test data with

n = 200 observations, which were generated according to the same schemes without con-

tamination. For the TISIS-SCAD procedure we report the result for different trimming

percentages. In the tables below, we report several performance measures, all of which are

based on 100 Monte Carlo repetitions. The tables contain the medians of these measures.

The first two rows give the estimation errors ||θ− θ̂||1 and ||θ− θ̂||2, respectively, evaluated
for the training data. In the 3rd and 4th row we report the FPR and FNR, respectively,

for the training data. The fifth, sixth, seventh and eighth rows give Akaike’s information

criterion (Akaike, 1974), AIC, and the Bayesian information criterion (Schwartz, 1978),

BIC, computed over the training and test (indicated by the additional ”t”) data. The last

two rows give the RMSEP for the test data (RMSEP.t) and the true regression parameter

(RMSEP.o). The symbols ”*” in the tables refer to very big values greater than 250000.

Two consecutive tables are used for one simulation setting, where the first table contains

the results for the vertical outliers, and the second table is for the leverage points.

For the simulation experiments without contamination, our results for ISIS-SCAD

closely follow those based on Van-ISIS presented at Tables 5-7 of Fan et al. (2009). In case

of contamination (vertical outliers or leverage points) we see that the ISIS-SCAD estimator

fails; all error measures are (much) worse, independent of the simulation scheme. An ex-

ception is the FPR, which means that in case of contamination the correct zero-coefficients

are indeed set to zero. However, since FNR increases considerably, many non-zero coeffi-

cients are also set to zero. The robust version TISIS-SCAD shows excellent behavior for
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all simulation schemes, and for uncontaminated and contaminated data. Generally, the

results are close to the ISIS-SCAD estimator when no contamination is present. Remark-

able are the results for FPR and FNR of TISIS-SCAD, which are not higher than 1% in

all scenarios.
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Table 8.1: Results for the simulation scheme in the multiple linear regression case, where

n = 100 and p = 1000. The means and medians of RMSEP, FPR and FNR over 500

simulation runs are reported for every method: L1-LTSraw and L1-LTS refer to the raw

and weighted penalized LTS regression estimator of Alfons et al. (2012), respectively, ISIS

and TISIS (with the percentage of trimming) corresponds to the original and trimmed

version of ISIS-SCAD, respectively, and Oracle uses the true regression parameters.

No contamination Vertical outliers Leverage points

Method RMSEP FPR FNR RMSEP FPR FNR RMSEP FPR FNR

L1-LTSraw 0.79 0.02 0.00 0.74 0.02 0.00 0.72 0.02 0.00

L1-LTS 0.74 0.01 0.00 0.70 0.01 0.00 0.70 0.02 0.00

ISIS(mean) 0.53 0.00 0.00 4.89 0.01 0.75 2.17 0.01 0.33

ISIS(med) 0.52 0.00 0.00 4.88 0.01 0.79 2.13 0.01 0.40

TISIS-10(mean) 0.53 0.00 0.00 0.55 0.00 0.00 0.55 0.00 0.00

TISIS-20(mean) 0.53 0.00 0.00 0.56 0.00 0.01 0.57 0.00 0.03

TISIS-25(mean) 0.53 0.00 0.00 0.59 0.00 0.02 0.58 0.00 0.04

TISIS-10(med) 0.52 0.00 0.00 0.53 0.00 0.00 0.53 0.00 0.00

TISIS-20(med) 0.52 0.00 0.00 0.54 0.00 0.00 0.54 0.00 0.00

TISIS-25(med) 0.52 0.00 0.00 0.55 0.00 0.00 0.56 0.00 0.00

Oracle 0.50



Simulation study 177

Table 8.2: Poisson regression, Case 1 of the simulation scheme with 0%, 10% and 20% of

contamination by vertical outliers (VO), n = 200 and p = 1000.

