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Abstract

Let ES f(y) = 201 = ue/A)* fkdr(y), mx < A, be the Riesz means
of order a of the multiple Hermite series of the function f. Here it

is proved that E{f — f as A — oo in the following cases: (i) In
the space LP(R™), n > 2, under the sharp condition on parameter
a,a > a(p), where a(p) = max(0,n|1/p—1/2| - 1/2)and 1 < p <
2n/(n+2) or 2n/(n+2) < p < 0. (ii) In the space L2, with a norm
([ 1f(z)|*(1+|=|*)™dz)"/? if 2a > |m]; or, equivalently, in the Sobolev
space H™ with the usual norm ([ |f(€)|2(1 + |€]*)™d€) /2.

1 Statement of the main results

Let ESf(y) = 3(1— pr/A)* fudk(y), pmx < A, be the Riesz means of order
« of the multiple Hermite series of the function f, where fx = [ f(z)¢x(z)dz

and
pi = 2|k| + n, ¢i(z) = Hi(z) exp(—z’/2)

are the eigenvalues and orthonormalized eigenfunctions (Hermite functions)
of the operator —A + z? in L*(R™),n > 2. We are interested in the problem
of the convergency Ef — f as A — oo. This convergence can be locally
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uniform [9],[18] or almost everywhere [10], [19] or on the Lebesgue set of the
function f [10], [19] or in the L? norm [10], [19]. In [10] the case of L} spaces
with a norm ([ |f(z)|(1+|z|)™dz) under sharp conditions on the parameters
aand m, a > (n—1)/2, —2a—2/3 <m < 2a+ 1 — n was considered. See
also (2], [4], [5], [7], (8], [14], [15] for the case of compact manifolds without
boundary and the bibliography in [14], [19].

The results for L? spaces [10], [19] are sharp only if p = 1. Using the
analogy with the classical Bochner-Riesz conjecture, which corresponds to
the case A = —A in L*(R™), it is natural to expect that the convergence
E¢f — f in L? norm is valid under the following sharp condition on the
parameter «,

a > ap), (1.1)

where
a(p) = max(0,n|1/p — 1/2| — 1/2), n > 2, (1.2)

is the so-called critical index for the L? spaces. This was confirmed in [19]
for the radial functions in L?.
Here we shall prove this conjecture for all p satisfying

11/p—=1/2| 2 1/n, n > 2, (1.3)

using a variation of the main approach from [14], where the corresponding
convergence was established for |1/p—1/2| > 1/(n+1) in the case of second
order elliptic operators on a compact manifold without boundary (see also
(6], [15]). Slightly changing the arguments, we investigate the convergence
L;"f - f also in the Sobolev space H™ with the usual norm ||fl||z, =
([1F(E)P(1 +|€]*)™d€)M/?. Noticing that the operator A commutes with the
Fourier transform we see that the convergence EYf — f asA\ — oo in the
space H™ is equivalent to the convergence in the space L? with a norm
1l = ([ /@)1 + 22" da) /2.
By duality, 1t is sufficient to consider only the cases 1 < p < 2 and
m > 0. Let ||ES||, denote the operator norm in L? spaces and || E{||2,m - the
operator norm in H™ spaces or, equivalently, in L? spaces. Then the desired
convergence will follow from uniform estimates of these norms.

Theorem 1 Let a > a(p) and 1 < p < pn, where p, = 2n/(n + 2).
Then || ES||p < ¢



Here and later on all estimates are uniform with respect to the parameter
A > Ag for some A\g > 1, where c is a positive constant.

Theorem 2 [f2a > m then ||ES|2m < c.

2 Proof of Theorem 1

Since the case p = 1 is already considered in [10],[19], we shall suppose
here that p > 1. Note also that it is sufficient to prove the estimate || £{||, < ¢
only for the case p < p,. Indeed, we have a(p,) = 1/2. If @ > 1/2 then we can
find p such that p < p, and 1/2 < a(p) < a. Then ||Ef||, < cand ||ES||; < c.
Therefore the Riesz interpolation theorem [16] implies || ES||,, < c.

We intend to adapt the main arguments from [6],[14],[15]. To this end we
need the following "restriction” theorem. Let X(44)() be the characteristic
function of the interval (a,b) and let || f||, stand for the L”? norm. Denote

B(p) = max(0, 5nll/p = 1/2] ~ 1/2), (2.1)

and

11/p = 1/2] # 1/n. (2.2)

Theorem 3 The uniform estimate

X (A = X)fll2 < M@ £]], (2.3)

is fulfilled if p satisfies (2.2). In addition, if p =1 then (2.8) is true for all
n >:2.

