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A Boundary Value Problem with a Finite Number
of Impulses *

R.P. Ivanov, P. M. Kitanov

Abstract

This work considers Impulsive differential systems with boundary conditions. The
characteristic feature of the impulsive boundary value problems is the unknown impulse
moment. The solvability of the differential systems without impulses does not imply
solution for the corresponding impulsive problem. Another specialty of the impulsive
boundary value problem is that the set of solutions may not be a closed set.

The problem is considered as a special logically controlled impulsive boundary value
problem.

The control may choose to use an optional impulse on the surface S. It is proved
that the set of solution of the above mentioned controlled problem with a fixed and finite
number of impulses is a closed set. If the boundary conditions describe a compact set
then the set of impulsive solutions is a compact set too. The suflicient conditions for the
existence of solutions of single impulse linear boundary value problem are presented. An
example is considered.

Key words: impulsive differential system, impulsive boundary value problem, Cauchy
problem, Stieltjes integral, Caratheodory conditions.
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1 Introduction

In this paper we are going to consider an impulsive differential equation with boundary
conditions. The boundary value problem for ordinary systems of differential equaltions
appears in some physical problems, in optimal control theory, etc. There are many dif-
ferent results and solving methods for the boundary value problem (sce f.e. [2], [4], (6],
[7)-

The specificity of the impulsive boundary value problem dues to the unknown moments
of impulses. The existence of solutions is the main problem. Namely, the existence of
solutions of the corresponding non-impulsive problem does not, by any means, guarantee
the existence of solutions of the impulsive problem.

Two formalizations of the problem are considered as follows:
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Thanks to Operation Research Scientific Seminar of Mathematical Institute, Bulgarian Academy of
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1. Controlled impulsive boundary value problem where the control chooses to use an
optional impulse on a surface.

2. Impulsive boundary value problem with not more then N* 1mpufs€s at the first
N < N* moments when the trajectory is on a given surface.

In this paper we prove that the solution set for a controlled problem with a finite
number of impulses (under some sufficient conditions), is a closed set. If the boundary
conditions describe a compact set then the set of impulsive solutions is also compact. We
consider the simplest case of a linear impulsive boundary value problem with only one
impulse on a hyperplane and reduce it to the Cauchy problem with a fixed impulsive time

moment. A theorem about uniqueness of the solution is proved. An example is presented.

2 Statement of the Problem
An impulsive differential system may be (l('finc(l,. las follows (sce [5])
x= f(t,x), h(t,x)#0, teR, xeR", (1)

Az = I(t,z), h(t,z)=0, t€[to,T), z€R" 0<|[I(t,2)||[<M <o (2)

Where [ : R x ", — R, 1 : R X R" —— R". The equation h(t,2) = 0 defines a surface
S in the space "' and Az is the impulsive function, i.e. the trajectory () jumps on

the surface h(t,x) = 0. Il h(t,x(t)) = 0 then

Ax(t) =a(t+0) —a(t) and 2(t+0)= lm+1 a(t+ h)
We are going to consider the boundary value problem for the impulsive differential system
(1) - (2). Let us fix the time interval as [to, 1] and let the solutions of (1) - (2) satisly the
following linear boundary condition:

/ [dd(t)]a(l) = a, (3)

where @ € R™, ®(1) is a matrix (n x m) of functions with bounded variations on the
interval [to, 7] and the left-hand side of (3) is the Stieltjes integral. In this paper we are
~going to consider the case when the measure [d®(1)] is supported at the finite number of
moments 7o, T1,..., 7 = 1. The condition (3) transforms to

k
3 y(r;) € a(7;), Zgouu (rp)emia; iy 2 Ty auphytiai= 1700 fmi (1)

Additionally, we suppose that we have a finite number of possible jumps Az of the tra-
jectory on the surface h(l,x) = 0. We suppose that a subject can decide to be an impulse
on the surface h(t,2) = 0 or does not happened. This special (logic) control is restricted
by the minimal and maximal numbers of impulses. Denoting N the number of possible

impulses we require:
0<N, <N<N, < oo, (5)

where Ny and Ny are the'minimal and maximal number ol impulses respectively.
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Definition 1 A multi-function x(t) is said to be a solution of the controlled impulsive
boundary value problem if it satisfies (1) - (3), it is single-valued and absolutely continuous
at every interval (1;,t;4,) and -

h(t,',.’l‘(tg 0 0)) = 0,

h(t, (1)) #0, L€ (Listi),
KA des 0)) 2 0;

t <ttt <1

s = N e NS VS Ny
z(t) =z(t - 0) U=x(l +0).

