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Abstract

An algorithm for coupled solving 21) Navier - Stokes equations in the stream
function % - vorticity w variables is presented. Lid driven cavity flow is com-
puted as a test example.lmplicit difference sehemes onuniform grids are nsed for
discretizing the unsteady Navier - Stokes equations. An iterative method, sim-
ilar to the BLOCK-ORTHOMIN(K) method, is used for solving block-matrix
set of linear algebraic equations al cach time step . The non-symmetric block
is reversed on each block-iteration by using approximate lactorization - OR-
THOMIN(1) iterative method. The difference Laplace operixtor is reversed by
means of a direct method. The comparison of the results, provided by coupled
solving Navier-Stokes equations with those provided by decoupled (consecutive)
solving the equations for w and ¥, demonstrate the advantages of the suggested
computing technique.

INTRODUCTION

Recently much interest has been devoted to the development of efficient algorithims
for solving the system of Navier - Stokes cquations because these equations are an
important part of the mathematical modcling ol various processes and phenomena.
For a long time the decoupled solving numerical techniques have been mostly used
for computing Navier - Stokes equations [I]. However the consecutive solving of the
above equations leads to a restriction on the time step even when the implicit time
approximation is used. Such a restriction may occur in the two most [requently used
choices of variables: velocilty u - pressure p lormulation, and vorticity w - stream
function 1 formulation. In the first case a relation W = f(p*) arises. In the second
case a relation

W= ) (1)

has to be used for the consecutive solving the unsteady Navier - Stokes equations.
Here k stands for the time level and I' denotes the boundary of the domain under
consideration. Lijumkis [2] and Vabishchevich [3] note that for the ¥ — w formulation
and for moderate Reynolds numbers such as Re < 1000, the time-step restriction
following [rom relation (1) is stronger then the time - step restriction cansed by using
the velocity values [rom the previous time step in the approximation of the convective
terms. They have found numerically that the restriction when one uses (1) is:

ret il el (2)
where 7 stands for the time - step, b stands for the mesh size. New dillerence schemes

are proposed in [2,3] for relaxing the vestriction (2).

Recently a number of papers has bheen devoted to coupled solving the svstem of Navier
- Stokes equations, both, in 1» —w and in w—p formulations. Vanka in [1,5] proposes an
algorithm for coupled solving Navier - Stokes equations in primitive variables using the



finite difference method. Ile uses the multigrid technique in (6] for rapid computations.
Rubin and Khosla [7] and Popov and Majorova [8] propose algorithms for coupled solv-
ing 1 —w equations. Bender and Khosla [9] investigate the usage of direct sparse matrix
solvers in the solving Navier - Stokes cquations in ¥ — w formulation. Lipitakis [10)
and Osswald et al. [11] use direct methods for coupled solving 31 Navier - Stokes
equations. Arakawa ct al. [12] compare results [rom the use of the multigrid techuique
for both, the coupled and the decoupled solving 21D Navier - Stokes equations. Van
Dam and Hafez [13] compare some direct and iterative methods that have heen used
for solving particularly parabolized Navicr - Stokes equations in 1 —w formulation. Let
us note that the direct methods have been used in many of the above papers for solving
large sparse matrix equations at each time-step. lowever Radicati et al. [14] compare
results from the use of iterative and direct methods for solving unsteady convection -
diffusion equations and they show that [or grids, finer than 64x32, the iterative meth-
ods are more preferable for computing the problem they consider. This conclusion is
valid for the case when one solves the sels of linear algebraic equations with the same
precision in both cases: using dircct or iterative methods. lHowever, Radicati et al.
also note that in many cases there are no physical reasons for the very accurate solving
of the matrix equation at cach time step. Our own experience conlirms these conclu-
sions. IFrom this point of view it is more preferable to use iterative methods to he able
to solve the matrix equations al cach time step with an appropriate accuracy. This
conclusion is theoretically justified in a lincar case: Bramble et al. [15] prove for a spe-
cific class of linear parabolic PDI's and for a certain class of numerical methods that it
is sufficient to achieve a moderate accuracy for the numerical solution at each time step.

In the present paper a new iterative method for coupled solving 2D unsteady Navier -
Stokes equations in ¥ —w formulation is proposed. The suggested numerical technique
may be also used for computing steady-state problems, whose solution is considered
as a time stabilization solution of the unsteady equations. The lid-driven cavity [low
is computed as a test problem. Different approximations of the convective terms are
used. The results from the coupled and the decoupled solving Navier - Stokes equa-
tions are compared for the above problem. Tt is demonstrated that the restriction (2)
can be significantly relaxed for moderate Re (or, even removed for small /i) by the
assistance ol the suggested here coupled solving mumerical techuigue. The presented
numerical results illustrate the fact that the sngpested technique allows the flow to be
computed with the same accuracy (as in the case of using consccutive solving numerical
technique) spending less CPU time.

