No						
145						

ИНСТИТУТ ПО МАТЕМАТИКА С ИЗЧИСЛИТЕЛЕН ЦЕНТЪР INSTITUTE OF MATHEMATICS WITH COMPUTER CENTER

Riesz summability of multiple Hermite series in L^p spaces

G.E. Karadzhov

БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ

BULGARIAN ACADEMY OF SCIENCES Preprint

October 1993

 $n^{\circ} 9$

Riesz summability of multiple Hermite series in L^p spaces *

G.E. Karadzhov

Institute of Mathematics, Bulgarian Academy of Science, 1113 Sofia, Bulgaria, E-mail: banmat@bgcict.bitnet

Abstract

Let $E_{\lambda}^{\alpha}f(y)=\sum (1-\mu_k/\lambda)^{\alpha}f_k\phi_k(y),\ \mu_k<\lambda$, be the Riesz means of order α of the multiple Hermite series of the function f. Here it is proved that $E_{\lambda}^{\alpha}f\to f$ as $\lambda\to\infty$ in the following cases: (i) In the space $L^p(\mathbb{R}^n),\ n\geq 2$, under the sharp condition on parameter $\alpha,\alpha>\alpha(p)$, where $\alpha(p)=\max(0,n|1/p-1/2|-1/2)$ and $1\leq p\leq 2n/(n+2)$ or $2n/(n+2)\leq p<\infty$. (ii) In the space L_m^2 with a norm $(\int |f(x)|^2(1+|x|^2)^m dx)^{1/2}$ if $2\alpha>|m|$; or, equivalently, in the Sobolev space H^m with the usual norm $(\int |\hat{f}(\xi)|^2(1+|\xi|^2)^m d\xi)^{1/2}$.

1 Statement of the main results

Let $E_{\lambda}^{\alpha} f(y) = \sum (1 - \mu_k/\lambda)^{\alpha} f_k \phi_k(y)$, $\mu_k < \lambda$, be the Riesz means of order α of the multiple Hermite series of the function f, where $f_k = \int f(x) \phi_k(x) dx$ and

$$\mu_k = 2|k| + n, \phi_k(x) = H_k(x) \exp(-x^2/2)$$

are the eigenvalues and orthonormalized eigenfunctions (Hermite functions) of the operator $-\Delta + x^2$ in $L^2(\mathbf{R}^n)$, $n \geq 2$. We are interested in the problem of the convergency $E_{\lambda}^{\alpha}f \to f$ as $\lambda \to \infty$. This convergence can be locally

^{*}Research partially supported by the Bulgarian Ministry of Education and Science under Contract MM33/91.

uniform [9],[18] or almost everywhere [10], [19] or on the Lebesgue set of the function f [10], [19] or in the L^p norm [10], [19]. In [10] the case of L^1_m spaces with a norm $(\int |f(x)|(1+|x|)^m dx)$ under sharp conditions on the parameters α and m, $\alpha > (n-1)/2$, $-2\alpha - 2/3 \le m \le 2\alpha + 1 - n$ was considered. See also [2], [4], [5], [7], [8], [14], [15] for the case of compact manifolds without boundary and the bibliography in [14], [19].

The results for L^p spaces [10], [19] are sharp only if p=1. Using the analogy with the classical Bochner-Riesz conjecture, which corresponds to the case $A=-\Delta$ in $L^2(\mathbf{R^n})$, it is natural to expect that the convergence $E^{\alpha}_{\lambda}f \to f$ in L^p norm is valid under the following sharp condition on the parameter α ,

$$\alpha > \alpha(p),$$
 (1.1)

where

$$\alpha(p) = \max(0, n|1/p - 1/2| - 1/2), \ n \ge 2, \tag{1.2}$$

is the so-called critical index for the L^p spaces. This was confirmed in [19] for the radial functions in L^p .

Here we shall prove this conjecture for all p satisfying

$$|1/p - 1/2| \ge 1/n, \ n \ge 2,$$
 (1.3)

using a variation of the main approach from [14], where the corresponding convergence was established for $|1/p-1/2| \ge 1/(n+1)$ in the case of second order elliptic operators on a compact manifold without boundary (see also [6], [15]). Slightly changing the arguments, we investigate the convergence $E^{\alpha}_{\lambda}f \to f$ also in the Sobolev space H^m with the usual norm $||f||_{2,m} = (\int |\hat{f}(\xi)|^2 (1+|\xi|^2)^m d\xi)^{1/2}$. Noticing that the operator A commutes with the Fourier transform, we see that the convergence $E^{\alpha}_{\lambda}f \to f$ as $\lambda \to \infty$ in the space H^m is equivalent to the convergence in the space L^2_m with a norm $||f||_{2,m} = (\int |f(x)|^2 (1+|x|^2)^m dx)^{1/2}$.

By duality, it is sufficient to consider only the cases $1 \leq p < 2$ and m > 0. Let $||E_{\lambda}^{\alpha}||_p$ denote the operator norm in L^p spaces and $||E_{\lambda}^{\alpha}||_{2,m}$ - the operator norm in H^m spaces or, equivalently, in L_m^2 spaces. Then the desired convergence will follow from uniform estimates of these norms.