We postpone the proof of theorem 3 until section 3 and proceed further
with the proof of theorem 1. Notice that

EY = c A7 / e (1 —10)"" e 41, (2.4)
and consider its average £ ),

EY, = caA™® / eMp(t)(t —40)~* e dt, (2.5)



where p is an even function from the Schwartz class such that the support of
its Fourier transform p is close to zero and j(t) = 1 if |t| < € for some € > 0
small enough. Further the proof is devided into several steps.

Step 1. Here we prove

|EY — Ef\’,p”p <cifa>a(p), 1 <p < pn. (2.6)

To this end we need the following estimates for the kernels /%e(\, z,y)
and [%e,(\, z,y), of the operators (2.4), (2.5) respectively, which follow from
theorem 4 below:

[I%e(A, 2, y)| + 1%, (A, 2,y)| < Cnly|™ (2.7)
if y2 > 2)\ and analogously for z% > 2).

Theorem 4 Let

e(\z,y) = Z br(z)Pi(y)

<A
be the spectral function of the operator A. Then
leA + g, z,z) —e(N, z,2)] < AV ifn > 2, |y < 1, (2.8)
e(\, z,z) < cA™? exp (—cz?/N), (2.9)
e(\,z,z) < Cnlz|™ ifz® > (1 4+ 6)A, 6§ >0, N > 0. (2.10)

This theorem will be proved in section 5. Note that (2.8) is also proved in
[19] by another method.

Further, according to (2.7) in estimating the integral [ |ESf — Ef |Pdy
we can suppose that y?> < 2\. Then

(B — B ) fllp < AZGD|(BY - BS ) fll, 1<p<2.  (211)
On the other hand, E§ — Ef, = A™%g(A — A), where g(u) = ca [ (1 —

p(t))(t — i0)~*~'dt. In particular, if a > 0 it follows |g(x)| < Cn(1 + |u|)™N
for large N, hence the Plancherel theorem gives

I(ES = ES,) I3 < OnAT2 D (14 A = i) 2N £,
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Since the last sum is majorized by Y (1 + |A = &)™ |lx(0.1)(A — k) f||2 we
can apply theorem 3, therefore

I(ES — ES,)fll2 < A== @) . (2.12)
Evidently, if 1 < p < p, (2.6) follows from (2.11) and (2.12) since

2(1/p = 1/2) + B(p) = o(p) and a > a(p).
Step 2. In step 1 we reduced the problem to an estimate of the form

NES |l < cifa>a(p), 1 <p < pu. (2.13)

For proving (2.13) we follow [14] and write

Eyp = Z Exx + Enxp, (2.14)
k>1
where
Exp = cad™® / eMa(4)(L = i0)" 1 Gu(M)e~Adt, (2.15)

and g (s) = §(27%s) if k > 1 and go(s) = 1 =Y re; 9(27%s). The function § is
C§°(R) such that §(s) = 0 for |s| < €/2 and for |s| > €, and 337 g(27%s) = 1
for s # 0. Note that the sum in (2.14) is finite and 2% < cA.

We have for large A

[Exolly <¢, 1<p<2. (2.16)

Indeed, go € C$°(R) and Eyp = my(A), where my(x) is a convolution of the
functions (1 — p/A)S and 1/Ago(p/A) for large A (on the support of go(At)
one has p(t) = 1 if A > Ag and Ao is large enough). Consequently, for every
N>0,520,

Im (u)] < CNAT (L4 p/A) N 1> 0,0 > o,

therefore my(A) is a pseudodifferential operator of order 0, uniformly on
A > )Xo, hence (2.16) is fulfilled.
The estimate of E) x is more complicated. As in [14] we consider first the

case when the kernel of Eyx is supported in the domain {(z,y) : |z — y| <
A~1/22k} Then, if B is a ball of radius A~1/22% and we want to estimate E) ;. f



in LP(B) norm then it sufficies to take f supported in the ball 2B. With this
in mind one proceeds as follows. By the Holder inequality,