The remainder of the paper is organized as lollows. Next section is devoted to the
mathematical model and the difference schemes. In third section the used block-matrix
iterative method is described. T the Tast section the vesults from the mumerical exper-
iments are presented.



MATHEMATICAL MODEL AND DIFFERENCE SCHEMES

As it has been noted above, the lid-driven cavity flow is computed as a test problen.
It is assumed that the lid of the cavity has suddenly started to move at the moment
t = 0 with a dimensionless constant velocity w = —1. The unsteady dimensionless
Navier - Stokes equations were computed up to the moment of {luid flow stabilization
and the steady state solution is demonstrated [or convenience.

The governing equations are:

deay i O il g .
ot dr dy  Re A (3)

AY = -w, (r,y)eN, t>0. (4)

Here u = 2%, v = —2% are components of the velocity vector, ¥ is the stream function
dy dx

and w = g—: - —g—;‘ is the vorticity of the velocity. §2 denotes the unit square in 122 | ' is

its boundary, IZe stands for Reynolds number. The usual non-slip and impermeability
boundary conditions are considered:
N

P _—) iy - -1 '
p=0, S =0, ()€ DT, (r

(W1 |
~—

iy 2
s U = i =-1, (r,y)el" ={(x,y): O<a< |, y=1)}. (6)
dy

An uniform rectangular grid U = QU U, with steps by and by, and sizes N, and N,
is introduced on Q U I, Implicit finite dilference schemes are used to approximate the
system (1)-(4) and in the general case they may be written as follows:

Aun Ax U- _ | A -
A Apn | I2 (1)
The blocks and functions in (7) may he written in the more detailed form as follows:

1o+ 1A (&) - =00, (x,y) € D,

A”L:J = ) ('\)
lw (v y) € s
0, (r.y) € Qy,
Alﬂ/" = —7;"’7 w5, (,y) € W/, (9)

20 2 A 1
gt 0 e ol R ) R
where s-1 denotes the nearest node on the internal boundary normal,

. e (evy) € S,
Anw = { 0. (v y) € Ya, e
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g ,\,’/7.‘ (ryy) € Qy
Lot = . :
Ny { 1, (ryvy) € Y,y L

- Jw, (1) € Q, A
S = { 0,  (x.4) € (12)
_ )0 (ry) ey, :
Lo { 0, (r.y) €, e

It can be seen that in this case Ay, Ay, Ay, fi and f5 are the same as for the
usually used decoupled numerical techniques [1]. Let us note that the operator A,
includes Thom’ boundary conditions for the vorticity, but opposite to (1) in this case
we have

W= T (1)

The grid functions in (8)-(13) are denoted by the same letters as the continuous func-
tions and the following notations are used: @ = w(a,y, t**"), w = w(x,y, t5). 1 is
the identity operator, A (1, @) is a lincar grid operator approximating the convective
terms, A is a grid operator approximating 21 Laplace operator on the uniform grid.
The different choices of the operator A, determine the different dilference schemes:

CD: Ay, w) -the central differencing of the convective terms;
FUD: A.(¥,w) -the first upwind dillerencing scheme [1];
SUD:  A(,@) -the second upwind dillerencing scheme (7).

Using the consecutive solving algorithm we will nse notations CS.CD, CS.IFUD, CS.SUD,
respectively. '

ITERATIVE METHOD

Let us rewrite the set of linear algebraic equations (7) as follows:

A=y (15)

BTG kg ] s g !
£ /‘]'2 /l;r) AT w? | 1.5 .1/2 ;
gl g% wh,w? € RNy Ay Ay gy, gy € VN N = N x N, . The matrix A and

submatrices Ajy, Az are assumed Lo he nonsingular. The following algorithm describes
a preconditioned iterative method BLOCK-ORTHOMIN(K) [16] for solviug (15):

where
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(1) solve BEM = g — Ay™ n = 0.1...;

() { 6(")' n= U"
i compule p = Al (L
A T U e i () 0 L TGt e gt
(D(("’.p(""”) i 5 ¢ 3 )
bt nate ('EJW‘T)’ [=1,2,..on(I,n);
oos n :(n)')(n)
(ili) compute gyt =y o M, = :%‘p(ﬁﬁ)j,
where 2" = w — y("),n = 0,1,...; D is the preconditioner and the choice of D,

symmetric and positive definite, allows Lo compute inner product (Dz™, p™) for every
n. For our case of block-matrix A, assuming that the equations -
Ape! = ¢ (16)

and
At =y (17)

can be easily solved, the following choice of 13 and D may be tried:
B = (20— A0 Dy,

D= (D) (D3 ).

