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Abstract

An existence theorem is proved for solutions of dilferential inclusions ‘with an upper
semicontinuous and nonconvex right-hand side. The prool is based on an inner and direc-
tional continuous parameterization. This parameterization leads to a familie of disturbed
differential inclusions. The solution of the starting diflerential inclusion is obtained as an
uniformly limit of the solutions of disturbed systems. Some aspects of the existence of the
above mentioned inner parameterization are discussed. A few examples are presented.
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low semi-continuity, measurability.
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1 Introduction

This work considers differential inclusions with an upper semicontinuous and nonconvex
right-hand side. A set of conditions, named the Z condition, is presented in the first
section. These conditions guarantee the existence of solutions for the diflerential inclusions
with an upper semi-continuous (u.s.c.) right-hand side. This part is related to the ideas
of many authors, see f.e. [1-2], [4], [6-9], [10-11], [14-16], [18], [20]. The second section
consideres the fulfilment of the Z condition for the different multi-functions. The first
part of the Z condition is equivalent to the existence of the fixed point of some map.
In the differential equation system case it is a solution of the FEuler’s implicit scheme.
“The same holds for the Yosida approximation of maximal monotone operators [2]. The
second part of the Z condition is an existence of a measurable selection of some map and
this selection should be directionally continuous at the point where the scalar parameter
vanish, see f.e. [6-8].

The last section contains examples which particulary describe the clearance between
the sufficient and necessary conditions for the existence of the solutions of differential
inclusions.

*This work was partially supported the MM-53/91 grant of the Bulgarian Ministry of Education and
Science



2 Existence Theorem

Let F(t,z) be a multi-function with compact values which is measurable in ¢ and u.s.c.
in x: ‘

F(t,z) : D — K(R"), (1)
where R™ is the FEuclidean space, D C R" is a domain (a connected set with nonempty

interior) and K (R") is a metric space of nonempty compact subsets of R™. The metric of
this space is the Hausdorfl distance h(/', G) between the compact sets I' and G

h(F,G) = max{leeal,;\' 132(1}1 | w—v], max 1&1:_1113 | w—vl|},

where || - || is the Euclidean norm.
We are going to consider the following differential inclusion:

T € F(t,'l,), 'E(t()) = To, t e [thtI]- (2)

Definition 1 Lvery absolulely conlinuous function x(t) which almost cverywhere in [0, 1]
satisfies the differential inclusion (2) is said to be a solution.

Definition 2 (see [7]) Let I' be a cone in R™ and let Y be a melric space. A map
f:R™ — Y is I'-continuous at a point T € R™ iff for every € > 0 there exists § > 0
such that d(f(z), f(Z)) < € for all x € B(z,6) N (¥ +T'). We say that [ is I'-conlinuous

on a set A if [ is I'-conlinuous al cvery point x € A,

In this paper we are going to use a modification of the above definition (see [6], [7], [8]):

Definition 3 The function [(-,-,-): R*x R® — R" is said lo be directionally con-
tinuous at (0,t,z) with a constant M if for every € > 0 there exists a positive number
§(e,z) > 0 for which

| £(0,t,2)— f(s,t,y)ll<e if llz—yll<xMs, 0<s<é(ez).

Z condition:
L. Forevery t € [to,t;] and a € intD there exists a positive number s(¢,z) and vectors
z(s,t,z), s € [0,3(¢,2)) for which the following inclusion

z(s,t,z) € P(t,x + sz(s,t, 7)) + w(s,t,z)B (3)

holds, where s(t,x) > § > 0, { € [lo,11], x € D, B is the unit ball centered at the origin,
lilr(}w(s,t,:v) =0, and w(s,?, ) is a nonnegative scalar function which is measurable in s
S—

and continuous in (¢, z).

2. The multi-function {z| 2z € I'(t,x+sz)+w(s,t,x) B} has aselection z(s, ¢, x) which
is jointly measurable in (¢,2) and directionally continuous at (0,¢,z) with a constant M.

|| F(t,z) IS L< M.