Theorem 1 Let $\alpha > \alpha(p)$ and $1 \le p \le p_n$, where $p_n = 2n/(n+2)$. Then $||E_{\lambda}^{\alpha}||_p \le c$. Here and later on all estimates are uniform with respect to the parameter $\lambda > \lambda_0$ for some $\lambda_0 > 1$, where c is a positive constant.

Theorem 2 If $2\alpha > m$ then $||E_{\lambda}^{\alpha}||_{2,m} \leq c$.

2 Proof of Theorem 1

Since the case p=1 is already considered in [10],[19], we shall suppose here that p>1. Note also that it is sufficient to prove the estimate $||E_{\lambda}^{\alpha}||_{p} \leq c$ only for the case $p < p_{n}$. Indeed, we have $\alpha(p_{n}) = 1/2$. If $\alpha > 1/2$ then we can find p such that $p < p_{n}$ and $1/2 < \alpha(p) < \alpha$. Then $||E_{\lambda}^{\alpha}||_{p} \leq c$ and $||E_{\lambda}^{\alpha}||_{p_{n}} \leq c$. Therefore the Riesz interpolation theorem [16] implies $||E_{\lambda}^{\alpha}||_{p_{n}} \leq c$.

We intend to adapt the main arguments from [6],[14],[15]. To this end we need the following "restriction" theorem. Let $\chi_{(a,b)}(\mu)$ be the characteristic function of the interval (a,b) and let $||f||_p$ stand for the L^p norm. Denote

$$\beta(p) = \max(0, \frac{1}{2}n|1/p - 1/2| - 1/2), \tag{2.1}$$

and

$$|1/p - 1/2| \neq 1/n. \tag{2.2}$$

Theorem 3 The uniform estimate

$$\|\chi_{(0,1)}(A-\lambda)f\|_2 \le \lambda^{\beta(p)} \|f\|_p$$
 (2.3)

is fulfilled if p satisfies (2.2). In addition, if p = 1 then (2.3) is true for all $n \ge 2$.

We postpone the proof of theorem 3 until section 3 and proceed further with the proof of theorem 1. Notice that

$$E_{\lambda}^{\alpha} = c_{\alpha} \lambda^{-\alpha} \int e^{i\lambda t} (t - i0)^{-\alpha - 1} e^{-itA} dt.$$
 (2.4)

and consider its average $E^{\alpha}_{\lambda,\rho}$,

$$E^{\alpha}_{\lambda,\rho} = c_{\alpha}\lambda^{-\alpha} \int e^{i\lambda t} \hat{\rho}(t)(t-i0)^{-\alpha-1} e^{-itA} dt, \qquad (2.5)$$

where ρ is an even function from the Schwartz class such that the support of its Fourier transform $\hat{\rho}$ is close to zero and $\hat{\rho}(t) = 1$ if $|t| < \varepsilon$ for some $\varepsilon > 0$ small enough. Further the proof is devided into several steps.

Step 1. Here we prove

$$||E_{\lambda}^{\alpha} - E_{\lambda,\rho}^{\alpha}||_{p} \le c \text{ if } \alpha > \alpha(p), \ 1
$$(2.6)$$$$

To this end we need the following estimates for the kernels $I^{\alpha}e(\lambda, x, y)$ and $I^{\alpha}e_{\rho}(\lambda, x, y)$, of the operators (2.4), (2.5) respectively, which follow from theorem 4 below:

$$|I^{\alpha}e(\lambda, x, y)| + |I^{\alpha}e_{\rho}(\lambda, x, y)| \le C_N|y|^{-N}$$
(2.7)

if $y^2 > 2\lambda$ and analogously for $x^2 > 2\lambda$.

Theorem 4 Let

$$e(\lambda, x, y) = \sum_{\mu_k < \lambda} \phi_k(x)\phi_k(y)$$

be the spectral function of the operator A. Then

$$|e(\lambda + \mu, x, x) - e(\lambda, x, x)| \le c\lambda^{n/2-1} \text{ if } n \ge 2, \ |\mu| \le 1,$$
 (2.8)

$$e(\lambda, x, x) \le c\lambda^{n/2} \exp(-cx^2/\lambda),$$
 (2.9)

$$e(\lambda, x, x) \le C_N |x|^{-N} \text{ if } x^2 > (1 + \delta)\lambda, \ \delta > 0, \ N > 0.$$
 (2.10)

This theorem will be proved in section 5. Note that (2.8) is also proved in [19] by another method.