IlEA,kf|lLP(B) < c(/\_1/22k)"(]/p_1/2)llEA,kfl|2- (217)
On the other hand, the Plancherel theorem gives
IExk 3 =D m* (A — ) f},

where

m(p) = cad™ / e p(t)(t —10)7 1 g(27F At)dt.
Since for every N > 0,
m(p)] < Cn27 (1 + 227177,
it follows that
IEsifII2 < 272 Y (14 [A = pl2fA) 72N £, (2.18)
Since 2¥ < ¢\ we obtain
1Exkf13 < 27 Y (14 A = s[25A71) 7M]|x (0, 1)(A = 5) I3
and theorem 3 implies
1Ex i fllz < 27 NP fll,, 1 < p < pu.
This and (2.17) show that
IEx& S, < 27K e=e@) £l if |¢ —y| < A7225, T <p<pa.  (219)
In the case | —y| > A~1/22% we shall prove that
1Exkfllp < 27 (Ifllp, p 2 1. (2.20)

To this end we consider the kernel Ey x(z,y) of the operator Ej . According
to (2.15)

Ey(z,y) = cad™ / eMp(t)(t — iO)"“'lg(Z'k/\t)U(t,:z:,y)dt,
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where

2 2

T
U(t,:v,y) = (27l'i sin 2t)‘"/2 exp(ix +y Y )

t 2t —1—
s 2sm2l

In particular, if F\(z,y) = A*Exx(vAz,VAy), then

Ry = [ Mo\, (2.21)
where 9(t,z,y) = t + 1(2? + y?) cot 2t — zy/sin 2t and q(t, \) =
(t —i0)~ o= 1=m25(27k \t)h(t), h € CZ. We assert that for every N > 0

FAERDNRA /D b v il Bt ot (2:22)

For proving this we shall integrate by parts in (2.21), using the operator L
which transpose is (i9;%)~1;. Since

Oup = sin"2 2t (sin* 2t — (z — y)? + daysin®t)

and z?,y% < 2, |z — y| > 26A71 > L[t] on the support of §(27*At) we obtain
for small € > 0

0| > cle = y[*t]7? 2 1. (2.23)
On the other hand
051 ] < eilt] (1 + 0up), k> 1 (2.24)
and
|08 Sicxltlzgr =2k, (2.25)

Therefore (2.23)-(2.25) imply |LVq| < Cn|t|=*~1="2=N|9ap|~N, or
ILYq]'< ent|~o 14N | — =, (2.26)
' Now (2.26) gives the estimate (2.22) for the integral (2.21). Consequently
IEA,k(:v,y)I < CN/\—N+n/22k(N—a—n/2)lx pk yI'ZN-

Using this for N > n/2, we obtain the bound
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Thus the estimate (2.20) is proved.
Finally, (2.19) and (2.20) imply

S NE i fllp < cllfllp if 1 < p < pa, @> a(p),
k>1

which together with (2.16) give (2.13). Theorem 1 is proved.

3 Proof of theorem 3

Step 1. 1 < p < pp,n > 2.
Let p be a real function so that p > x(0,1) and the support of p be close
to zero. Then x(01)(A — A) < p(A — A), therefore

X1 (A = N fllz < (Baf, £) < IBsflly I fllps (3.1)

where 1/p+1/p' =1, By = g(A - )) and g = p*. Note that the support of §
is also close to zero. Since

1 i
B,\=§; eMg(t)e A dt

and we want to apply the Stein interpolation theorem [16], we consider the
family

Ba() = 57 [ eMae)(e - i0) e

for Re z running over a compact interval.

If Rez =1, then By(1 4+ is) = m(A — A), where m is a convolution of
the functions g(p) and pif/T'(1 + is), in particular, |m(g)| < ce! for some
¢ > 0. Hence

1BA(1 +i5) fll2 < el f]la. (3.2)

Let now Rez = —y < 0. Then for the kernel By(z,y) of the operator
By(—v + is) we have

Baa,) =< [ (o)t - 0y U, 2.y}



In estimating the size of B)(z,y) we can suppose that z = (z,,0,...,0) and
¥y = (y1,92,0,...,0) since the function (z,y) — U(t,z,y) is rotationally in-
variant. Then

sin 2t s s,
) /2+1(t 20) /2+1,

Jg@U(t,z,y) = g(t)Us(t, z,y)(2m1
where Uy(t,z,y) = [ e *Mde(\, z,y) is the Fourier transform of the spectral

function e(\,z,y) of the operator A, considered now in R? space. If v <
n/2 — 1 we can write

,y) = Cs /(/\ 7+n/2 A (/‘)x’y)d#’
where ¢, = 1/I'(=y 4+ n/2 — 1 4 is), hence |c,| < ce®l, and

en(A,z,y) = /h(/\—u)de(u,z,y)

for the corresponding function A. Since h is from the Schwartz class, we have
the estimate

len(A, z,y)| < e (3.3)
Indeed,
AN a,y) = ) h(A — ) i) i(y), pr = 2/k| +2,
whence
ANz, y) =Y h(A—2j —2)(e(j + 1,2,9) — e(j, z,))-
7=0

., Now (3.3) follows from the bound (2.8). Therefore we have the estimate
|Ba(z,y)| < e, A2 i 0 <y <nf2 —1,n > 2,
which shows that

1 Ba(=7 +i8) flleo < €A™ f|l1 for 0 <y < n/2 —1. (3.4)



Now we can apply the Stein interpolation theorem, hence (3.2), (3.4)
imply .