Note, that the first part of the Z condition is an implicit and approximate inclusion
which guarantees the existence of the sclection z(s, t, ), defined at least on [0,35] x D. The
second part of the Z condition is related to some natural properties like measurability

)
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and directional continuity. The last part of the Z condition guarantees the extension of

the solutions of the differential inclusions closely to the bound of the domain [to, t1] x D.
Iirst, under the Z condition we are going to prove an existence theorem for the

differential inclusions with u.s.c. and compact right-hand side. Let us denote

Z(s,t,x) = esslimz(s,t,y),

y—x

where u € esslimz(s,t,y) il for every set N C R™ with Lebesgue’s measure u(N) = 0
Y=z
there exists a sequence {yx}32, & N for which klim yr = z and klim (sl ye)=u:
v - 00 ¢ — 00

Note, the multi-function coZ(s,t,2) (co means convex hull) is the IMilippov’s extension of
the right-hand side for the ordinary differential equations with a measurable right-hand
side ([11], [12]). For any fixed s this function is u.s.c. in z, jointly measurable in (¢,z),
measurable in ¢ and for any continuous function x() the multi-function Z(s,t,2(t)) is
measurable (see [11], [12]).

Theorem 1 Let the measurable in t and upper semi-continuous in & mulli-function I°(-,")

with compact values satisfy the Z condition, i.c.:
For all sufficiently small positive numbers s there exists a measurable in (t,x) function

z(s,t,x) € F(t,x + sz(s, L, x)) + w(s, t,x) B (3)

where ]in&w(s,t,m) = 40, BB is the unit ball;
z(s,t,x) is directionally conlinuous at (0,1,x) with a constant M;
| F(t,z) |[K L <M.
Let the following equality

z(s +1,1,z — 7 2(8,t,2)) = 2(s, 1, 2), 8,720 (4)

be fulfilled for the selection z(s,x) of (3)).

Then the differential inclusion
&€ I'(t,z), =(lo) =m0, LE [lo,lh]. (2)

has a solution which can be extended closely to the bound of the domain [to, ;] x D.

If the differential inclusion (2) locally has a solution then, by traditional methods, it can

be continued up to the bound of the domain [to,t;] x D. As long as z(0,t,z) € F(t,x),
the above theorem 1 immediately follows from:

Theorem 2 Let the bounded function z(s,t,x) (|| z2(s,t,z) |< L) be jointly measurable
i (t,x) and directionally continuous al (0,t,z) with a constant M (see (3)). Let L < M

and the following equalily be fulfilled

z(3+r,t,x—'rz(s,t,:v))=z(s,t,x), s, 7> 0. (4)

Then the Cauchy problem
i = z(0,4,), =(lo) = %o (5)

locally has a solulion.



Proof. Ior a fixed s > 0, let us denote

Z(s,t,z) = esslimz(s,t,y), (7)

y—r

where u  belongs to esslimz(s,t,y) if for every set N C R" with Lebesgue’s mea-
y—z

sure u(N) = 0 there exists a sequence {yx}iz, ¢ N for which k]im yr = x and
k— 00

k]im 2(s,tyyr) = w. If the function z(s,t,x) is jointly measurable in (s,¢,z) then the

v —+ 00

multi-function coZ(s,t, ) is the Filippov’s extension of the right-hand side for the ordi-
nary differential equations with a measurable right-hand side ([11], [12]). This function is
w.s.c. in x, jointly measurable in (4, 2), measurable in £ and for any continuous function
z(t) the multi-function Z(s,t,2(t)) is measurable (sce [11], [12]).

Consider the following dillerential inclusion:

z(s,t) € coZ(s,t,x(s,t)), x(s,0) =z, s>0, (8)

where s > 0 is a constant, Z(s,t,2) is defined by (7) and co means the convex hull. It is
wellknown that the differential inclusion (8) has a solution (see f.e. [11], [12]) which can
be extended closely to the bound of the domain [lo,t;] x D (see [11]). As long as zo € D
there exists T' > to for which the solutions z(s,t), s > 0 of (8) are well defined on the
interval [to, T'].