Let us consider the following linear impulsive system:
g=C)x+f(t) to<t<LT, (6)

2(t+0)=a(t—-0)+d, (c,z(t—0))=« (7)

where S = {@ € R"|(c,x)= a} and L is the first moment when z(t) € S and the trajectory
obligatory undergoes a single impulse, i.e. Ny = N; = 1. Let the boundary conditions

have the following form:
Az(lp) =a and Ba(1)=0b. (8)

We suppose that A, B, C are matrices (n x n),x, [,a,b,c,d are n-dimensional vectors and
a is a number, C(-) and f(-) belongs to Ly[to, T').

As well as the single impulse is obligatory at the first moment ¢ for which z(¢) € S the
statement of the above linear problem is different from the statement of the controlled
impulsive boundary value problem.

In this paper we suppose that the following condition (i) is fulfilled

(2) x(t+0)¢gS if a(t—0)€S.

It is easy to check that the condition (4) generalizes the condition (8) and that the
condition (i) transforms to the condition (c,d)# 0.

3 Main Result

Theorem 1 Let us consider the controlled impulse boundary value problem (1) - (5)
wilh the condilion (i) for which the measure [dO(l)] is supported al the finite number k
of fixed moments 7,1 = 1,2,...,k. Let the funcltion I(t,x), which describes impulses, be
continuous. Suppose that f(1,x) : Rx " +—— R" is the Caratheodory function (measurable
in b for every a, conlinuous in a,

| f(t,2) | m()(1+ || = |]), /tT m(t) dt < oo).

Then, the intersection of the hyperplane t = const. and the solutions sel for the considered
problem is a closed subset of I?".



Proof. The prool is trivial for the case of an empty solution set.
We need the following

Lemma 1 ([1], p.10). Let a;(t) (i £t < Biyi = 1,2,...) be solutions of the Caratheodory
equation which graphs belong to the closed and bounded domain D C R x-R", and

(aiyzi(ay)) = pi = p=(yx0),  (BiyaiBi)) = qi = q = (B,27).

Then there is a subsequence of solutions which converges to a solution for which:
. Its graph connects the two points p = (a,xo) and q = (f3,2%),

. Ats graph belongs to D when o <L < f3,

3. I'or every § > 0, the convergence is uniform on the interval (o + 8, — §].

~
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Under the Caratheodory conditions and lemma 1 (see f.e. [1], [2]) one can prove the
following corollary.

Corollary 1 1. Let the conditions of lemma 1 be fulfilled and D = R™. Then the stale-
ment of lemma 1 (point 3) is valid with é = 0.

2. Let the right-hand side of the differential equation satisfy the Caratheodory condi-
tions and the set of inilial positions be a compact set. Then the sel of solulions of the
Cauchy problem is a compact set in the space of continuous funclions.

Let 2;(t),2 = 1,2,... be a sequence of solutions for which

k
zi(th=0):€ S, . j=d,.s50 Z(p,_]‘y,’(Tj):(l,, F= v e e ] 2o,

i=1

Let us fix t € [to,T] and let i]—i.]?o zi(t) = z(1).

If the trajectories x;(t),7 = 1,2,... do not have impulses on the interval t; <t <ty
then by lemma 1 (corollary 1) the sequence x;(-),7 = 1,2,... is compact on this interval
in the space of continuous functions C[t,1,]. Now we can extend this interval up to the
moment for which either t; = 1o or the trajectories x;(-) have impulses on the interval
(ty = 6,t1 +6), § > 0. We can extend the right bound ¢; up to the moment for which
either £, = T or the trajectories a;(-) have impulses on the interval ({1 — 6, (, + 6), § > 0.

Let the trajectories xi(t),z = 1,2,... have impulses at moments ¢;, ¢ = lim ¢;. As long
11— 00

as x;(t;) is multi-valued we can choose a subsequence (we don’t change the numeration)
for which lim @;(4; +0) = a(t) il t; < L or limai(t; —0) = a(l) il ; > £. In the first case
1— 00 1= 00
we put z(t 4 0) = a(t) and, respectively, a(t —0) = 2() - in the second case.
If lim a;(4; 4+ 0) = a(¢) then by (2) we have
1—00

| @i(ti = 0) [|=| wi(ti +0) = I (i, xi(ti = 0)) || @i(ti + 0) || +M.

Thus we can choose a subsequence ai(t;—0),7 = 1,2,... for which lim 2;({;—=0) = «(1-0).

11—

As long as x;(t; — 0) € S and h(-,-) is a continuous function we obtain that (¢t —0) € S
which implies that 2(+) has an impulse at the point ¢.



Il lim @;(¢; — 0) = x(t) then a(t — 0) = a() € S is well defined. By the continuity of

I(+,-) we obtain
ar(t + 0) = ililllo :l‘,'(l,' + 0).