Further, according to (2.7) in estimating the integral $\int |E_{\lambda}^{\alpha} f - E_{\lambda,\rho}^{\alpha}|^p dy$ we can suppose that $y^2 < 2\lambda$. Then

$$\|(E_{\lambda}^{\alpha} - E_{\lambda,\rho}^{\alpha})f\|_{p} \le c\lambda^{\frac{n}{2}(\frac{1}{p} - \frac{1}{2})} \|(E_{\lambda}^{\alpha} - E_{\lambda,\rho}^{\alpha})f\|_{2}, \ 1 (2.11)$$

On the other hand, $E_{\lambda}^{\alpha} - E_{\lambda,\rho}^{\alpha} = \lambda^{-\alpha} g(\lambda - A)$, where $g(\mu) = c_{\alpha} \int e^{i\mu t} (1 - \hat{\rho}(t))(t - i0)^{-\alpha - 1} dt$. In particular, if $\alpha > 0$ it follows $|g(\mu)| \leq C_N (1 + |\mu|)^{-N}$ for large N, hence the Plancherel theorem gives

$$\|(E_{\lambda}^{\alpha} - E_{\lambda,\rho}^{\alpha})f\|_{2}^{2} \le C_{N}\lambda^{-2\alpha} \sum_{j} (1 + |\lambda - \mu_{j}|)^{-2N} f_{j}^{2}.$$

Since the last sum is majorized by $\sum (1 + |\lambda - k|)^{-2N} \|\chi_{(0,1)}(A - k)f\|_2^2$ we can apply theorem 3, therefore

$$\|(E_{\lambda}^{\alpha} - E_{\lambda,\rho}^{\alpha})f\|_{2} \le c\lambda^{-\alpha+\beta(p)} \|f\|_{p}. \tag{2.12}$$

Evidently, if $1 (2.6) follows from (2.11) and (2.12) since <math>\frac{1}{2}n(1/p-1/2) + \beta(p) = \alpha(p)$ and $\alpha > \alpha(p)$.

Step 2. In step 1 we reduced the problem to an estimate of the form

$$||E_{\lambda,\rho}^{\alpha}||_{p} \le c \text{ if } \alpha > \alpha(p), \ 1
$$(2.13)$$$$

For proving (2.13) we follow [14] and write

$$E_{\lambda,\rho} = \sum_{k>1} E_{\lambda,k} + E_{\lambda,0}, \qquad (2.14)$$

where

$$E_{\lambda,k} = c_{\alpha} \lambda^{-\alpha} \int e^{i\lambda t} \hat{\rho}(t) (t - i0)^{-\alpha - 1} \hat{g}_k(\lambda t) e^{-itA} dt, \qquad (2.15)$$

and $\hat{g}_k(s) = \hat{g}(2^{-k}s)$ if $k \ge 1$ and $\hat{g}_0(s) = 1 - \sum_{k=1}^{\infty} \hat{g}(2^{-k}s)$. The function \hat{g} is $C_0^{\infty}(R)$ such that $\hat{g}(s) = 0$ for $|s| < \epsilon/2$ and for $|s| > \epsilon$, and $\sum_{-\infty}^{+\infty} \hat{g}(2^{-k}s) = 1$ for $s \ne 0$. Note that the sum in (2.14) is finite and $2^k \le c\lambda$.

We have for large λ

$$||E_{\lambda,0}||_p \le c, \ 1 (2.16)$$

Indeed, $\hat{g_0} \in C_0^{\infty}(R)$ and $E_{\lambda,0} = m_{\lambda}(A)$, where $m_{\lambda}(\mu)$ is a convolution of the functions $(1 - \mu/\lambda)_+^{\alpha}$ and $1/\lambda g_0(\mu/\lambda)$ for large λ (on the support of $\hat{g_0}(\lambda t)$ one has $\hat{\rho}(t) = 1$ if $\lambda > \lambda_0$ and λ_0 is large enough). Consequently, for every $N > 0, j \geq 0$,

$$|m_{\lambda}^{(j)}(\mu)| \le C_N \lambda^{-j} (1 + \mu/\lambda)^{-N}, \mu > 0, \lambda > \lambda_0,$$

therefore $m_{\lambda}(A)$ is a pseudodifferential operator of order 0, uniformly on $\lambda > \lambda_0$, hence (2.16) is fulfilled.

The estimate of $E_{\lambda,k}$ is more complicated. As in [14] we consider first the case when the kernel of $E_{\lambda,k}$ is supported in the domain $\{(x,y):|x-y|<\lambda^{-1/2}2^k\}$. Then, if B is a ball of radius $\lambda^{-1/2}2^k$ and we want to estimate $E_{\lambda,k}f$

in $L^p(B)$ norm then it sufficies to take f supported in the ball 2B. With this in mind one proceeds as follows. By the Hölder inequality,

$$||E_{\lambda,k}f||_{L^p(B)} \le c(\lambda^{-1/2}2^k)^{n(1/p-1/2)}||E_{\lambda,k}f||_2.$$
 (2.17)

On the other hand, the Plancherel theorem gives

$$||E_{\lambda,k}f||_2^2 = \sum m^2(\lambda - \mu_j)f_j^2,$$

where

$$m(\mu) = c_{\alpha} \lambda^{-\alpha} \int e^{it\mu} \hat{\rho}(t) (t - i0)^{-\alpha - 1} \hat{g}(2^{-k} \lambda t) dt.$$

