ИНСТИТУТ ПО МАТЕМАТИКА С ИЗЧИСЛИТЕЛЕН ЦЕНТЪР INSTITUTE OF MATHEMATICS WITH COMPUTER CENTER

On certain systems of generators of infinite symmetric and alternating groups

Valentin Vankov Iliev

Preprint

No 3

February 1995

Section of Algebra

БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ

BULGARIAN ACADEMY OF SCIENCES

ABSTRACT

Let $S(N_0)$ be the symmetric group on the set N_0 of non-negative integers, consisting of all permutations σ with finite support. Let ω be the endomorphism of the group $S(N_0)$, defined by the rule: $\omega(\sigma)(p) = \omega(p-1) + 1$ and $\omega(\sigma)(0) = 0$. Necessary and sufficient conditions for an ω -stable set $B \subset S(N_0)$ to generate $S(N_0)$, or its alternating subgroup $A(N_0)$, are given. The corresponding proof is valid in a more general framework. Given a natural d, let S(d,0) (respectively, A(d,0)) be the direct product of the symmetric groups $S(j+dN_0)$ (respectively, the alternating groups $A(j+dN_0)$) where $0 \le j \le d-1$. Then a characterization of the ω -stable sets $B \subset S(N_0)$ which generate groups W between A(d,0) and S(d,0), is presented. When d=1 we obtain the result concerning the symmetric or the alternating group.

INTRODUCTION

Throughout the text below by S(X) (respectively, by A(X)) we denote the symmetric (respectively, the alternating) group of permutations of a given set X, with finite support. By N_0 we denote the set of non-negative integers. The letter B with or without subscript, always denotes a subset of $S(N_0)$ with non-empty support.

The prototypes of the sets B of generators, which we consider in this note, are the standard ones: (01), (12), (23), (34), ... and (012), (123), (234), ..., which generate $S(N_0)$ and $A(N_0)$, respectively. Both systems are ω -stable: $\omega(B) \subset B$, where ω is a fascinating injective endomorphism of $S(N_0)$, defined in [1]. It is clear that any ω -stable set B with non-empty support generates a non-trivial ω -stable subgroup $W = \langle B \rangle$ of $S(N_0)$. The radical of W is an (a posteriori ω -stable) group U which depends on W. The radicals U of all non-trivial ω -stable groups W are classified in [1, sect. 3]. It turns out that the classification depends upon two ingredients: a natural number d = class(U) called class of the group U, with class(W) = class(U) and a polynomial $f_U(x) \in F_2[x]$ which divides $x^d - 1$ (here F_2 is the field with two elements). In particular, class(U) = 1 if and only if $U = S(N_0)$ (case $f_U(x) = 1$), or $U = A(N_0)$ (case $f_U(x) = x - 1$). In order to describe those ω -stable sets B which generate $S(N_0)$ or $A(N_0)$, we have to investigate

¹⁹⁹¹ Mathematics Subject Classification 20B22, 20B35

Partially supported by Grant MM-404/94 of Ministry of Science and Education – Bulgaria.

the difference between a group W and its radical U. Moreover, we have to find a natural invariant class(B) of the system B, such that class(B) = class(W). Fortunately, both tasks are easy achievable. The difference between W and U is the simplest possible: $W = \omega^e(U)$, where $e = \min(suppB)$ (see (2.1.6)). On the other hand, we can define class(B) with above property (see 3.1). Thus, we have

THEOREM A. Let W be a non-trivial ω -stable subgroup of $S(N_0)$ and let B be an ω -stable system of generators for W. The following statements are equivalent:

- (i) The group W satisfies the inequalities $A(N_0) \leq W \leq S(N_0)$;
- (ii) The set B satisfies the equalities class(B) = 1 and min(suppB) = 0.

As usually happens, the proof of a theorem is more general than the theorem itself. The corresponding generalized statement is Theorem 3.1.2 below which describes the ω -stable sets of generators of the non-trivial ω -stable groups of any class $d \geq 1$.