0% cont. VO-10% contamination VO-20% contamination

ISIS ISIS TISIS-10 TISIS-20 ISIS TISIS-20 TISIS-30

||θ − θ̂||1 0.12 3.58 0.13 0.17 4.83 0.14 0.18

||θ − θ̂||2 0.03 0.99 0.03 0.05 1.36 0.04 0.05

FPR 0.01 0.01 0.01 0.01 0.01 0.01 0.01

FNR 0 0 0 0 0.17 0 0

AIC 1544.82 * 1393.09 1175.19 * 1232.82 1022.87

AICt 1666.58 26502.49 1675.22 1749.27 * 1685.46 1786.56

BIC 1607.49 * 1453.76 1233.61 * 1291.25 1078.26

BICt 1729.24 26563.51 1737.89 1811.93 * 1748.13 1849.23

RMSPE.t 24.84 385.37 26.22 32.28 493.55 28.4 36.74

RMSEP.o 17.38
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Table 8.3: Poisson regression, Case 1 of the simulation scheme with 0%, 10% and 20% of

contamination by leverage points (LP), n = 200 and p = 1000.

0% cont. LP-10% contamination LP-20% contamination

ISIS ISIS TISIS-10 TISIS-20 ISIS TISIS-20 TISIS-30

||θ − θ̂||1 0.12 3.84 0.14 0.17 3.92 0.15 0.21

||θ − θ̂||2 0.03 1.41 0.04 0.05 1.42 0.04 0.06

FPR 0.01 0.01 0.01 0.01 0.01 0.01 0.01

FNR 0 0.83 0 0 1 0 0

AIC 1544.82 * 1381.66 1179.74 * 1228.92 1033.77

AICt 1666.58 * 1691.73 1727.89 * 1693.31 1770

BIC 1607.49 * 1442.22 1237.93 * 1286.54 1089.67

BICt 1729.24 * 1754.4 1790.56 * 1754.99 1832.67

RMSPE.t 24.84 493.32 27.61 31.63 511.07 29.26 43.89

RMSEP.o 17.38
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Table 8.4: Poisson regression, Case 2 of the simulation scheme with 0%, 10% and 20% of

contamination by vertical outliers (VO), n = 200 and p = 1000.

0% cont. VO-10% contamination VO-20% contamination

ISIS ISIS TISIS-10 TISIS-20 ISIS TISIS-20 TISIS-30

||θ − θ̂||1 0.26 5.54 0.28 0.32 6.54 0.29 0.33

||θ − θ̂||2 0.07 1.66 0.08 0.09 1.88 0.08 0.1

FPR 0.01 0.02 0.01 0.01 0.02 0.01 0.01

FNR 0 0.25 0 0 0.5 0 0

AIC 1535.93 * 1381.11 1174.58 * 1226.36 1024.64

AICt 1674.54 26274.8 1683.06 1703.42 38396.37 1686.06 1732.16

BIC 1598.6 * 1441.77 1233 * 1284.79 1080.53

BICt 1737.21 26334.17 1745.73 1766.09 38459.04 1748.73 1792.69

RMSPE.t 17.52 212.38 17.59 18.9 291.46 18.29 19.83

RMSPE.o 13.79
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Table 8.5: Poisson regression, Case 2 of the simulation scheme with 0%, 10% and 20% of

contamination by leverage points (LP), n = 200 and p = 1000.

0% cont. LP-10% contamination LP-20% contamination

ISIS ISIS TISIS-10 TISIS-20 ISIS TISIS-20 TISIS-30

||θ − θ̂||1 0.26 3.41 0.28 0.32 3.46 0.3 0.32

||θ − θ̂||2 0.07 1.66 0.08 0.09 1.66 0.09 0.09

FPR 0.01 0.01 0.01 0.01 0.01 0.01 0.01

FNR 0 0.75 0 0 0.75 0 0

AIC 1535.93 17359.63 1379.97 1174.5 16466.75 1226.01 1027.9

AICt 1674.54 18796.81 1680.45 1704.82 19419.59 1697.08 1716.28

BIC 1598.6 17389.32 1440.63 1232.54 16521.18 1284.44 1083.79

BICt 1737.21 18834.75 1743.11 1767.49 19468.78 1759.75 1778.95

RMSPE.t 17.52 157.28 17.66 18.41 159.36 18.22 19.34

RMSEP.o 13.79
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Table 8.6: Poisson regression, Case 3 of the simulation scheme with 0%, 10% and 20% of

contamination by vertical outliers (VO), n = 200 and p = 1000.

