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ABSTRACT

Let S(Ny) be the symmetric group on the set Ny of non-negative integers, consisting
of all permutations o with finite support. Let w be the enddmorphism of the group S(Ny),
defined by the rule: w(o)(p) =w(p—1)+1 and w(o)(0) = 0. Necessary and sufficient
conditions for an w-stable set B C S(No) to generate S (Ny), or its alternating subgroup
A(Ny), are given. The corresponding proof is valid in a more general framework. Given a
natural d, let S (d,0) (respectively, A(d,0)) be the direct product of the symmetric groups
S (j + dNy) (respectively, the alternating groups A (j + dNp)) where 0 < j < d —1. Then
a characterization of the w-stable sets B C S(Np) which generate groups W between
A(d,0) and S(d,0), is presented. When d = 1 we obtain the result concerning the

symmetric or the alternating group.

INTRODUCTION

Throughout the text below by S (X') (respectively, by A (X)) we denote the symmetric
(respectively, the alternating) group of permutations of a given set X, with finite support.
By Ny we denote the set of non-negative integers. The letter B with or without subscript,

always denotes a subset of S(Np) with non-empty support.

The prototypes of the sets B of generators, which we consider in this note, are the
standard ones: (01),(12),(23),(34),... and (012),(123),(234),..., which generate S (Ny)
and A (Np), respectively. Both systems are w-stable: w(B) C B, where w is a fascinating
injective endomorphism of S(Np), defined in [1]. It is clear that any w-stable set B witl
non-empty support generates a non-trivial w-stable subgroup W = (B) of S(N,). The
radical of W is an (e posterior: w-stable) group U which depends on W. The radicals
U of all non-trivial w-stable groups W are classified in (1, sect. 3]. It turns out that
the classification depends upon two ingredients: a natural number d = class(U) called
class of the group U, with class(W) = class(U) and a polynomial fy(x) € F,[x] whicl
divides ¢ — 1 (here F; is the field with two elements). In particular, class(U) = 1 if
and only if U = S(Nyg) (case fu(z) = 1), or U = A(Ny) (case fu(z) = 2 —1). In order

to describe those w-stable sets B which generate S(No) or A(Ny), we have to investigate
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the difference between a group W and its radical U. Moreover, we have to find a natural
invariant class(B) of the system B, such that class(B) = class(W). Fortunately, both
tasks are easy achievable. The difference between W and U is the simplest possible:
W = w®(U), where e = min(suppB) (see (2.1.6)). On the other hand, we can define

class(B) with above property (see 3.1). Thus, we have

THEOREM A. Let W be a non-trivial w-stable subgroup of S(Ny) and let B be an w-stable
system of generators for W. The following statements are equivalent:

(i) The group W satisfies the inequalities A(No) < W < S(Ny);

(ii) The set B satisfies the equalities class(B) = 1 and min(suppB) = 0.

As usually happens, the proof of a theorem is more general than the theorem itself.
The corresponding generalized statement is Theorem 3.1.2 below which describes the w-

stable sets of generators of the non-trivial w-stable groups of any class d > 1.

1. PRELIMINARIES
1.1. In this subsection we will remind some definitions and notation from [1]. Given
integers d > 1 and e > 0, we set

S(d,e) = S(e +dNo) x S(e + 1+ dNg) X --+ x S(e +d — 1 + dN,),

A(d,e) = A(e + dNo) x A(e + 1+ dNo) X -+ x Ae +d — 1 + dN,),

where e+ j 4+ dNj is the infinite arithmetical progression with first term e+ and difference
d, for 0 < j <d—1. Let w be the endomorphism of the group S(Ny), defined by the rule:
w(o)(p) =w(p—=1)+1for p > 1 and w(o)(0) = 0. Both direct products are w-stable
subgroups of S(Ny). In particular, S(d, ) and A(d, e) have structures of w-operator groups.

On the other hand, the additive group of the ring
Ry = Fyfa]/(z* - 1)

also has a structure of w-operator group: wg(z) = zg(z), for any g(z) € Ry. We have a
canonical epimorphism of w-operator groups: for o = g0y ...04-1 with o; € S(j + dNy),

we define
f4:5(d,0) — Ry, (1.1.1)
d—1 :
o = f9(2) = Y aj(o)e,
j=0
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where the group homomorphism a;: S(d,0) — F; is the additively written signature of the
j-th component o; of o. Further, we have S(d,e) 2 S(d,e + 1) and A(d,e) > A(d,e + 1)
where e > 0, and the restriction f(9|g, ) induces an isomorphism of w-operator groups
S(d,e)/A(d,e) ~ Rq at any level e. Clearly, the w-stable groups U with A(d,e) < U <

S(d,e) are in 1-1 correspondence with the ideals I of the ring Ry via f(d)lg(d’c). Let
f](z:) = @y +a1x+... + ad_kivd_k € FQ[.’B], Ad—k = 1,

be the divisor of z¢ — 1, which generates the ideal I. In particular, 0 < k < d. Given a
non-negative integer s, we set

91,s(z) = a* fi(), (1.1.2)
Grs= {gl,a(w)af/l.s+l(m)a s ,gl,a+k—l($)}- (1.1.3)

Then the k-element set G 4 generates I as a Fy-linear space, or, equivalently, as an Abelian

2-group of type (2,2,...,2).