Under corollary 1 we obtain that there exists a subsequence z;(-),7 = 1,2,... which
uniformly converges to x(-) on every interval [ty + é,¢2 — 6], where § >-8 is arbitrarily
chosen and

lim zi(t; +0) = (t1 +0), jlif]cl, %5{li U) =2 05 G i e, jm b = ta.
r_[‘hus, we c]]oosc nol more Lllcn N -+ 1 Slle(‘,(lll(‘n('(‘S a.n(l as lOllg as cvery Ll'ﬂ,j(‘.(lt()l'y .'l:,'(')
has exactly N impulses the same holds for a(-).

It is easy to check that the condition (4) is fulfilled for the obtained trajectory x(-).

Q.E.D.

Corollary 2 If the boundary conditions ({) deseribe a compacl subsel of R™ then, under
the conditions of the above theorem, the inlersection of the hyperplane L = const. and the
solutions set for which the number of impulses is really N, is a compact subsel of R™.

We are going to consider the boundary value problem (6) - (8) with the number of possible
impulses equal to one.
Under the above proved theorem we have

Corollary 3 The intersection of the hyperplane t = const. and the solutions set of the

controlled impulse boundary problem with single impulse (Ny = Ny = 1) for the linear
system (6) - (8) is a closed subset of ™.

If X(¢,s) is the fundamental matrix of the solution for the system
B=GA(t)z

then the solution of system (6) can be represented using the Cauchy formula
t
d(t)=y+ [ X(t,s)f(s)ds, to<tST
to

"where y is some initial position (see [.e. [2]). We are going to modify the transformation
of the boundary value problem (6), (8) (without impulses) to a Cauchy problem. We
denote the determinant of the matrix A by detA.

Theorem 2 Let us consider the impulse boundary problem with single impulse for the
linear system (6) - (8). Let the single impulse be obligatory at the first moment t* for
which (c,z(t*))= a. If det(A+ B) # 0 and the following equation:

l.
(cy(t) + | X(U7,8)[(s)ds)= e,
to
where
t. ’l‘ w» s Al
y() = (A+B) " at+b-Bd— | BX(,s)f(s)ds = | B X(T,s)/(s)ds],
to



has a solution t* on the interval [lo,T] then the impulse boundary value problem (6) - (8)
has an unique solution. This solution can be oblained as a solution of the impulse Cauchy
problem with the impulse at t* and the initial position

y=(A+ By fatb-Bd- [ BX(W,5)/(s)ds— [ BX(T,5)f(s)ds]

to A

Proof. Consider the following system of equations:

Ay=ua
<c,a:(t‘ - 0)> = <c,y + f,‘o X(t*,s) 1 (3) (l.9> = |
B [a(t* +0) + [T X(T,s) f(s)ds| = B [x(t* = 0) +d + [ X(T,s) [(s)ds] = b

This system linearly depends on the unknown variable y and it is casy to obtain

. '1‘
(A+B)y=a+b—Bd- BX(t*,s)f(s)ds — ; BX(T,s)f(s)ds.
to e
As long as det(A+ B) # 0 there exists an unique solution y(2*) of the above linear system.
By the conditions of the theorem there exists a minimal ¢* € [to, 7] for which

.

(L") + X(t*,8)[(s)ds)= a.

to

Q.E.D.

4 Example

The following example shows that, in general, the set ol the impulsive boundary value
problem solutions should not be a closed set. We are going to consider the case where
the impulses are obligatory at the moment ¢ for which the trajectory x(t) belongs to the
surface S = {(t,x) € R x R*| h(t,2) = 0}. The following problem with not more then
two impulses is in a plane.

L1 =]

ay = cos(t)

h(t, 21, 09) = a2 — 3

I(t, zi,22) = I(t, 7y, -12-) =

() (—z1+t, —=|z—%|— %) or
(1) (=mi+%, —fo— - 1)

2(0) =0, =2y(m)=x, te[0,m] N=2.

Supposing that y; € R is an arbitrarily chosen initial position for 21(0), we obtain the
following solution:

, n+t if yieR\0 0St<Z,
R Ol MR T i e
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¥ sin(!) s gy
2(t) = "'l?/ll + sin(t) — % il s St

20

These solutions have only one impulse and if y; = 0 we obtain tlic following solution with
two impulses in the case ():

i (l) =1, il 0SS US T,

sin(d).. 5l S <
z4(1) = { sin(t) — 3, it isise
sin(t)—1-%, if Z<t<w

Thus, the point-wise limit of the solution with one impulse can be a solution with two
impulses. It easy to check that in the case (**) the trajectory with an initial position
x1(0) = 0 has to have two impulses. This trajectory does not satisly the boundary
conditions, i.e. the solutions set with really two impulses is empty. Thus, in the case
where the impulses are obligatory, the set of all solutions may not be a closed set.
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