1. PRELIMINARIES

1.1. In this subsection we will remind some definitions and notation from [1]. Given integers $d \ge 1$ and $e \ge 0$, we set

$$S(d, e) = S(e + dN_0) \times S(e + 1 + dN_0) \times \cdots \times S(e + d - 1 + dN_0),$$

$$A(d, e) = A(e + dN_0) \times A(e + 1 + dN_0) \times \cdots \times A(e + d - 1 + dN_0),$$

where $e+j+dN_0$ is the infinite arithmetical progression with first term e+j and difference d, for $0 \le j \le d-1$. Let ω be the endomorphism of the group $S(N_0)$, defined by the rule: $\omega(\sigma)(p) = \omega(p-1) + 1$ for $p \ge 1$ and $\omega(\sigma)(0) = 0$. Both direct products are ω -stable subgroups of $S(N_0)$. In particular, S(d, e) and A(d, e) have structures of ω -operator groups. On the other hand, the additive group of the ring

$$R_d = F_2[x]/(x^d - 1)$$

also has a structure of ω -operator group: $\omega g(x) = xg(x)$, for any $g(x) \in R_d$. We have a canonical epimorphism of ω -operator groups: for $\sigma = \sigma_0 \sigma_1 \dots \sigma_{d-1}$ with $\sigma_j \in S(j + dN_0)$, we define

$$f^{(d)}: S(d,0) \to R_d,$$
 (1.1.1)

$$\sigma \to f_{\sigma}^{(d)}(x) = \sum_{j=0}^{d-1} \alpha_j(\sigma) x^j,$$

where the group homomorphism $\alpha_j : S(d,0) \to F_2$ is the additively written signature of the j-th component σ_j of σ . Further, we have $S(d,e) \geq S(d,e+1)$ and $A(d,e) \geq A(d,e+1)$ where $e \geq 0$, and the restriction $f^{(d)}|_{S(d,e)}$ induces an isomorphism of ω -operator groups $S(d,e)/A(d,e) \simeq R_d$ at any level e. Clearly, the ω -stable groups U with $A(d,e) \leq U \leq S(d,e)$ are in 1-1 correspondence with the ideals I of the ring R_d via $f^{(d)}|_{S(d,e)}$. Let

$$f_I(x) = \alpha_0 + \alpha_1 x + \ldots + \alpha_{d-k} x^{d-k} \in F_2[x], \ \alpha_{d-k} = 1,$$

be the divisor of $x^d - 1$, which generates the ideal I. In particular, $0 \le k \le d$. Given a non-negative integer s, we set

$$g_{I,s}(x) = x^s f_I(x),$$
 (1.1.2)

$$G_{I,s} = \{g_{I,s}(x), g_{I,s+1}(x), \dots, g_{I,s+k-1}(x)\}.$$
(1.1.3)

Then the k-element set $G_{I,s}$ generates I as a F_2 -linear space, or, equivalently, as an Abelian 2-group of type $(2,2,\ldots,2)$.

1.2. We shall recall some definitions from [1, subsect. 3.3]. Let W be an non-trivial ω -stable subgroup of $S(N_0)$. The set

$$r_0(W) = \{ \sigma \in S(N_0) \mid \omega^t \sigma \in W \text{ for some } t \geq 0 \}$$

also is an ω -stable subgroup of $S(N_0)$, which we call radical of W. Clearly, $W \leq r_0(W)$.

According to [1, (3.3.1)], the group W contains at least one 3-cycle. The natural number

$$d = \gcd\{\zeta(i) - i \mid \zeta \text{ is a 3-cycle in } W \text{ and } i \in N_0\}.$$

is called *class* of the group W. We use notation d = class(W). If W is an non-trivial ω -stable group of class d with radical U, then [1, (3.3.2)] yields that $A(d, 0) \leq U \leq S(d, 0)$. In particular, $W \leq S(d, 0)$; hence we can take the image $f_W^{(d)}$ of the group W via the homomorphism (1.1.1).

- LEMMA 1.2.1. Let W be an non-trivial ω -stable subgroup of class d of $S(N_0)$ with radical U and let I be the ideal of the ring R_d , corresponding to the group U. Then one has:
 - (i) The ideal I coincides with $f_W^{(d)}$;
 - (ii) If the set B generates the group W, then the set $f_B^{(d)}$ generates the ideal I.