1.2. We shall recall some definitions from [1, subsect. 3.3]. Let W be an non-trivial

w-stable subgroup of S(Np). The set
ro(W) = {0 € S(Ny) |w'c € W for some ¢t > 0}

also is an w-stable subgroup of S(Ny), which we call radical of W. Clearly, W < ro(W ).
According to [1, (3.3.1)], the group W contains at least one 3-cycle. The natural
number

d=ged{¢(z) — 2| ¢ isa3-cyclein W and 1 € Ny}.

is called class of the group W. We use notation d = class(W). If W is an non-trivial w-
stable group of class d with radical U, then [1, (3.3.2)] yields that A(d,0) < U < S(d,0).
In particular, W < S5(d,0); hence we can take the image fw) of the group W via the

homomorphism (1.1.1).

LEMMA 1.2.1. Let W be an non-trivial w-stable subgroup of class d of S(Ny) with radical
U and let I be the ideal of the ring Rq, corresponding to the group U. Then one hLas:

(i) The ideal I coincides with f‘(.{,l);

(ii) If the set B generates the group W, then the set f(Bd) generates the ideal I.

Proor: (i) Since W < U, then f{{ﬁ’ C I. Let h(z) € I and let ¢ € U be such that

t(,d)(:z:) = h(z). There exists at > 0 with 7 = w'c € W. We can assume ¢ to be a multiple
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of d, because the group W is w-stable. Since (1.1.1) is a homomorphism of w-operator
: d
groups, then f,(,d) = z'h(z) = h(z) in I. Thus, I = f{,v)
(ii) The equality féd) = (fgl)) is obvious.

1.3. Since the homomorphism (1.1.1) behaves as a “logarithm”, then there should be
something like “exponential” map. Indeed, let 7 be the transposition (0,d) € S(d,0). For

any polynomial g(z) = Y5, Biz' with coefficients in the field F; we set

92 = [[(w'r)% € 5(d,0).

i>0

LEMMA 1.3.1. Given polynomials g(z), h(z) € F3[z], one has:
(i) If o = 79(%) | then f,(,d)(:v) = g(«) in the ring Ry;
(i) The equality w*r9) = 72°9(%) holds for any s > 0;
(iii) If deg(g(z)), deg(h(z)) < d —1, then T9(2)+h() = £9(z) h(z),
(iv) If 0 < deg(g(z)) < d — 1, then the permutation 79(*) has order 2.

PRrOOF: Parts (i) and (ii) follow by definition. Since every d consecutive powers w'r
commute, then part (iii) holds. (iv). Since g(z) # 0, then 79(*) 3 (1). Using part (iii), we

have (79(2))2 = 729(2) = 70 = (1),
2. DESCRIPTION OF THE w-STABLE GROUPS

2.1. For any s > 0 and for any ideal I of the ring Ry we set

O, = 790(3), (2.1.1)
T[,, = (91,3,91‘,_}.1, cee ,9]‘3+k_1) S S(d,O), (212)
where g7 ,(2) are the polynomials from (1.1.2). Given s > e, we define an injective map
PrI,s: Gl,s it S(da 6),

g1,s+i(x) = Oy gqifor 0 <i <k -1,

where G, is the basis for I from (1.1.3). Note that ¢y 4 is the empty map if and only if

k = 0, or, equivalently, I = 0.



LEMMA 2.1.3. For any s > e the map ¢, can be extended to a monomorphism of groups
Yr,s: I — S(d,e) such that:

(i) The image of 1 s coincides with the group Tt , from (2.1.2);

(ii) The composition f(d)|S(d,e) 0 y,s coincides with the identity map Idj.

PROOF: Since the system Gy, is a basis for I, then‘the rule

Y1601 — S(d,e),

k=1

(u(=z) = 3 Bigeife)) = 1,

defines a map. We have u(z) = z°¢g(x)f(x), where g(z) = Z.L;u] Bia'. Hence (1.3.1), (ii),
implies that 7%(*) = w*T9@1(2) Now, (1.3.1), (iii) and (iv), yield that Y1, 1S an injective
homomorphism of groups. Since 1, extends ¢y, then part (i) holds. Part (ii) follows

from (1.3.1), (i).

The proposition below describes the non-trivial w-stable subgroups of the symmetric
group S(Ny).