The derivative @(s,1) of the solutions (8) a.c. can be represented as follows (see [12]):

141
(s, t) = ), ak(s,t)zi(s,t), s>0, (9)
k=1

—

-

where z,(s,1) and ax(s,t) are measurable functions on [0,77], and a.e. in ¢

n+1
zk(s’l) £ Z(s,t,a:(s,l)), ("k(s’l) 20, Z("k("'”‘) =1, k=12,... ,(” Tt |). (IU)
k=1

For fixed ¢ which satisfies (9) we are going to estimate || @(s,t) — z(0,¢,2(0,t)) ||, where
(s,-) uniformly converges to 2(0,-) on the interval [to,T'] when s — +40. As far as
z(s,t,2) is a bounded function with a constant L, the set of solutions of (8) is conditionally
compact in the space of continuous functions C[to,T']. Thus, we can choose subsequence
“which uniformly converges to some function x(0,?).

M-L

Let € > 0 be sufliciently small, for example € < . Let 7 > 0 be chosen under

the Z condition, i.c.
| z(r,t,y) — 2(0,¢,x(0,t)) IS e il |ly—=(0,t) [<7M

As well as zk(s,t) € Z(s,l,x(s,1)), one can choose yi(s,t) which are sulliciently close to
z(s,t) such that (i = k,5,7=1,2,...,(n+ 1))

| zk(s,t) = 2(s,t,ux(s, ) IS €. (11)
Il s > 0 is sufliciently small we have

| yi(s,t) = 7 2(s, &, ua(s, 1)) = i (0, ) [< 7 (L +€) <7 M.
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Under the directional continuity of z(s,f,x) and (1) we obtain

(e 0)=o(04(0,0) I (4o )= o, (e ) =0, 50 <
We can write

3
+

(s, 1) — 2(0,¢,2(0,1)) = (s, ’.)(Zk(.‘i, ) — =(0, I.,:r((),l,))) ==
k=1
n+1 n+41
S (s, 8) (s, 1) — (5, Ly ya(5,1))) + o an(s,0) (205, (s, 1)) = 2(0,1,2(0, 1))
k=1 k=1
By (10), (11) and (12) we have:
| ¢(s,t) — z(0,¢,2(0,1)) ||< 2¢. (13)

By (13), on the contrary, we obtain that a.c. in ¢ € 0,7]
lim #(s,t) = 2(0,2(0,t)).

s—+0

According Lebesgue’s theorem, limiting s to +0, we obtain
t
z(0,1) = lnn z(s,1) = xo + lnn els, &) A= 370-}—/0 z(0,&,2(0,¢)) dé
which is equivalent to

7(()$,) e Z((), {,HT(O, ,))s .’I'(I‘()) = o, t € [l””l‘]'
Thus, the function 2(0,1) a.c. satisfies (5). Q.E.D.

3 Inner Parameterization

In this section we are going to consider the Z condition for u.s.c. multi-functions with
respect to some properties as continuity, convex valued and monotonisity.

Note, that the inclusion (3) generalizes the well-known implicit Iuler’s scheme for the
numerical solving of the ordinary system of differential equations. The implicit Euler’s
scheme (f.e., for autonomous systems) is the following:

(i + 1)h) = 2(ih) + hf(x(G+ 1)R)), i=0,1,2,..., h30.

We are going to substitute (z((¢ 4+ 1)h) — @(¢h))/h by z(h,x(ih)) and rewrite the above
equalities as : :
z(hy2(ih)) = f(a(ih) + hz(h,x(ih))), 1=0,1,2,....

These equalities are equivalent to the inclusion (3) if () is single-valued and w(s, z) = 0.

Lemma 1 Let I'(x) be w.s.c. mulli-funclion wilh compact and convex values. Then for
every sufficiently small s > 0 il salisfies the first part of the Z condition with w(s,z) =0,
i.e. there exists a funclion

z(s,z) € F(z + sz(s, z)).



Proof. As long as I'(x) is u.s.c. with compact values, the restriction of I'(z) on every
compact set is bounded. Without loss of generality, we can suppose that there exists a
constant M and its respective ball Sps with a radius M centered in the origin for which
F(z) C Sy (]| F(z) ||< M) . Let us fix @ and a neighborhood

Ur) = {y € R'| || x —y [|< e},

where 0 < € < 1 is chosen arbitrarily.
- For every s € [0,e\M],y € U(z) and z € S; = {u € R" || u ||< 1} we have

sl'(y+ z) C sSy C 5

From the Kukutani fix-point theorem, f.e. [2], there exists v(s,y) € S; for which v(s,y) €
sI'(y + v(s,y)). Denoting z(s,z) = v(s,y)\s we obtain z(s,z) € F(x + sz(s,z)). The
statement of the lemma for s = 0 is trivial. Q.E.D.