PROOF: (i) Since $W \leq U$, then $f_W^{(d)} \subset I$. Let $h(x) \in I$ and let $\sigma \in U$ be such that $f_{\sigma}^{(d)}(x) = h(x)$. There exists a $t \geq 0$ with $\eta = \omega^t \sigma \in W$. We can assume t to be a multiple

of d, because the group W is ω -stable. Since (1.1.1) is a homomorphism of ω -operator groups, then $f_{\eta}^{(d)} = x^t h(x) = h(x)$ in I. Thus, $I = f_W^{(d)}$.

- (ii) The equality $f_W^{(d)} = (f_B^{(d)})$ is obvious.
- 1.3. Since the homomorphism (1.1.1) behaves as a "logarithm", then there should be something like "exponential" map. Indeed, let τ be the transposition $(0,d) \in S(d,0)$. For any polynomial $g(x) = \sum_{i \geq 0} \beta_i x^i$ with coefficients in the field F_2 we set

$$\tau^{g(x)} = \prod_{i \ge 0} (\omega^i \tau)^{\beta_i} \in S(d, 0).$$

LEMMA 1.3.1. Given polynomials g(x), $h(x) \in F_2[x]$, one has:

- (i) If $\sigma = \tau^{g(x)}$, then $f_{\sigma}^{(d)}(\bar{x}) = g(x)$ in the ring R_d ;
- (ii) The equality $\omega^s \tau^{g(x)} = \tau^{x^s g(x)}$ holds for any $s \ge 0$;
- (iii) If deg(g(x)), $deg(h(x)) \le d 1$, then $\tau^{g(x) + h(x)} = \tau^{g(x)} \tau^{h(x)}$;
- (iv) If $0 \le deg(g(x)) \le d-1$, then the permutation $\tau^{g(x)}$ has order 2.

PROOF: Parts (i) and (ii) follow by definition. Since every d consecutive powers $\omega^i \tau$ commute, then part (iii) holds. (iv). Since $g(x) \neq 0$, then $\tau^{g(x)} \neq (1)$. Using part (iii), we have $(\tau^{g(x)})^2 = \tau^{2g(x)} = \tau^0 = (1)$.

2. Description of the ω -stable groups

2.1. For any $s \geq 0$ and for any ideal I of the ring R_d we set

$$\theta_{I,s} = \tau^{g_{I,s}(x)},$$
 (2.1.1)

$$T_{I,s} = \langle \theta_{I,s}, \theta_{I,s+1}, \dots, \theta_{I,s+k-1} \rangle \le S(d,0),$$
 (2.1.2)

where $g_{I,s}(x)$ are the polynomials from (1.1.2). Given $s \geq e$, we define an injective map

$$\varphi_{I,s}:G_{I,s}\to S(d,e),$$

$$g_{I,s+i}(x) \to \theta_{I,s+i}$$
 for $0 \le i \le k-1$,

where $G_{I,s}$ is the basis for I from (1.1.3). Note that $\varphi_{I,s}$ is the empty map if and only if k=0, or, equivalently, I=0.

LEMMA 2.1.3. For any $s \ge e$ the map $\varphi_{I,s}$ can be extended to a monomorphism of groups $\psi_{I,s}: I \to S(d,e)$ such that:

- (i) The image of $\psi_{I,s}$ coincides with the group $T_{I,s}$ from (2.1.2);
- (ii) The composition $f^{(d)}|_{S(d,e)} \circ \psi_{I,s}$ coincides with the identity map Id_I .

PROOF: Since the system $G_{I,s}$ is a basis for I, then the rule

$$\psi_{I,s} : I \to S(d,e),$$

$$(u(x) = \sum_{i=0}^{k-1} \beta_i g_{s+i}(x)) \to \tau^{u(x)},$$

defines a map. We have $u(x) = x^s g(x) f_I(x)$, where $g(x) = \sum_{i=0}^{k-1} \beta_i x^i$. Hence (1.3.1), (ii), implies that $\tau^{u(x)} = \omega^s \tau^{g(x)} f_I(x)$. Now, (1.3.1), (iii) and (iv), yield that $\psi_{I,s}$ is an injective homomorphism of groups. Since $\psi_{I,s}$ extends $\varphi_{I,s}$, then part (i) holds. Part (ii) follows from (1.3.1), (i).

The proposition below describes the non-trivial ω -stable subgroups of the symmetric group $S(N_0)$.