PROPOSITION 2.1.4. Let W be a non-trivial w-stable subgroup of S(Ny). Given integers

d>1ande > 0, and an ideal I of the ring R4, one has the following equivalent statements:
(i) The group W satisfies the inequalities A(d,e) < W < S(d,e¢) and fw) —
(ii) The group A(d, e) is a normal subgroup of W, the groups T} , are subgz*onps of W
for any s > e, and W is the semi-direct product of A(d,e) with each T} ;
(1ii) The group A(d, e) is a normal subgroup of W, the group T 4 is a subgroup of W
for some s > e, and W is the semi-direct product of A(d,e) with Ty ;
(iv) The group W satisfies the equalities class(W) = d, min(suppW) = e and f( o

I.

PROOF: () = (i¢). Lemma 2.1.3 yields that T}, is a subgroup of W and that v , splits
the homomorphism f(d)|5(d'c) with kernel A(d,e), for any s > e. In other words, W is the
semi-direct product of A(d,e) with any T 4, where s > e.
The implications (i1) = (221), (222) = (2) and () = (iv) are trivial.

(1v) = (¢11). Since class(W) = d, then, according to (1, (3.3.2)], the radical U = ry(W)

satisfies A(d,0) < U < 5(d,0). In particular, (0,d,2d) € U. Hence there exists a ¢t > 0 such
that the 3—cycle (t,t + d,t 4+ 2d) is contained in W. By [1, (3.2.1)], we obtain
Ad,t) < W. (2.1.5)
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On the other hand, (1.2.1), (i), implies that I = fl(,d). Now, the eqivalence of (i) and (ii),
applied to the group U, yields that U is the semi-direct product of its normal subgroup
A(d,0) and its subgroup T7 g. Since T7 g is finite, then there exists a s > 0 with w*Ty o < W,
that is, 77 s < W. We choose a minimal ¢ satisfying (2.1.5). It can be supposed that s > ¢.
We claim: ‘

(1) The intersection A(d,0) N W coincides with A(d,?).

(2) The group W is the semi-direct product of A(d,t) and 77 ,.
Proor or CLAIM (1): When t = 0, claim (1) is obvoius. In case ¢ > 1 we suppose
that there exists a permutation n € A(d,0) N W, which does not belong to A(d,t). Then
min(supp(n)) < t — 1. After eventual applying of the endomorphism w on 13, we can
suppose min(supp(n)) =t —1; hence n € A(d,t—1). Our aim is to prove that the subgroup
(A(d,t),n) of W coincides with A(d,t— 1), which would be a contradiction with the choice
of t. We have 5 = 919t ... 0t4d—2, where ni—14; € A(t =141+ dNy)for0<:i<d-1,
and t — 1 € supp(ni—1). Therefore n = 19’ = n'ni—1, where ' = n¢...9pa—s € A(d,1).
Thus,

(A(d,t),n) = (A(d, 1), 1-1) =

= (A(t =1+ d+ dNo),ni—1) x At +dNo) x -+ x A(t +d — 2 + dNy).

On the other hand, (A(t —1+d+dNy),n—1) = w' " (A(d+dNy), (), where wt~1¢ = 5,_,.
It is enough to prove (A(d+dNy),() = A(dNy). The bijection Ny — dNy, n — dn, reduces
the last statement to the following: (A(1 + Ny),() = A(Ny) under conditions ¢ € A(Ny)
and 0 € supp((). Clearly, the group G = (A(1 4+ Np), () is w-stable and transitive on N,.
Hence its subgroup w"G is transitive on the set n 4+ Ny for all n > 0. By an inductive
argument, the group G is n-fold transitive on Ny for all n > 0. Taking into account the
inclusion G C A(Ny), we obtain G = A(Ny).

PROOF OF CLAIM (2): Foriflet o € W and let 6 € Ty 4 be such that f(d) ) = _'},‘”(,,r) el
(see (2.1.3), (i1)). Then f( l)(.,) = 0 for n = 007!, Hence € A(d,0) N W and this
intersection is A(d,t) by Claim (1). Thus, A(d,t) is a normal subgroup of W and W =
A(d,t)Ty . Moreover, (2.1.3), (ii), implies that A(d,t)NT; , = {(1)}.

Clearly, Claim (2) and the inequality s > ¢ yield that ¢ = min(suppV) = ¢ and part (iii)

follows. The proof of Proposition 2.1.4 is done.

COROLLARY 2.1.6. If W is a non-trivialw-stable group, then W = w®U where U = ro(W )

and e = min(suppW).