Here I is the identity matrix and

_ ,‘l“ 0
el i

For any special initial guess such that

A
rl0 =g — Ay = [ ’U ] ) (18)

only one equation (16) and one equation (17) have to be solved al cach iteration step
of the BLOCK-ORTIHOMIN(IK) method. Generally, this is not troe in the case of Lhe
iterative solving ol (16) or (17) with insullicient acenracy, so restarts nay he recom-
mended updating the iterative guess to satislv the condition (18).

In our case method of approximate factorization NAT by Dupont et al. [17], modilicd
and coded by Makarov [18], is used for solving equation (16). March algorithin by
Bank and Rose [19], modified and coded by Kaporin [20], is used for solving equation

(17).



NUMERICAL RESULTS AND CONCLUSIONS

The lid-driven cavity [low is computed on unilor grids with 33x34 and 65x66 nodes.
Values of the Reynolds number equal to 10, 100, 400, 1000 are considered. For com-
parison, the lid-driven cavity flow is computed by use of the coupled solving numerical
technique (7)-(13), as well as by use of the usual decoupled (consecutive) solving tech-
nique [1]. In both cases the same methods and codes are used for solving cquations
(16) and (17). The following criterion of flow stabilization is used:

(@ =w)/7l,, <ellolle

All computational results are presented in Tables I-V. The following computed data
are presented in Tables [-IV for Reynolds number equal to 10,100,400, and 1000, re-
spectively:

CPU: CPU time in seconds on main lrame computer 1BM 43411;
NSTEP: number of time steps up to llow stabilization;
NBIT: number of block-iterations throughout all time steps;

NALLIT: overall number of iterations for solving systems (16) throughout
all time steps;
VAT maximum value of stream anction,

As it was mentioned above, the schemes nsed inonr computations are denoted as fol-
lows: CD - central dillerencing scheme, IFUD - first upwind dillerencing scheme [1],
SUD - second upwind differencing scheme [7). In the case of using the consecutive
solving numerical technique, the schemes are denoted CS.CD, CS.IFUD, and CS.SUD),
respectively. For Re = 1000 only upwind schemes are used.

It can be seen from Tables [-1V that vestriction (2) does not take place when one uscs
the coupled solving numerical technique. For small Reynolds numbers (10 and 100)
any value of the time step ¢ can be chosen for any of considered dilference schemes.
For moderate Reynolds numbers (100 and 1000) the same is true only when one uscs
upwind schemes. This possibility very large time steps to be used for solving unsteady
Navier-Stokes equations shows that the implicitness of the boundary conditions for the
vorlicity is more important than the nonlincarity of the conveetive terms for lid-driven
cavity flow for ¢ < 1000. Note that if the value of £is very large we have to consider
the Navier - Stokes equations solution as a solution of the steady state problem ob-
tained by a simple iteration method. T this case £is not the time step but the iteration
parameler. The presented in Tables -1V resalts also show that for small and moderate
values of the Reynolds numbers there are no reasons for using Newton's method for
linearization of the considered equations.

Note, that the steady state lid driven cavity flow can be computed faster with the
coupled solving numerical technique. as it can be seen from Tables -1V for fixed Re
number and for chosen difference scheme (the time step values for the conscecutive
solving technique are chosen in agreement with the investigations from our paper [23]).



The main reason for this is that the coupled solving numerical technique allows larger
values for the time step ¢ to be used. Note that suggested computing technique (7)-
(13) is essentially more cffective for small and moderate Reynolds numbers and on fine
grids (see Tables I and 11). FFor fte = 1000 the hoth, coupled and decoupled, numerical
techniques require relatively the same computational resources. Table V presents more
detailed information about computed flows [or [fe = 100,400, and 1000, as well as data
from other papers. One can observe there the stream function value and the vorticity
value at the primary vortex center (4% 5™ columns), at the left corner vortex cen-
ter (6** and 7** columns), and at the right corner vortex center (8 and 9** columns),
respectively. The last column presents the vorticity value at the mid of the lid. The
results, computed by using the coupled solving numerical technique, as well as by using
the decoupled (consecutive) technique, are presented. For comparison, the correspond-
ing data from papers of Chia et al.[21], Gupta [22], and Vanka [6] are presented. In
general, there exist a good agreement between data, computed here and data, com-
puted by other authors. The three diflerent spatial approximation of the convective
terms used in this paper are wellknown from a long time. Therelore we will not discuss