Now, we are going to show that z(s,x) = —I(x), where Iy(z) is the Yosida approxi-
mation for the maximal monotone operator I'(x) satisfies (3) with w(s,z) = 0if F'(z) is
changed to —F(z).

Definition 4 [2]. A multi-function I'(z) is said to be monotone, if for any arbitrarily
chosen sequence of points x;,i = 1,2 and y; € I'(x;),i = 1,2, the following inequalily

(1 — 22,01 —12) 20
holds.

Let the multi-function I7(:) be defined on the set D. Then, the following set is the graph
of this function:
graphl.. = {(z, )| e Fi(w)s . a € 1))

Definition 5 ([2]). A multi-function I'(x) is said to be maximal monotone if there is no
other monotone function G(x) for which

graphl’ C graph(i

It is well-known that the maximal monotone maps are u.s.c. with convex values. For
more details see [2]. Irom lemma 1 we obtain:

Corollary 1 Let I'(z) be mazimal monotone multi-function with compact values. Then
the functions —I"(x) and I'(x) satisfy the first part of the Z condition with w(s,z) = 0.

Definition 6 [9]. A multi-function I'(x) is said lo be cyclically monotone, if for every
Jinite number of points x;,t = 1,2,...,k, 71 = T} and arbitrarily chosen y; € I'(x;),1 =
1,2,...,k, the following inequalily

k—

Z(:lfm =, ¥i) 270

1=

holds.
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Definition 7 f.c. [2]. Let I'(z) be a maximal monolone mulli-function then the maps
Jy=(1+sF)"' and F,=(1-=J,)\s
are said to be the resolvent and the Yosida approximation, respectively.

We need the following theorem:

Theorem 3 [2]. Let I' be a maximal monotone map. Then for all s > 0

1. The resolvent J, = (1 + I')™" is a nonexpansive single-valued map

2. The Yosida approximation I'y = (1 — Js)\s salisfies the following conditions:

(i) Fy € F(J,),

(i) F, is maxzimal monotone and il salisfies the Lipschitz condition with a constant
I\s.

3. Let m(I(x)) = Argmin || v ||

veF(z)
Then
| Fy() = m(F () P m(F () |* = || Fi(=) |1*

and

(1) Js(x) converges to x,

(ii) Fy(x) converges to m(I7(x)).

Setting z(s,z) = —Fy(z), by the above theorem (part 2) we obtain
z(s,x) € =1'(J,) = = F(x — sky(x)) = = I'(x + sz(s, z)).

If the above inclusion has an unique solution z(s,z) then it coincides with the Yosida
approximation /().

Lemma 2 Let I'(z) u.s.c., bounded and cyclically monotone mulli-function with compact
and conver values, defined on R™. Then it salisfics the [irst part of the Z condition with

w(s,z) = 0.

Proof. According to Bresis [5] a multi-function /() is cyclically monotone if and only if
there exists a proper real, convex and lower semicontinuous function V(z) : R* — I such
that I”(z) C 9V(z), where 9V is a sub differential of V. Since I*(z) is bounded the same

everywhere.
Let us define the following scalar function:

V4

S

(@)= minl 5121 =V +s2)

»
z

Under the well-known Weierstrass theorem, the above minimum exists. In fact, suppose
that M is the constant for which || 9V () ||£ M we obtain:

Vie)=V(z+asz) 2 wmax (y,s2) > —shl || 2|

or

5 S :
% H z “2 ~V(z + 82) 2 S | = ”2 —sM || z I ~V(a).

7



Obviously, for any fixed s and z, we have

S s
5 | 2 || =sM || z || =V(z) > ;)-1\12 - V() > —0c0 and
lim 2|z |2 =sM || z || =V(z) = oo.
llzll—oc0 2
These relations imply that the Lebesgue sets are compact and the minimum exists. Let

us fix as z(s, ) any point which minimizes the function § || z ||> —=V/(x + sz). As well as
V(x + sz) is a convex function in z, for z(s, ) we obtain

0 € sz(s,z)—s0V(x+ sz(s,z)) or z(s,z) € IV(z+ sz(s,z)).