PROOF: Let d > 1 be the class of W. Then (2.1.4) yields that A(d,e) < W < S(d,e).
Taking radicals, we obtain

A(d,0) < U < 5(d,0) (2.1.7)

Let I be the ideal of Ry corresponding to W. According to (1.2.1), (i), we have
I=fi". (2.1.8)

Applying the endomorphism w® to (2.1.7) and (2.1.8), we obtain A(d,e) < V < S(d,e)

and z¢] = ff,d) for V = w*(U). Since the multiplication by z¢ is a Fy-linear automorphism

of I, then I = f{. Thus, A(d,e) < V, W < S(d, e) with £ = f{&; hence V = .

3. w-STABLE SYSTEMS OF GENERATORS
OF AN w-STABLE GROUP

3.1. Given a subset B of the symmetric group S(Ny), we define
class(B) = ged{p(:) —¢| f € B and t € Ny}.

The connection with the class of a non-trivial w-stable group (see 1.2) is made by the

following

LEMMA 3.1.1. Let W be a non-trivial w-stable subgroup of S(Ny) and let B be an w-stable

system of generators for W. Then class(B) = class(W).

Proor: We set d = class(W). By Proposition (2.1.4) we obtain A(d,e) < W < S(d,¢)
for e = min(suppW). The obvious equality d = ged{o(i) —i | o € W and i € Ny} implies

that d divides class(B). Because of the equalities

BE) —i=—(BB~ (i) — B7(2)) with i € Ny and B € B,

and
By(i) —i = (Bv(i) — (1)) + (7(i) — i) with i € Ny and 3, y € BUB™!,
it follows that class(B) divides d. Therefore class(B) = d.

Using (2.1.4), (3.1.1), (1.2.1), (ii), as well as the equality min(suppB) = min(suppWV’)
for W = (B), we obtain immediately



THEOREM 3.1.2. Let W be a non-trivial w-stable subgroup of S(Ny) and let B be an
w-stable system of generators for W. Given integers d > 1 and e > 0, and an ideal I of the
ring R4, one has the following equivalent statements:

(i) The group W satisfies the inequalities A(d,e) < W < S(d,e) and ff‘j) =

(ii) The set B satisfies the equalities class(B) = d, min(suppB) = ¢ and ( ,3 ) =TI
REMARK 3.1.3. In case d = 1 and e = 0 we obtain Theorem A from the Introduction.

Examples. The foregoing theorem will be illustrated in the following examples. Given

o € S(Ny), with o # (1) we set By = {0,w0,w?0,...}. Obviously, class(B,) = class(a).

1) Let o = (04)(17)(2, 11, 14). Since class(o) = ged(4,6,9,12) = 1 and min(suppB,) = 0,

it follows that (B,) = A(Ny).

2) Let o = (0,33,48) and ¢ = (265, 337)(1864, 1904, 1994). We set B = B,U Be. Then
class(B) = ged(class(o), class(€)) = ged(3,2) =1 and min(suppB) = 0.

Therefore we have (B) = S(Ny).
3) Let

o = (0,9)(1,10,19)(2,83,92,110,911)(12,21, 30, 57)(5, 14, 23)(15, 33, 42, 78, 87, 1995).

Then for B = B, we have class(B) = 9 and min(suppB) = 0. The ideal I = ( (d)) C Ry 1s
generated by the irreducible factor x® +z? 41 of the polynomial 2° — 1. Hence the subgroup
W = (B) of S(Ny) satisfies the inequalities A(9,0) < W < 5(9,0) and, moreover, it is the
inverse image of the ideal I via the homomorphism f(9),
4) Let

=(1,10,19)(2,83,92,110,911)(12,21, 30)(5, 14,23)(15, 33,42, 78,87,1995).
Then for B = B, we have class(B) = 9 and min(suppB) = 1. Moreover, the ideal ( “))
coincides with the ring Ry. Therefore (B) = 5(9,1).

3.2. In the next proposition we show that any non-trivial w-stable subgroup of S(N)

possesses a standard w-stable system of generators.

PRroprOSITION 3.2.1. Let W be a non-trivial w-stable subgroup of S(Ny) of class d with
min(suppW) = e. Let I be the corresponding ideal of the ring Ry and let 6; , be the
permutations given by (2.1.1). Then the w-stable system

Bre= {0153 2 €}
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generates the gronp W, When I # 0 cacl generator 6y o of W has order 2. When I =0

the generators 6y, of W = A(d,e) are 3-cycles.

Proor: We have 67, = w®0; where 6; = 6;. In case I # 0 Lemma 1.3.1, (iv), yields
that every element of By . has order 2. When I = 0 we have 6, = rltzt = (0,d)(d,2d) =
(0,d,2d) € A(d,0). Hence By, consists of 3-cycles. In both cases we have class(Bj ) =
class(0r) = d and it is obvious that e = min(suppBy ). If we set V = (B ), then (3.1.2)
and (2.1.4), applied for V' and W, respectively, yield that A(d,e) < V, W < S(d,e).

Moreover, we have Ty, < V for each s > e. Therefore f{,d) =I= {{f), that is, V = W.
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