and

in details their advantages and disadvantapes. We will just brielly discuss the results
presented in the Tables [-V, concerning the accuracy of the computations. As one
may expect, all the three used dillerence schemes are very similar for simall Reynolds
numbers and they produce almost identical results in this case (see Table 1), It can be
seen [rom Table V that the larger valne for the Reynolds number is considered, the less
adequate results are obtained using the first upwind dillerencing scheme. Concerning
the central differencing (CD) and second upwind differencing scheme (the last one has
almost second order spatial approximation in the regions of the slow flow). Both these
schemes give almost the identical values ol the stream function and of the vorticity at
the primary and secondary vortices centers. These values are in good agreement with
the respective values from papers [6,21,22] (note. that we use a grid with 65x66 nodes,
Chia et al.[21] use 129x129 nodes, Vanka [6] nses 321x321 nodes, and Gupta [22] uses
44x44 nodes, but he uses higher order difference schemes).

Summarizing, the explicit determination of the boundary conditions for the vorticity
(1) is the main restriction on the time step in solving 2D unsteady Navier - Stokes
equations in stream function - vorticity formulation when the closed domain and the
moderate Reynolds numbers are considered. The suggested above computing techuique
allows the restriction (2) to be overcome,
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Table 1. /{e = 10,

mesh | 7 | SCHEME || CPU | NSTEP [ NBIT [ NALLIT [ Vo |
size e I
0.4 Ch T R 1) 25 2100 [ 0.09972
4.0 Ch 23 6 13 128 0.09970
0.01 | CS.CD S0 132 , 253 0.09972
0.4 run 12 10 25 241 0.09980
33x | 4.0 Fub 24 G 14 136 0.09983
34 | 0.0l | CS.FUD | 86 132 261 0.09990
0.4 SUD 45 10 25 204 0.09973
4.0 SUD 25 G 14 136 0.09976
0.01 | CS.SUD || 94 132 258 0.09971
0.1 G R0 16 86 763 0.09998
10.0 D 163 | 28 280) 0.10000
0.003 | CS.CD -_f{.;r’_"__ :;._\'_!) 0.09998
0.1 I"UD 511 i 100 856 0.0999G
65x | 10.0 U 151 | 28 250 | 0.09998
66 | 0.003 | CS.FUD || 924 488 596 0.1001
0.1 SuD H98 17 106 971 0.09999
10.0 SUD 161 1 28 278 0.10010
0.003 | CS.SUD || 1005 489 594 0.09998
F



Table T1. Ite = 100,

e

wmesh | 7 | SCHEME [ CPU [ NSTEP | NBIT [TNALLIT | four
size

1.0 Ch GO |16 39 ey 0.1021

10.0 ¢h ) 15 11 150 0.1022

0.1 | CS.CD || 91 | 138 3 395 0.1021

1.0 Fun S0 22 53 156 0.09982

33x | 10.0 FUD 33 0 21 188 0.09950

34 | 100.0 FUD 26 7 17 148 0.09965

0.1 | CS.FUD | 91 127 392 0.1011

1.0 SUD 78 20) 16 451 0.1021

10.0 SuUD 1 ) 20 2506 0.1022

100.0 SUD 27 7 17 151 0.1021

0.1 | CS.SUD || 9l (11 383 0.1021

1.0 G NG 1) 51 122 0.10:42

10.0 Ch 37 13 68 586 0.1027

0.03 | CS.CD 997 | 110 866 0.1031

1.0 U 1551 200 T (50 0.0999.1

65x | 10.0 FUD HS 0 25 238 0.09997

66 | 100.0 FUD 100 f 16 152 0.09969

0.03 | CS.FUD || 1210 | 16Y 99| 0.1029

1.0 SUD RN 20) 62 576 0.1032

10.0 SUD 191 10 30 305 0. 1031

100.0 SuUD 160 8 39 1015 0.10-10

0.03 | CS.SUD || 1147 o S98 0.103]

- o




Table 111, Ve == 100.

mesh | 7 | SCHEME [ CPUNSTEP | NBIT NALLIT | v

Size p—— DU
1.0 ¢ T80 10 110 | 1313 0.1122
0.1 @s:Gp SOT 302 1006 0.1120

65x

606 1.0 I*UD (03 I3 99 NG 0.09978

10.0 1'un 184 1) 30 280 0.09968
0.1 CS.IFUD S08 271 379 0.1037
1.0 SUD 636 10 99 052 0.1122
10.0 SUD 300 13 51 460 0.1122
0.1 | CS.SUD 914 299 (694 0.1120




Table IV. Il = 1000.