Since for every N > 0,

$$|m(\mu)| \le C_N 2^{-k\alpha} (1 + |\mu| 2^k \lambda^{-1})^{-N}$$
, wing the operator 1

it follows that

$$||E_{\lambda,k}f||_2^2 \le c2^{-2k\alpha} \sum (1+|\lambda-\mu_j|2^k\lambda^{-1})^{-2N} f_j^2.$$
 (2.18)

Since $2^k < c\lambda$ we obtain

$$||E_{\lambda,k}f||_2^2 \le c2^{-2k\alpha} \sum_{k} (1+|\lambda-s|2^k\lambda^{-1})^{-2N} ||\chi(0,1)(A-s)f||_2^2$$

and theorem 3 implies

$$||E_{\lambda,k}f||_2 \le c2^{-k\alpha-k/2}\lambda^{1/2+\beta(p)}||f||_p, \ 1$$

This and (2.17) show that

$$||E_{\lambda,k}f||_p \le c2^{-k(\alpha-\alpha(p))}||f||_p \text{ if } |x-y| < \lambda^{-1/2}2^k, \ 1 < p < p_n.$$
 (2.19)

In the case $|x-y| > \lambda^{-1/2} 2^k$ we shall prove that

$$||E_{\lambda,k}f||_p \le c2^{-k\alpha}||f||_p, \ p \ge 1.$$
 (2.20)

To this end we consider the kernel $E_{\lambda,k}(x,y)$ of the operator $E_{\lambda,k}$. According to (2.15)

$$E_{\lambda,k}(x,y) = c_{\alpha}\lambda^{-\alpha} \int e^{i\lambda t} \hat{\rho}(t)(t-i0)^{-\alpha-1} \hat{g}(2^{-k}\lambda t) U(t,x,y) dt,$$

where

$$U(t, x, y) = (2\pi i \sin 2t)^{-n/2} \exp(i\frac{x^2 + y^2}{2} \cot 2t - i\frac{xy}{\sin 2t}).$$

In particular, if $F_{\lambda}(x,y) = \lambda^{\alpha} E_{\lambda,k}(\sqrt{\lambda}x, \sqrt{\lambda}y)$, then

$$F_{\lambda}(x,y) = \int e^{i\lambda\psi} q(t,\lambda)dt, \qquad (2.21)$$

where $\psi(t,x,y)=t+\frac{1}{2}(x^2+y^2)\cot 2t-xy/\sin 2t$ and $q(t,\lambda)=(t-i0)^{-\alpha-1-n/2}\hat{g}(2^{-k}\lambda t)h(t), h\in C_0^{\infty}$. We assert that for every N>0

$$|F_{\lambda}(x,y)| \le C_N \lambda^{-2N+n/2+\alpha} 2^{k(N-\alpha-n/2)} |x-y|^{-2N}.$$
 (2.22)

For proving this we shall integrate by parts in (2.21), using the operator L which transpose is $(i\partial_t \psi)^{-1}\partial_t$. Since

$$\partial_t \psi = \sin^{-2} 2t \left(\sin^2 2t - (x - y)^2 + 4xy \sin^2 t \right)$$

and $x^2, y^2 < 2, |x-y| > 2^k \lambda^{-1} > \frac{1}{\epsilon} |t|$ on the support of $\hat{g}(2^{-k} \lambda t)$ we obtain for small $\epsilon > 0$

$$|\partial_t \psi| \ge c|x - y|^2 |t|^{-2} \ge c_1.$$
 (2.23)

On the other hand

$$|\partial_t^{k+1}\psi| \le c_k |t|^{-k} (1+|\partial_t\psi|), \ k \ge 1$$
 (2.24)

and

$$|\partial_t^k q| \le c_k |t|^{-\alpha - 1 - n/2 - k}. \tag{2.25}$$

Therefore (2.23)-(2.25) imply $|L^N q| \leq C_N |t|^{-\alpha - 1 - n/2 - N} |\partial_t \psi|^{-N}$, or

$$|L^{N}q| \le c_{N}|t|^{-\alpha - 1 - n/2 + N}|x - y|^{-2N}.$$
(2.26)

Now (2.26) gives the estimate (2.22) for the integral (2.21). Consequently

$$|E_{\lambda,k}(x,y)| \le C_N \lambda^{-N+n/2} 2^{k(N-\alpha-n/2)} |x-y|^{-2N}.$$

Using this for N > n/2, we obtain the bound

$$\int |E_{\lambda,k}(x,y)| dy \le c2^{-k\alpha} \text{ if } |x-y| > \lambda^{-1/2}2^k.$$

Thus the estimate (2.20) is proved.

Finally, (2.19) and (2.20) imply

$$\sum_{k>1} ||E_{\lambda,k}f||_p \le c||f||_p \text{ if } 1 \alpha(p),$$

which together with (2.16) give (2.13). Theorem 1 is proved.

3 Proof of theorem 3

Step 1. 1 2.