I Bafll,y <A@ f|l,if1 < p < payn > 2. (3.5)
Evidently (3.1) and (3.5) give theorem 3 in the considered case.
Step 2. p=1
Since

Ixon(4 =Nl < [(e(A+1,2,2) = (A 2,2)) () ldz

the estimate (2.3) follows from (2.8).
Step 3. pp <p<2,n>2
Starting with (3.1) we have to prove

1B Sl < ellfllps pn <p <2 (3.6)

Evidently, |le=*Af|l; < ||f|l2 and [le"*fllc < clt|™™?||f]lx for small |t].

Hence the Riesz interpolation theorem implies
”e_imf“p' = cltrn(l/p—l/z)”f“m 1<p<2,

whence we get (3.6). Theorem 3 is proved.

4 Proof of theorem 2

We argue as in the proof of theorem 1. Using (2.7) we see that it is
sufficient to estimate EY ,f and (£5—EY ) f in L2 norm only for z%,y? < 2.
Beginning with the first quantity, we notice that the operator £y = my(A)
from (2.15) is L? bounded, uniformly in A. Consequently, the same is true in
the Sobolev space H™ :

1 Exoll2m < c. (4.1)

To estimate ||Ey||2,m we first consider the case |z — y| < 252 which
means that the kernel of the operator E) x is supported in this domain. Let
{B;(y;)};>1 be a sequence of balls with radius 2¥/? and center y; such that
the region {y : y? < 2A} be covered by the union of { B;}. In estimating E) , f
in L2 (B;) norm we can suppose that f(z) is supported in the ball 2B,;.

Step 1. |y;] < 25/2+3,
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Then, if y € B; it follows |y| < 9 2%/2, whence
[ 1Bt @G+ Py dy < en2 | Braf
B, :

therefore (2.18) implies

|Exef@)I* (1 + ly|*)"dy < cm2'""'2'°°‘/ |f(@)*de.  (4.2)

B; 2B;

Step 2. |y;| > 2%/2+3,
Now, if y € B; then |y| < |y;| + 25/% < 2(|y;| — 2¥/?*!) and for z € 2B;
we have |z| > |y;| — 2¥/2*1. Thus, analogously to (4.2),

[ 1Bsaf @R+ Py < a2 [ @0+ ez (09)

Evidently, (4.2) and (4.3) imply

1Bk fllam < en22 | fllzm if |z — y| < 2%/2. (4.4)

Now we turn to the case |z —y| > 2¥/2. Repeating the proof of (2.22), we
can establish the estimate

|Fx(zy9)i< Opp2 ittt/ 3=Nozk NN >0, (4.5)

where |z — y| > 2¥/2)~1/2 and 2?% y? < 2. Indeed, starting with (2.21) and
noticing that the hypotheses imply |t| < ce|lz — y| on the support of ¢ —
d(27%At), we see that the bounds (2.23)-(2.25) are valid as before, thus (2.26)
gives for a > 0, N > 0,

ILqu < C(Qk/\—l)""""l_"/2+N(2k/2)‘—1/2)_21v
or
LY g| s c)eFbinliaeh, (46)

It is clear that (4.6) implies the estimate (4.5) for the integral (2.21). Further
the bound (4.5) can be rewriten in the form

|Exx(z,y)| < CyA™2No=kF yN > 0,

11



where |z —y| > 2¥/2 and z?,y? < 2)\. This estimate and the remarks at the
beginning of the proof of theorem 2 are sufficient to assert that

1Eskfllzm < 27F(|llzm if 2 — y| > 2"/2. (4.7)

Finally, (4.4) and (4.7) give

D N Eskllzm < cif 2a > m. (4.8)

k>1
Thus (4.1), (4.8) and (2.14) imply
| EX llzm < cif 2a > m. (4.9)

It remains to estimate £ — EY . To this end we notice that analogously
to (2.14)

Ef —Ef, =) Exyp,28 > A > A, (4.10)

where now
Bar =caA™® /em(l — p(2))(t — i0)~*"1g(27* At)e~ A dt.