0% cont. VO-10% contamination VO-20% contamination

ISIS ISIS TISIS-10 TISIS-20 ISIS TISIS-20 TISIS-30

||θ − θ̂||1 0.26 5.63 0.27 0.31 6.6 0.29 0.33

||θ − θ̂||2 0.07 1.65 0.08 0.09 1.9 0.09 0.1

FPR 0.01 0.02 0.01 0.01 0.02 0.01 0.01

FNR 0 0.4 0 0 0.6 0 0

AIC 1539.62 * 1384.54 1177.33 * 1231.26 1031.1

AICt 1674.91 26836.25 1683.5 1705.71 47284.46 1689.55 1729.97

BIC 1602.29 * 1445.2 1235.75 * 1289.36 1086.99

BICt 1737.57 26898.92 1746.17 1768.38 47345.48 1752.22 1792.64

RMSPE.t 17.58 214.84 17.95 18.94 288.5 18.47 19.8

RMSEP.o 13.91
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Table 8.7: Poisson regression, Case 3 of the simulation scheme with 0%, 10% and 20% of

contamination by leverage points (LP), n = 200 and p = 1000.

0% cont. LP-10% contamination LP-20% contamination

ISIS ISIS TISIS-10 TISIS-20 ISIS TISIS-20 TISIS-30

||θ − θ̂||1 0.26 3.58 0.27 0.31 3.65 0.31 0.31

||θ − θ̂||2 0.07 1.67 0.07 0.09 1.67 0.09 0.09

FPR 0.01 0.01 0.01 0.01 0.01 0.01 0.01

FNR 0 0.8 0 0 1 0 0

AIC 1539.62 17816.74 1385.37 1181.93 16620.12 1229.87 1031

AICt 1674.91 19809.14 1677.79 1704.42 20470.47 1697.85 1724.25

BIC 1602.29 17849.23 1446.04 1240.27 16672.89 1288.3 1086.89

BICt 1737.57 19835.52 1740.46 1767.09 20526.54 1760.52 1786.92

RMSPE.t 17.58 164.91 17.86 18.84 166.76 19.06 19.96

RMSEP.o 13.91
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8.5 Summary and conclusions

We introduced a robust version of the penalized MLE based on the idea of trimming and

characterized its BDP based on the notion of d-fullness. The finite sample properties of the

proposed estimator were studied via an extended simulation study within high-dimensional

multiple and Poisson linear regression settings. The new estimator generally performs very

well, which is confirmed by the simulation experiments and by a comparison to other pro-

posals. To handle the computations, the SIS/ISIS procedure of Fan et al. (2009) was used.

However, any other procedure that implements penalization/regularization techniques can

be employed instead. The computation of the estimator is taking advantage of the same

technology as used for its classical counterpart, but here the estimation is based on sub-

samples only. The used algorithm consisting of a trial and a refinement step (Neykov et

al., 2012a) follows the ideas of the FAST-LTS algorithm of Rousseeuw and van Driessen

(1999), and Neykov and Müller (2003). An important choice for estimators based on trim-

ming is the trimming percentage. In the numerical experiments, it has been shown that a

trimming percentage lower than the contamination level can lead to very poor estimates,

but any higher trimming percentage gives very reasonable results. Therefore, a general

rule is to work with a conservative choice of the trimming percentage or to estimate the

amount of trimming similarly to Č́ıžek (2010), and Gervini and Yohai (2002).
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