Thus, the subdifferential of the convex function satisfies the first part of the Z condition.
Note, that for the directional derivative of the convex function we have:

/(x + ty) — V(x

Now we obtain:

d S

P e N (ol
0= (l:i:.z(s,:zr)[ 2

| 2(s,2) I =V (x + sz(s,2))) =

+s || 2(s,2) ||* —s veavr(rrklf(m))(v,ﬂ:z(s,:v)).

Considering that z(s,z) € OV (a + sz(s,x)), the above inequalities imply that

2 .
s, z) ||*= a szlsiz))i= min v, 2(s, )).
“ 2(s,) ” uen\'l(la!lf(.-,a-))( 2 ) vE/H'(.’r-l-:(.-..r))( »#(5,))
Suppose that OV (z + 2z(s,x)) consisting of a point z; which is different from z(s, z), i.e.
z1 = z(s,z) + z*, where the scalar product (z(s,z),z%) is equal to zero, z* # 0. From
the directional derivative we obtain:

d
0s dzt V(e + s2(s,2) = 'q<z(-“a5"),3l) -5 ue’)vl(]:rlr:‘-i((a,r))(?),Zl) <
—s{zy,2t) = =s |} 2~ ||’< 0.

This contradiction implies that 9V (z + z(s,z)) consists of only one point and obviously

the first part of the Z condition is satisfied. Q.E.D.

Without any proof we are going to formulate the following characterization of the
cyclically monotone and u.s.c. maps I'(z) : R* = K(R"). Let A CR™ be a compact and
convex set. The point v is said to be an extreme point of A if it does not belong to the
interior of some interval which is consisted in A,

T . v M) - n r n y
Proposition 1 Ivery cyclically monolone and w.s.c. maps I'(x) : R" — I(R") consists
of the extreme points of the values of the subdifferential of the some real convex function,

defined on R™,

8



We need the following theorem:

Theorem 4 [7]. Let I' be a lower semi-continuous map with nonempty closed values,
from R™ into a complete metric space Y. Then, for every cone I' C R™, F admits a
I'-continuous selection.

Lemma 3 Let the continuous and compact valued multi-function I'(x) be defined on the
bounded domain D. Then it satisfies the first and the second parts of the Z condition.

Proof. Let us denote by w(s, ) the following modulus of continuity of I7(z) at the point,
x:
w(s,x)= sup h(I'(x),I'(y)),
lle—yll<sM

where M is a constant which bounds the function /() in the domain D, h(F(x), I'(y))
is the Hausdorfl distance between the compact sets I'(x) and I'(y).

As long as [I'(+) is continuous, the modulus of continuity is a continuous function in
(s,2) and w(0,2) = 0.

Let f(s,x) be a directionally continuous selection of I(x). Therefore, this selection
exists under the theorem 3 (7).

According to [7] f(s, ) is jointly measurable in (s, ).

As well as f(s,z) € I'(z) and p(f(s,x), F'(x +sf(s,2))) < h(F(x), (z+sf(s,2))) <

w(s, ), setting z(s,x) = f(s,2) we obtain

z(s,x) € I'(x + .s*::A(s, r)) + w(s, ).

4 Examples

In this section we are going to consider examples which show that the Z condition
is sufliciently near to the necessary conditions for the existence of the solutions of the
differential inclusion (2).

Note that the following well-known differential inclusion

. - -1, if x>0,
.7:6—]‘(55):“{ Liberif a0y

does not have a solution for the initial position @(0) = 0. In this case the first part of the

Z condition is not fulfilled.

Let us consider the convex function V(z) = |¢|. For the subdilferential V(a) which
is a maximal monotone operator, we have I'(w) € dV(a). F(x) is a monotone w.s.c.
multi-function and, under the lemma 2, I'(x) satislies the first part of the Z condition.

The following three differential inclusions with 2(0) =0
& € £V (x)

. i -1, ifz >0,
b B(Ey=Ha, el



admit solutions (f.e. see [1], [2] and [9]).

Example 1.