Let ρ be a real function so that $\rho > \chi_{(0,1)}$ and the support of $\hat{\rho}$ be close to zero. Then $\chi_{(0,1)}(A-\lambda) < \rho(A-\lambda)$, therefore

$$\|\chi_{(0,1)}(A-\lambda)f\|_2^2 \le (B_{\lambda}f, f) \le \|B_{\lambda}f\|_{p'}\|f\|_p, \tag{3.1}$$

where 1/p + 1/p' = 1, $B_{\lambda} = g(A - \lambda)$ and $g = \rho^2$. Note that the support of \hat{g} is also close to zero. Since

$$B_{\lambda} = \frac{1}{2\pi} \int e^{i\lambda t} \hat{g}(t) e^{-itA} dt$$

and we want to apply the Stein interpolation theorem [16], we consider the family

$$B_{\lambda}(z) = \frac{1}{2\pi} \int e^{i\lambda t} \hat{g}(t) (t - i0)^{-z} e^{-itA} dt$$

for Rez running over a compact interval.

If Re z = 1, then $B_{\lambda}(1 + is) = m(\lambda - A)$, where m is a convolution of the functions $g(\mu)$ and $\mu_{+}^{is}/\Gamma(1 + is)$, in particular, $|m(\mu)| \leq ce^{c|s|}$ for some c > 0. Hence

$$||B_{\lambda}(1+is)f||_{2} \le ce^{c|s|}||f||_{2}.$$
 (3.2)

Let now $Re z = -\gamma < 0$. Then for the kernel $B_{\lambda}(x,y)$ of the operator $B_{\lambda}(-\gamma + is)$ we have

$$B_{\lambda}(x,y) = c \int e^{i\lambda t} \hat{g}(t)(t-i0)^{\gamma-is} U(t,x,y) dt.$$

In estimating the size of $B_{\lambda}(x,y)$ we can suppose that $x=(x_1,0,...,0)$ and $y=(y_1,y_2,0,...,0)$ since the function $(x,y) \to U(t,x,y)$ is rotationally invariant. Then

$$\hat{g}(t)U(t,x,y) = \hat{g}(t)U_2(t,x,y)(2\pi i \frac{\sin 2t}{t})^{-n/2+1}(t-i0)^{-n/2+1},$$

where $U_2(t, x, y) = \int e^{-i\lambda t} de(\lambda, x, y)$ is the Fourier transform of the spectral function $e(\lambda, x, y)$ of the operator A, considered now in \mathbf{R}^2 space. If $\gamma < n/2 - 1$ we can write

$$B_{\lambda}(x,y) = c_s \int (\lambda - \mu)_+^{-\gamma + n/2 - 2 + is} e_h(\mu, x, y) d\mu,$$

where $c_s = 1/\Gamma(-\gamma + n/2 - 1 + is)$, hence $|c_s| \leq ce^{c|s|}$, and

$$e_h(\lambda, x, y) = \int h(\lambda - \mu) de(\mu, x, y)$$

for the corresponding function h. Since h is from the Schwartz class, we have the estimate

$$|e_h(\lambda, x, y)| \le c. \tag{3.3}$$

Indeed,

$$e_h(\lambda, x, y) = \sum h(\lambda - \mu_k)\phi_k(x)\phi_k(y), \ \mu_k = 2|k| + 2,$$

whence

$$e_h(\lambda, x, y) = \sum_{j=0}^{\infty} h(\lambda - 2j - 2)(e(j+1, x, y) - e(j, x, y)).$$

Now (3.3) follows from the bound (2.8). Therefore we have the estimate

$$|B_{\lambda}(x,y)| \le c_s \lambda^{-\gamma + n/2 - 1}$$
 if $0 < \gamma < n/2 - 1, n > 2$,

which shows that

$$||B_{\lambda}(-\gamma + is)f||_{\infty} \le c_s \lambda^{-\gamma + n/2 - 1} ||f||_1 \text{ for } 0 < \gamma < n/2 - 1.$$
 (3.4)

Now we can apply the Stein interpolation theorem, hence (3.2), (3.4) imply

 $||B_{\lambda}f||_{p'} \le c\lambda^{2\beta(p)}||f||_{p} \text{ if } 1 2.$ (3.5)

Evidently (3.1) and (3.5) give theorem 3 in the considered case.

Step 2. p = 1

Since

$$\|\chi_{(0,1)}(A-\lambda)f\|_2 \le \int (e(\lambda+1,x,x)-e(\lambda,x,x))^{1/2}|f(x)|dx$$

the estimate (2.3) follows from (2.8).

Step 3. $p_n 2$

Starting with (3.1) we have to prove

$$||B_{\lambda}f||_{p'} \le c||f||_{p}, \ p_n (3.6)$$

Evidently, $||e^{-itA}f||_2 \le ||f||_2$ and $||e^{-itA}f||_\infty \le c|t|^{-n/2}||f||_1$ for small |t|. Hence the Riesz interpolation theorem implies

$$||e^{-itA}f||_{p'} \le c|t|^{-n(1/p-1/2)}||f||_p, \ 1$$

whence we get (3.6). Theorem 3 is proved.