PROPOSITION 2.1.4. Let W be a non-trivial ω -stable subgroup of $S(N_0)$. Given integers $d \geq 1$ and $e \geq 0$, and an ideal I of the ring R_d , one has the following equivalent statements:

- (i) The group W satisfies the inequalities $A(d,e) \leq W \leq S(d,e)$ and $f_W^{(d)} = I$;
- (ii) The group A(d, e) is a normal subgroup of W, the groups $T_{I,s}$ are subgroups of W for any $s \geq e$, and W is the semi-direct product of A(d, e) with each $T_{I,s}$;
- (iii) The group A(d, e) is a normal subgroup of W, the group $T_{I,s}$ is a subgroup of W for some $s \geq e$, and W is the semi-direct product of A(d, e) with $T_{I,s}$;
- (iv) The group W satisfies the equalities class(W) = d, min(suppW) = e and $f_W^{(d)} = I$.

PROOF: $(i) \Rightarrow (ii)$. Lemma 2.1.3 yields that $T_{I,s}$ is a subgroup of W and that $\psi_{I,s}$ splits the homomorphism $f^{(d)}|_{S(d,e)}$ with kernel A(d,e), for any $s \geq e$. In other words, W is the semi-direct product of A(d,e) with any $T_{I,s}$, where $s \geq e$.

The implications $(ii) \Rightarrow (iii)$, $(iii) \Rightarrow (i)$ and $(i) \Rightarrow (iv)$ are trivial.

 $(iv) \Rightarrow (iii)$. Since class(W) = d, then, according to [1, (3.3.2)], the radical $U = r_0(W)$ satisfies $A(d,0) \leq U \leq S(d,0)$. In particular, $(0,d,2d) \in U$. Hence there exists a $t \geq 0$ such that the 3-cycle (t,t+d,t+2d) is contained in W. By [1, (3.2.1)], we obtain

$$A(d,t) \le W. \tag{2.1.5}$$

On the other hand, (1.2.1), (i), implies that $I = f_U^{(d)}$. Now, the equivalence of (i) and (ii), applied to the group U, yields that U is the semi-direct product of its normal subgroup A(d,0) and its subgroup $T_{I,0}$. Since $T_{I,0}$ is finite, then there exists a $s \geq 0$ with $\omega^s T_{I,0} \leq W$, that is, $T_{I,s} \leq W$. We choose a minimal t satisfying (2.1.5). It can be supposed that $s \geq t$. We claim:

- (1) The intersection $A(d,0) \cap W$ coincides with A(d,t).
- (2) The group W is the semi-direct product of A(d,t) and $T_{I,s}$.

PROOF OF CLAIM (1): When t=0, claim (1) is obvoius. In case $t\geq 1$ we suppose that there exists a permutation $\eta\in A(d,0)\cap W$, which does not belong to A(d,t). Then $\min(supp(\eta))\leq t-1$. After eventual applying of the endomorphism ω on η , we can suppose $\min(supp(\eta))=t-1$; hence $\eta\in A(d,t-1)$. Our aim is to prove that the subgroup $\langle A(d,t),\eta\rangle$ of W coincides with A(d,t-1), which would be a contradiction with the choice of t. We have $\eta=\eta_{t-1}\eta_t\dots\eta_{t+d-2}$, where $\eta_{t-1+i}\in A(t-1+i+dN_0)$ for $0\leq i\leq d-1$, and $t-1\in supp(\eta_{t-1})$. Therefore $\eta=\eta_{t-1}\eta'=\eta'\eta_{t-1}$, where $\eta'=\eta_t\dots\eta_{t+d-2}\in A(d,t)$. Thus,

$$\langle A(d,t), \eta \rangle = \langle A(d,t), \eta_{t-1} \rangle =$$

$$= \langle A(t-1+d+dN_0), \eta_{t-1} \rangle \times A(t+dN_0) \times \dots \times A(t+d-2+dN_0).$$

On the other hand, $\langle A(t-1+d+dN_0), \eta_{t-1} \rangle = \omega^{t-1} \langle A(d+dN_0), \zeta \rangle$, where $\omega^{t-1} \zeta = \eta_{t-1}$. It is enough to prove $\langle A(d+dN_0), \zeta \rangle = A(dN_0)$. The bijection $N_0 \to dN_0$, $n \to dn$, reduces the last statement to the following: $\langle A(1+N_0), \zeta \rangle = A(N_0)$ under conditions $\zeta \in A(N_0)$ and $0 \in supp(\zeta)$. Clearly, the group $G = \langle A(1+N_0), \zeta \rangle$ is ω -stable and transitive on N_0 . Hence its subgroup $\omega^n G$ is transitive on the set $n + N_0$ for all $n \geq 0$. By an inductive argument, the group G is n-fold transitive on N_0 for all $n \geq 0$. Taking into account the inclusion $G \subset A(N_0)$, we obtain $G = A(N_0)$.