Since

[ Bsaf )P+ Py < X B
y2<2)
we obtain as before

IEskfllzm < eA™227%2 | fllam, m > 0, 25 > c). (4.11)

Consequently (4.10) and (4.11) imply

[ Eehe s lamisicN B3 (4.12)

Evidently (4.9) and (4.12) finish the proof of theorem 2.
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5 Proof of theorem 4

To prove (2.8) we use the relation

[ o0 = el z,2) = - [ 30002214,

where U(t,z,z) = (2risin 2¢)~"/? exp(—iz? tant).

Set
() / AN i) de s Pissvidie)y (5.1)
Evaluating the singularity at ¢ = 0 we obtain
10,z) ~ 72 [ &Mq(e, )i (5.2)
whets 1
V(&) =t —ztant — 552 sin 2, (5.3)

and q(t,€) = p(t)g(€),9 € C§°, g being an even cutoff function. Here the
equivalence a(\,x) ~ b(\,z) means that |a — b| < On(A 4+ 22)~N, N > 0.
Case z2<1—-46,6 > 0.
To find the asymptotics of the integral (5.2) we apply the stationary
phase method. In polar coordinates { = ow one obtains an integral with
nondegenerate critical points ¢t = 0,02 = 1 — z%. Therefore

I(\z)=0(\"*"), 2 <1 -6 (5.4)

Case |22 — 1| < 6.

Now the critical points of the phase function (¢,£) — %, given by (5.3),
degenerate if 22 = 1, coinciding with (0,0). Then there exists a smooth
change of variables near (0,0) such that in the new coordinates 1(¢,¢,z) =
té* 4+ t3/3 if z* = 1. By the theory of the versal defformations [1], [13] there
exists a smooth and odd change of variables near (0,0) such that (0,{) —
(0,¢) and for some § > 0,

Y(t, € z) = —B(a)t + 6 +£2/3if [z — 1| < 6.
In addition, B(z) =1 — 2?4 O((1 — 2?)?) as ¢* — 1.

13



Using the principle of the stationary phase and polar coordinates ¢ = ow,
we obtain

I(\ z) ~ /\n/2/ /eiA(-Bt+t02+z3/3)an—1g'(t’U)dtda, (5.5)
0

where

g(t,o) = /| . q(t,ow)J(t,ow)dw

and J(t,€) is the corresponding jacobian. Since the function o — g¢(t,0) is
even the Malgrange preparation theorem implies

g(t,0) = ap + art + a;0* + (t* + 0* — B)g, + to?gs. (5.6)

Integrating by parts in (5.5) and using (5.6) we get I(\,z) ~
)\"/2/ /eiA(—Bt+ta2+t3/3)an-l(a0+alt +a20'2)dtd0+0()\"/2"1).
0
Consequently, [I(A,z)| <

C[/\n/6—1/3fn_2(B/\2/3) + /\n/6~2/3|f;—2(3/\2/3)| i An/s—lfn(B/\2/3) + /\n/2—1],

where f,(s) = [;° 0™/?Ai(o — s)do. Note the properties:
Fuls) = =sfaea(s) + frea(o)y 12 % fols) = [ Ai(o)de

fi(s) = 1r21/3[—4_1/33(/12(4'1/33))2 + (Ai’(4_l/3s))2].
Using f,(s) = —2 fa-2(s),n > 2 and the asymptotics of the Airy function we
get fn(S),f,l,(-S) = O(s"/2) as s — +o00, whence

|fa()] + ()] < o1 +[s])™?, n > 0.
Thus we obtain the uniform estimate
I(\,z) = O\, |2* =1 < § n 22 (5.7)
Case 2?2 > 1 +6.
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Now I(A,z) = O(A=*) since in the integral (5.2) the phase function 1 has
no critical points on the support of g. Therefore (5.1), (5.4), (5.7) show that
[ p(A = p)de(p, z,z) = O(A*/?1), n > 2, uniformly, whence (2.8) follows.

For proving (2.9) it sufficies to use the relation [~ e *de(\, z,z) =
(27 sinh 2¢)~"/2 exp (—z? tanh t).

Finally, (2.10) is a consequence of theorem 3 [11], taking into account the
estimate uv/u?2 — 1 — arccosh u > cv/u?—1ifu -1 > cand 0 < ¢ < 1.

Theorem 4 is proved.
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