The following example shows that the inclusions (3) could not be valid for the contin-
uous multi-functions if w(s,z) = 0:

Let the domain D be the unit ball in R% Define the continuous multi-function 7(x)
with values which are subsets of the unit circle in the following way:

F(pcosa,psina) = {(cos fB,sin B)|B € [0,27] \ (o — p,a + p)}.

Obviously, I'(-,-) = F(z) is a continuous multi-function but the beam {Az|A > 0} does
not meet [I'(z).

Example 2. [13].

The following example of an u.s.c. multi-function with compact and nonconvex val-
ues satisfies the first part of the Z condition, but not the second one. The respective
differential inclusion does not admit a solution.

Let us define the following multi-function with a finite number of values:

(=} illal & 233 22);
F(z)= 4 {=1;1}, lifz e [2722,2-2=1 U [—27%, —2-21),
1#¢i:8 ime[—2"2k“‘,-—2‘2k“2],

I'0) = {-1;1},k = 1,2,.... For every sufliciently small s > 0 we have:

—1 s il > € (2—2k-—2’2—2k] U (_Q—Qk, _2—21:-»1],
Z(s,x) = {—L; 1) ale =00 =10,
I, ifz e [—27%, —9-2k-2) y [2-2k=2 9-2k-1),
and
|2 seifig i@ [R5 EESE DSk
Z(s,0) =4 {=1;1}, ils=0,
i reuln =gk liozky,

There is no selection z(s,0) € Z(s,0) continuous in s = +0.
Consider the following differential inclusion

e z € I'(x), 2(0) =0.

The existence of a solution z(t) implies the existence of a positive moment of the time
T'" > 0 for which we have z(T') > 0 or (T') < 0. The solution x(f) is an absolutely
continuous function. Thus, for all sulliciently large numbers & there exists some ¢ for
which :
() >iz(t)= 2-%-2  or respectively z(T) < z(l) = 2 e

We have
[1'(:,:) — ——l ]f i o E (2_2k_|,2—2k) onr

I;‘(;I.‘) =] |[ T e (_2—'2k—l : __2_2;‘._2).

Thus, the trajectory x(t) cannot run across points 2-2%=1 and —2-%-2, This implies that
z(t) cannot leave 0 and the above differential inclusion has no solutions.

10



Example 3.

We are going to consider an example for which the function z(-, z) is discontinuous for
u.s.c. multi-functions with compact values.

Let us denote conv Q(R™) all nonempty, compact and convex subsets of R™.

Theorem 5 ([17]) There exist upper semi-continuwous and almost everywhere in t € [0, 1]
discontinuous mulli-valucd maps I' : [0,1] = conv Q(R"), for which cvery single-valued
selection is discontinuous on a set with a full measure.

Theorem 6 ([17]) For every set I2 C [0,1] of the type I, and the first Bare category there
cxisls an upper semi-conlinuous mulli-valued map I' : [0,1] — conv Q(R"™) for which the
poinls of a discontinuily coincide with I5. All single-valued sclections of the map I°(l) are
discontinuous on the set IJ.

\

Under the theorem 4 there exists a multi-function G(+) : [0, 1] — conv Q(R") for which
every single-valued selection is a.e. discontinuous. Denote

F(z) = F(x1,22) : R? = (24, G(x1)).

For the function z(s, ) = (21(s, ), 22(s, z)) we have z,(s, ) = z14+3521(s, ) and z5(s,z) €
G(zy + sz1(s,x)). Thus,

& z
"L and 2(8;2):6 G—

—S 1l —s

) ‘....A

il e —

and for all fixed z; the function z;(s,z) is a.e. in s discontinuous.

If the map G/() is chosen under the theorem 5 and x5 belongs to its set of the discon-
tinuity then the function z(s, ) is discontinuous at the point (0, 2).

Example 4.

Let fi(z) and fa(2) be two continuous scalar functions which are defined on the real
line (=00, 4+00). Using these two functions one can construct some lower semicontinuous
single-valued and left-hand side continuous function f(x) for which

f(z) € filz)U fo(z).

Suppose
fi@)l SL<1, i=12 (13)
I'inally, denote
F(z) = Limsup f(y),

y—z

where Lim sup is the Kuratowski upper limit (see [e. [3]). Applying theorem 1 (without
presenting the proof) the following differential inclusion

& € I'(z), x(0) = ¢

has a solution.
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