4 Proof of theorem 2

We argue as in the proof of theorem 1. Using (2.7) we see that it is sufficient to estimate $E^{\alpha}_{\lambda,\rho}f$ and $(E^{\alpha}_{\lambda}-E^{\alpha}_{\lambda,\rho})f$ in L^{2}_{m} norm only for $x^{2},y^{2}<2\lambda$. Beginning with the first quantity, we notice that the operator $E_{\lambda,0}=m_{\lambda}(A)$ from (2.15) is L^{2} bounded, uniformly in λ . Consequently, the same is true in the Sobolev space H^{m} :

$$||E_{\lambda,0}||_{2,m} \le c. \tag{4.1}$$

To estimate $||E_{\lambda,k}||_{2,m}$ we first consider the case $|x-y| < 2^{k/2}$, which means that the kernel of the operator $E_{\lambda,k}$ is supported in this domain. Let $\{B_j(y_j)\}_{j\geq 1}$ be a sequence of balls with radius $2^{k/2}$ and center y_j such that the region $\{y: y^2 < 2\lambda\}$ be covered by the union of $\{B_j\}$. In estimating $E_{\lambda,k}f$ in $L_m^2(B_j)$ norm we can suppose that f(x) is supported in the ball $2B_j$.

Step 1. $|y_j| < 2^{k/2+3}$.

Then, if $y \in B_j$ it follows $|y| < 9 \ 2^{k/2}$, whence

$$\int_{B_j} |E_{\lambda,k}f(y)|^2 (1+|y|^2)^m dy \le c_m 2^{km} ||E_{\lambda,k}f||_2^2,$$

therefore (2.18) implies

$$\int_{B_j} |E_{\lambda,k} f(y)|^2 (1+|y|^2)^m dy \le c_m 2^{km-2k\alpha} \int_{2B_j} |f(x)|^2 dx. \tag{4.2}$$

Step 2. $|y_i| \ge 2^{k/2+3}$.

Now, if $y \in B_j$ then $|y| \le |y_j| + 2^{k/2} \le 2(|y_j| - 2^{k/2+1})$ and for $x \in 2B_j$ we have $|x| \ge |y_j| - 2^{k/2+1}$. Thus, analogously to (4.2),

$$\int_{B_j} |E_{\lambda,k} f(y)|^2 (1+|y|^2)^m dy \le c_m 2^{-2k\alpha} \int_{2B_j} |f(x)| (1+|x|^2)^m dx. \tag{4.3}$$

Evidently, (4.2) and (4.3) imply

$$||E_{\lambda,k}f||_{2,m} \le c_m 2^{k(m/2-\alpha)} ||f||_{2,m} \text{ if } |x-y| < 2^{k/2}.$$
 (4.4)

Now we turn to the case $|x-y| > 2^{k/2}$. Repeating the proof of (2.22), we can establish the estimate

$$|F_{\lambda}(x,y)| \le C_N \lambda^{\alpha+1+n/2-N} 2^{-k}, \forall N > 0,$$
 (4.5)

where $|x-y| \ge 2^{k/2} \lambda^{-1/2}$ and $x^2, y^2 < 2$. Indeed, starting with (2.21) and noticing that the hypotheses imply $|t| < c\epsilon |x-y|$ on the support of $t \to \hat{g}(2^{-k}\lambda t)$, we see that the bounds (2.23)-(2.25) are valid as before, thus (2.26) gives for $\alpha > 0, N > 0$,

$$|L^N q| \le c(2^k \lambda^{-1})^{-\alpha - 1 - n/2 + N} (2^{k/2} \lambda^{-1/2})^{-2N}$$

or

$$|L^N q| \le c\lambda^{\alpha + 1 + n/2} 2^{-k}. (4.6)$$

It is clear that (4.6) implies the estimate (4.5) for the integral (2.21). Further the bound (4.5) can be rewriten in the form

$$|E_{\lambda,k}(x,y)| \le C_N \lambda^{1+n/2-N} 2^{-k}, \forall N > 0,$$

where $|x-y| > 2^{k/2}$ and $x^2, y^2 < 2\lambda$. This estimate and the remarks at the beginning of the proof of theorem 2 are sufficient to assert that

$$||E_{\lambda,k}f||_{2,m} \le c2^{-k}||f||_{2,m} \text{ if } |x-y| > 2^{k/2}.$$
 (4.7)

Finally, (4.4) and (4.7) give

$$\sum_{k \ge 1} ||E_{\lambda,k}||_{2,m} < c \text{ if } 2\alpha > m.$$
(4.8)

Thus (4.1), (4.8) and (2.14) imply

$$||E_{\lambda,\rho}^{\alpha}||_{2,m} < c \text{ if } 2\alpha > m. \tag{4.9}$$

It remains to estimate $E^{\alpha}_{\lambda} - E^{\alpha}_{\lambda,\rho}$. To this end we notice that analogously to (2.14)

$$E_{\lambda}^{\alpha} - E_{\lambda,\rho}^{\alpha} = \sum E_{\lambda,k}, -2^{k} > c\lambda, \lambda > \lambda_{o}, \tag{4.10}$$

where now

$$E_{\lambda,k} = c_{\alpha} \lambda^{-\alpha} \int e^{i\lambda t} (1 - \hat{\rho}(t))(t - i0)^{-\alpha - 1} \hat{g}(2^{-k}\lambda t) e^{-itA} dt.$$