CRU NS TER

NBIT

NALLIT

mesh T SCHIEMIE i
size
10.0 FUD 12 12 21 2342 0.09911
100.0 U 27 T 15 148 0.09969
1.0 CS.IFUD H2 Ol 322 0.07771
33x i
34 10.0 SUD 160 20 101 0306 0.1030
100.0 SUD Gl I 35 37T 0.1037
0.25 | CS.SUD 1< IS H29 0.1025
5.0 IFUD 410 28 64l 61 0.099-1
100.0 I"UD 101 0 15 141 0.09953
0.25 | CS.FUD H08 118 704" 0.09:16:1
65x
66 0:0 SUD 425 31 (G2 (620) 0.1162
100.0 SUD H9:1 M| I 1119 0.1126
0.25 | CS.SUD AN 166 TI8 01111




Table V.

Ite | mesh | SCHEME || primary vortex || 10t corner vortex || vight cormer vortes
SiZC '/.m‘ e e _‘-'l__l_x Wl [/ANIS g ...:J" e .u'( &5 | )
rup 0.09994 [ 311 | -0.297(-5) | -0.016 || -0.29G(-5) | -0.016 58T
CS.PUD [ 0.1029 | 3.10 || -0.253(-5) | -0.021 || -0.11d(-1) | -0.030 6.65
65 SUD 0.1032 1 300 | -00000(=0) | -0.040 || -0.253(-5) | -0.020 6.6
CS.SUD 0.1031 [ 311 || -0.145(=-1) | -0.040 || -0.250(-5) | -0.021 G.G 1
100 :
ch 0.1031 | 300 | -0.116(--1) | -0.040 || -0.252(-5) | -0.020 G.6G1
CS.CD 0.0030 | 301 || -0.1105(-1) | -0.040 || -0.250(-5) | -0.021 G.G1
129 | Chia[21] 01034 | S A7 || -0.025(-4) | -0.031 || -0.173(-5) | -0.010
d4 | Gupta[22] | 01042 | 228 1 -0.12{(-{ 0.174(-5) .50
321 | Vankal6] || 0.10.44 -0.014(-4) -0.194(-3)
IFUD 0.09978 | 326 || -0.303(-5) | -0.015 || -0.303(-5) | -0.015 5H.88
CS.FUD [ 01087 | 2,10 1 -0.308(-3) | -0.251 || -0.997(-5) | -0.017 10,13
65 SUD 00122 | 227 | -0.676G-3) | <018 || -0067(-1) | 0019 10,36
CS.sub 01120 | 2.26 ';Qiur:i(-:;) OGET ] -0016h(-1) | -0.0:19 10,38
400
(64) 00122 | 227 | -0.676-3) | =08 | -016T (1) | -0.019 10.:36
CS.CD |l 01120 | 2.26 | -0.673(-3) | 0417 |1 -0.065(-1) | -0.019 | 1038
129 | Chia[21] || 00139 | 229 || -0.612(-3) | -0434 || -0.142(-4) | -0.057
44 | Gupta[22] || 0.1112 | 2.50 || -0.700(-.3) -0.137(-1) 10.15
321 | Vankal0] || 0.11306 -0.045(-3) -0.146(-1)
U 0.09920 | 3.21 OAT0C-5) 1 -0.005 | -0301(-5) | -0.015 291
CSFUD 009161 f 1T 06581 | -0.051 )1 -0.839(-1) | -0.668 1G.90)
65
sub O | 2,00 -0.02250-3) | -0.297 0. 190(-2) 100 1613
1000 ¢'S.Sub O L | 2,00 {1 -0.226(-3) | -0.296 || -0.190(-2) | -1.100 || 16,11
129 Chia[21] 00179 | 205 | -0.200(-8) | -0.9062 W -0.175(-2) | -1.155 -
d4 | Gupta[22] || 01074 | 201 || -0.1.48(-25) -0.211(-2) 6.2
321 Vanka|6] 0.117.8 SR 0.174(-2)
i — iaripsiivaend
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