PROOF OF CLAIM (2): For if let $\sigma \in W$ and let $\theta \in T_{I,s}$ be such that $f_{\theta}^{(d)}(x) = f_{\sigma}^{(d)}(x) \in I$ (see (2.1.3), (ii)). Then $f_{\eta}^{(d)}(x) = 0$ for $\eta = \sigma \theta^{-1}$. Hence $\eta \in A(d,0) \cap W$ and this intersection is A(d,t) by Claim (1). Thus, A(d,t) is a normal subgroup of W and $W = A(d,t)T_{I,s}$. Moreover, (2.1.3), (ii), implies that $A(d,t) \cap T_{I,s} = \{(1)\}$.

Clearly, Claim (2) and the inequality $s \ge t$ yield that $t = \min(suppW) = e$ and part (iii) follows. The proof of Proposition 2.1.4 is done.

COROLLARY 2.1.6. If W is a non-trivial ω -stable group, then $W = \omega^e U$ where $U = r_0(W)$ and $e = \min(suppW)$.

PROOF: Let $d \geq 1$ be the class of W. Then (2.1.4) yields that $A(d, e) \leq W \leq S(d, e)$. Taking radicals, we obtain

$$A(d,0) \le U \le S(d,0)$$
 (2.1.7)

Let I be the ideal of R_d corresponding to W. According to (1.2.1), (i), we have

$$I = f_U^{(d)}.$$
 (2.1.8)

Applying the endomorphism ω^e to (2.1.7) and (2.1.8), we obtain $A(d,e) \leq V \leq S(d,e)$ and $x^e I = f_V^{(d)}$ for $V = \omega^e(U)$. Since the multiplication by x^e is a F_2 -linear automorphism of I, then $I = f_V^{(d)}$. Thus, $A(d,e) \leq V$, $W \leq S(d,e)$ with $f_V^{(d)} = f_W^{(d)}$; hence V = W.

3. ω -stable systems of generators of an ω -stable group

3.1. Given a subset B of the symmetric group $S(N_0)$, we define

$$class(B) = \gcd\{\beta(i) - i \mid \beta \in B \text{ and } i \in N_0\}.$$

The connection with the class of a non-trivial ω -stable group (see 1.2) is made by the following

LEMMA 3.1.1. Let W be a non-trivial ω -stable subgroup of $S(N_0)$ and let B be an ω -stable system of generators for W. Then class(B) = class(W).

PROOF: We set d = class(W). By Proposition (2.1.4) we obtain $A(d, e) \leq W \leq S(d, e)$ for $e = \min(suppW)$. The obvious equality $d = \gcd\{\sigma(i) - i \mid \sigma \in W \text{ and } i \in N_0\}$ implies that d divides class(B). Because of the equalities

$$\beta^{-1}(i) - i = -(\beta \beta^{-1}(i) - \beta^{-1}(i))$$
 with $i \in N_0$ and $\beta \in B$,

and

$$\beta \gamma(i) - i = (\beta \gamma(i) - \gamma(i)) + (\gamma(i) - i)$$
 with $i \in N_0$ and $\beta, \gamma \in B \cup B^{-1}$,

it follows that class(B) divides d. Therefore class(B) = d.

Using (2.1.4), (3.1.1), (1.2.1), (ii), as well as the equality $\min(suppB) = \min(suppW)$ for $W = \langle B \rangle$, we obtain immediately

THEOREM 3.1.2. Let W be a non-trivial ω -stable subgroup of $S(N_0)$ and let B be an ω -stable system of generators for W. Given integers $d \geq 1$ and $e \geq 0$, and an ideal I of the ring R_d , one has the following equivalent statements:

- (i) The group W satisfies the inequalities $A(d,e) \leq W \leq S(d,e)$ and $f_W^{(d)} = I$;
- (ii) The set B satisfies the equalities class(B) = d, min(suppB) = e and $(f_B^{(d)}) = I$.