Since

$$\int_{y^2 < 2\lambda} |E_{\lambda,k} f(y)|^2 (1 + |y|^2)^m dy \le c\lambda^m ||E_{\lambda,k} f||_2^2$$

we obtain as before

$$||E_{\lambda,k}f||_{2,m} \le c\lambda^{m/2}2^{-k\alpha}||f||_{2,m}, \ m>0, \ 2^k > c\lambda.$$
 (4.11)

Consequently (4.10) and (4.11) imply

$$||E_{\lambda}^{\alpha} - E_{\lambda,\rho}^{\alpha}||_{2,m} \le c\lambda^{m/2-\alpha}.$$
(4.12)

Evidently (4.9) and (4.12) finish the proof of theorem 2.

5 Proof of theorem 4

To prove (2.8) we use the relation

$$\int \rho(\lambda - \mu) de(\mu, x, x) = \frac{1}{2\pi} \int e^{i\lambda t} \hat{\rho}(t) U(t, x, x) dt,$$

where $U(t, x, x) = (2\pi i \sin 2t)^{-n/2} \exp(-ix^2 \tan t)$. Set

$$I(\lambda, x) = \int \rho(\lambda - \mu) de(\mu, \sqrt{\lambda}x, \sqrt{\lambda}x). \tag{5.1}$$

Evaluating the singularity at t = 0 we obtain

$$I(\lambda, x) \sim \lambda^{n/2} \int e^{i\lambda\psi} q(t, \xi) dt d\xi,$$
 (5.2)

where

$$\psi(t,\xi,x) = t - x^2 \tan t - \frac{1}{2}\xi^2 \sin 2t, \qquad (5.3)$$

and $q(t,\xi) = \hat{\rho}(t)g(\xi), g \in C_0^{\infty}, g$ being an even cutoff function. Here the equivalence $a(\lambda,x) \sim b(\lambda,x)$ means that $|a-b| \leq C_N(\lambda+x^2)^{-N}, N > 0$.

Case $x^2 < 1 - \delta, \delta > 0$.

To find the asymptotics of the integral (5.2) we apply the stationary phase method. In polar coordinates $\xi = \sigma \omega$ one obtains an integral with nondegenerate critical points t = 0, $\sigma^2 = 1 - x^2$. Therefore

$$I(\lambda, x) = O(\lambda^{n/2-1}), \ x^2 < 1 - \delta.$$
 (5.4)

Case $|x^2 - 1| < \delta$.

Now the critical points of the phase function $(t,\xi) \to \psi$, given by (5.3), degenerate if $x^2 = 1$, coinciding with (0,0). Then there exists a smooth change of variables near (0,0) such that in the new coordinates $\psi(t,\xi,x) = t\xi^2 + t^3/3$ if $x^2 = 1$. By the theory of the versal defformations [1], [13] there exists a smooth and odd change of variables near (0,0) such that $(0,\xi) \to (0,\xi)$ and for some $\delta > 0$,

$$\psi(t,\xi,x) = -B(x)t + t\xi^2 + t^3/3 \text{ if } |x^2 - 1| < \delta.$$

In addition, $B(x) = 1 - x^2 + O((1 - x^2)^2)$ as $x^2 \to 1$.

Using the principle of the stationary phase and polar coordinates $\xi = \sigma \omega$, we obtain

$$I(\lambda, x) \sim \lambda^{n/2} \int_0^\infty \int e^{i\lambda(-Bt + t\sigma^2 + t^3/3)} \sigma^{n-1} g(t, \sigma) dt d\sigma,$$
 (5.5)

where

$$g(t,\sigma) = \int_{|\omega|=1} q(t,\sigma\omega)J(t,\sigma\omega)d\omega$$

and $J(t,\xi)$ is the corresponding jacobian. Since the function $\sigma \to g(t,\sigma)$ is even the Malgrange preparation theorem implies

$$g(t,\sigma) = a_0 + a_1 t + a_2 \sigma^2 + (t^2 + \sigma^2 - B)g_1 + t\sigma^2 g_2.$$
 (5.6)

Integrating by parts in (5.5) and using (5.6) we get $I(\lambda, x) \sim$

$$\lambda^{n/2} \int_0^\infty \int e^{i\lambda(-Bt + t\sigma^2 + t^3/3)} \sigma^{n-1}(a_0 + a_1t + a_2\sigma^2) dt d\sigma + O(\lambda^{n/2-1}).$$

Consequently, $|I(\lambda, x)| \le$

$$c[\lambda^{n/6-1/3}f_{n-2}(B\lambda^{2/3}) + \lambda^{n/6-2/3}|f'_{n-2}(B\lambda^{2/3})| + \lambda^{n/6-1}f_n(B\lambda^{2/3}) + \lambda^{n/2-1}],$$

where $f_n(s) = \int_0^\infty \sigma^{n/2} Ai(\sigma - s) d\sigma$. Note the properties:

$$f_n(s) = -sf_{n-2}(s) + f''_{n-2}(s), \ n \ge 2; \ f_0(s) = \int_s^\infty Ai(\sigma)d\sigma,$$

$$f_1(s) = \pi 2^{1/3} [-4^{-1/3} s (Ai(4^{-1/3}s))^2 + (Ai'(4^{-1/3}s))^2].$$

Using $f'_n(s) = -\frac{n}{2}f_{n-2}(s)$, $n \ge 2$ and the asymptotics of the Airy function we get $f_n(s)$, $f'_n(s) = O(s^{n/2})$ as $s \to +\infty$, whence

$$|f_n(s)| + |f'_n(s)| \le c(1+|s|)^{n/2}, \ n \ge 0.$$

Thus we obtain the uniform estimate

$$I(\lambda, x) = O(\lambda^{n/2-1}), |x^2 - 1| < \delta, n \ge 2.$$
 (5.7)

Case $x^2 > 1 + \delta$.

Now $I(\lambda, x) = O(\lambda^{-\infty})$ since in the integral (5.2) the phase function ψ has no critical points on the support of q. Therefore (5.1), (5.4), (5.7) show that $\int \rho(\lambda-\mu)de(\mu,x,x) = O(\lambda^{n/2-1}), n \geq 2$, uniformly, whence (2.8) follows.

For proving (2.9) it sufficies to use the relation $\int_0^\infty e^{-\lambda t} de(\lambda, x, x) =$

 $(2\pi \sinh 2t)^{-n/2} \exp(-x^2 \tanh t)$.

Finally, (2.10) is a consequence of theorem 3 [11], taking into account the estimate $u\sqrt{u^2-1} - \operatorname{arccosh} u \ge c\sqrt{u^2-1}$ if $u^2-1 > c$ and 0 < c < 1. Theorem 4 is proved.

Acknowledgments. This work was done during a research stay at the Potsdam University under the financial support from DAAD. I would like to thank also prof. Schulze and all members of the Max-Planck group for their hospitality.

REFERENCES

- 1. Arnold V.I., Varchenko A.N., Guseyn-Zade M.S.: Singularities of differentiable mappings. Berlin 1986.
- 2. Bérard P.H.: Riesz means on Riemannian manifolds. Proc. Symp. Pure Math. XXXVI, 1-12 (1980)
 - 3. Bourgain J.: Some new estimates on oscillatory integrals. preprint
- 4. Christ F.M., Sogge C.D.: The weak type L^1 convergence of eigenfunction expansions for pseudodifferential operators. Invent. math. 94, 421-453 (1988)
- 5. Colzani L., Travaglini G.: Estimates for Riesz kernels of eigenfunction expansions of elliptic differential operators on compact manifolds. J. Funct. Anal. 96, 1-30 (1991)
- 6. Fefferman C.: A note on spherical summation multipliers. Israel J. Math. 15, 44-52 (1973)
- 7. Hörmander L.: On the Riesz means of spectral functions and eigenfunction expansions for elliptic differential operators. In: Some recent advances in the basic sciences, pp. 155-202. Yeshiva Univ., New York 1966
- 8. Hörmander L.: The spectral function of an elliptic operator. Acta Math. 121, 193-218 (1968)

- 9. Karadzhov G.E.: Equisummability of multiple Hermite series. preprint
- 10. Karadzhov G.E.: Sommabilité de Riesz des séries d'Hermite multiplées. C. R. Acad. Sci. Paris, Série I(1993)
- 11. Karadzhov G.E.: A complete asymptotics of the spectral function for harmonic oscillator. Mathem. Balkanica, New Series 3, 125-134 (1989)
- 12. Mockenhaupt G.: A restriction theorem for the Fourier transform. Bull. Amer. Math. Soc. 25, 31-36 (1991)
- 13. Poènaru V.: Singularités C^{∞} en presence de symétrie. Lect. Notes in Math. 510. Berlin 1976
- 14. Sogge C.D.: Fourier integrals in classical analysis. Cambridge Tracts in Math. 105. Cambridge Univ. Press 1993
- 15. Stein E.M.: Beijing lectures on Fourier analysis. Ann. Math. Studies. Princeton University Press 1986
- 16. Stein E.M., Weiss G.: Introduction to Fourier analysis on Euclidean spaces. Princeton University Press 1981
- 17. Strichartz R.: Harmonic analysis as spectral theory of Laplacians. J. Funct. Anal. 87, 51-148 (1989)
- 18. Szegő G.: Orthogonal polynomials. Amer. Math. Soc. Colloq. Pub. 23, Providence, R.I. 1967
- 19. Thangavelu S.: Lectures on Hermite and Laguerre expansions. Math. notes 42. Princeton University Press 1993