REMARK 3.1.3. In case d = 1 and e = 0 we obtain Theorem A from the Introduction.

Examples. The foregoing theorem will be illustrated in the following examples. Given $\sigma \in S(N_0)$, with $\sigma \neq (1)$ we set $B_{\sigma} = \{\sigma, \omega\sigma, \omega^2\sigma, \ldots\}$. Obviously, $class(B_{\sigma}) = class(\sigma)$.

- 1) Let $\sigma = (04)(17)(2, 11, 14)$. Since $class(\sigma) = \gcd(4, 6, 9, 12) = 1$ and $\min(supp B_{\sigma}) = 0$, it follows that $\langle B_{\sigma} \rangle = A(N_0)$.
- 2) Let $\sigma = (0, 33, 48)$ and $\xi = (265, 337)(1864, 1904, 1994)$. We set $B = B_{\sigma} \cup B_{\xi}$. Then $class(B) = \gcd(class(\sigma), class(\xi)) = \gcd(3, 2) = 1$ and $\min(suppB) = 0$.

Therefore we have $\langle B \rangle = S(N_0)$.

3) Let

$$\sigma = (0,9)(1,10,19)(2,83,92,110,911)(12,21,30,57)(5,14,23)(15,33,42,78,87,1995).$$

Then for $B = B_{\sigma}$ we have class(B) = 9 and $\min(suppB) = 0$. The ideal $I = (f_B^{(d)}) \subset R_9$ is generated by the irreducible factor $x^6 + x^3 + 1$ of the polynomial $x^9 - 1$. Hence the subgroup $W = \langle B \rangle$ of $S(N_0)$ satisfies the inequalities A(9,0) < W < S(9,0) and, moreover, it is the inverse image of the ideal I via the homomorphism $f^{(9)}$.

4) Let

$$\sigma = (1, 10, 19)(2, 83, 92, 110, 911)(12, 21, 30)(5, 14, 23)(15, 33, 42, 78, 87, 1995).$$

Then for $B = B_{\sigma}$ we have class(B) = 9 and min(supp B) = 1. Moreover, the ideal $(f_B^{(d)})$ coincides with the ring R_9 . Therefore $\langle B \rangle = S(9,1)$.

3.2. In the next proposition we show that any non-trivial ω -stable subgroup of $S(N_0)$ possesses a standard ω -stable system of generators.

PROPOSITION 3.2.1. Let W be a non-trivial ω -stable subgroup of $S(N_0)$ of class d with $\min(suppW) = e$. Let I be the corresponding ideal of the ring R_d and let $\theta_{I,s}$ be the permutations given by (2.1.1). Then the ω -stable system

$$B_{I,e} = \{\theta_{I,s} \mid s \ge e\}$$

generates the group W. When $I \neq 0$ each generator $\theta_{I,s}$ of W has order 2. When I = 0 the generators $\theta_{0,e}$ of W = A(d,e) are 3-cycles.

PROOF: We have $\theta_{I,s} = \omega^s \theta_I$ where $\theta_I = \theta_{I,0}$. In case $I \neq 0$ Lemma 1.3.1, (iv), yields that every element of $B_{I,e}$ has order 2. When I = 0 we have $\theta_0 = \tau^{1+x^d} = (0,d)(d,2d) = (0,d,2d) \in A(d,0)$. Hence $B_{0,e}$ consists of 3-cycles. In both cases we have $class(B_{I,e}) = class(\theta_I) = d$ and it is obvious that $e = \min(supp B_{I,e})$. If we set $V = \langle B_{I,e} \rangle$, then (3.1.2) and (2.1.4), applied for V and W, respectively, yield that $A(d,e) \leq V$, $W \leq S(d,e)$. Moreover, we have $T_{I,s} \leq V$ for each $s \geq e$. Therefore $f_V^{(d)} = I = f_W^{(d)}$, that is, V = W.

REFERENCE

1. V. V. Iliev, Semi-symmetric Algebras: General Constructions, J. Algebra 148 (1992) 479–496.

Section of Algebra
Institute of Mathematics
Bulgarian Academy of Sciences
1113 Sofia, Bulgaria