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ABSTRACT
We show that the entries of the asymptotic covariance matrix of the serial
covariances and serial correlations of a multivariate stationary process can be
expressed in terms ol the antocovariances corresponding to the tensor square
of its spectral density. The tensor convolution introduced in the paper may
be of some interest on its own.
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1 Introduction

The serial covariances and serial correlations are important tools in the anal-
ysis of time series. They are used in model identification, estimation of pa-
rameters, goodness-ol-fit and other hypotheses tests (s( ¢ e.g., 1, Chapter 6],
[3], [17] and the references therein).

The statistical analysis of the procedures based on serial correlations is
often based on their aqymploii(‘ distribution. It is normal under mild con-
ditions in the univariate case (see [1, Chapter 8], Hannan and Heyde [13],
Anderson [2]) and under more stringent conditions in the multivariate case
(Hannan [12], Roy [16]).

The expressions for the asymptotic covariances of the serial covariances
(correlations) contain infinite sums. For an univariate process these sums
can be interpreted (up to a constant factor) as the autocovariances corre-
sponding to the square of its spectral density (sce [7], [3]). In particular, the
asymptotic distribution of the serial covariances (correlations) of an univari-
ate ARMA process can be expressed in terms of the autocovariance function
of another ARMA process, whose parameters are obtained from the param-
eters of the initial process by squaring its autoregressive operator, moving
average operator and the residual variance. Details are given in 8].

Our aim is to show that these statements remain essentially the same in
the multivariate case (i.e. for the distribution of the serial crosscorrelations),
provided that the square of a matrix a is interpreted as aa (the Kronecker,
or tensor, square of a). The interpretation of a number of individual infinite
sums as the entries of the autocovariance matrices of the Kronecker square of
a spectral density gives not only a nice mathematical way (o write compactly
these sums, but it provides also an eflicient method for computation of the
asymptotic distribution of the serial correlations (sce Section 4).

The tensor convolution which is introduced in Section 3 seems to be of
some interest by its own, beyond the context of the paper.

2 Notations

We consider a d-variate weakly stationary process { X} with (vector) mean
i, autocovariance [unction R(k) = E(X, — p)(.Ni—p — i)', autocorrelation
function r(k) = 1)0']/2 R(A)I)_]/ (Do is the diagonal matrix formed by tak-
ing the diagonal of 12(0)), and spectral density f(w) = ;- 5702 R(k)e~v*,



The components of the column vectors X, and je are relerred to by an addi-
tional index ¢, 2 = 1,...,d. In scalar notations the z,j-th element R;;(k)
of R(k) is the covariance I2(Xy; — pi)(Xi—k,; — pt;). Similarly, ri;(k) =
]Zij(lif)/(1?{.’()1{}‘.,'0)1/2, and [i;j(w) is the Fonrier transflorm of I%;;. We say
the {X,} is white noise if 2.X; = 0 and [?(/) is the zero matrix for k # 0.

3 Tensor convolution

Although weaker assumptions are possible, we suppose below that the se-
quences {ai}, {bi}, etc., arc absolutely summable. This condition ensures
the validity of the following formulas and the manipulations on them (see
e.g. [10, Chapter 3]). It is fulfilled for the autocovariance functions of the
ARMA processes.

The Fourier transform F{a} of the scquence {ag} is delined by

o0

B -
.F{a}(w) = -2—7; L (Ik(f~IWl\.
k

_—— X

The inverse Fourier transform restores the sequence {a},

gy = g e  Fla}(w) dw.

oL

The convolution of two sequences {ax} and {b} is given by

(o]

(a*b) = Z (T BR3P

U=—00

The Fourier transform of the convolution multiplies the Fourier transforms
of the arguments ([10, Corollary 3.4.1.1]),

f{(t*b};?ﬂf{(l}f{l)}. (1)

The tensor (Kronecker) product A® B of two matrices A and B is defined
as the block matrix obtained by replacing every element a;; of A by a;;B.

To write compactly the inverse Fourier transform of a tensor product we
need the notion for tensor convolution. The convolution of a single (scalar)
sequence {a;} with the matrix sequence {5} = (b;;(k));; is defined to be
the matrix sequence (a * b;;);; of the elementwise convolutions of {ax} with
the elements of {B}.



Definition 1 The tensor convolution A 13 of lwo malrie scquences { Ay}
and { By} is the block malrir

[ Ph 50 TR LR L
Am DB = : :

(R Sy b MR Lo o B
obtained by replacing every clement a;; of A by a;; + I3,

The properties of the tensor square [ ¢ [ ol a speciral density are sum-
marized in the following proposition.

Proposition 1 Let { Ry} be an absolutely summable aulocovariance (matriz)
sequence and [(w)—ils spectral density malriz. Suppose that the factoriza-
tion of [(w) is ([11, Chapter 3.2, Theorcm 1; Chapter 3.5, Theorem 1"))

l .
J(w) = —¢(c™)'D(e™™)".

2m
Let g(w) = 27(f(w) ® f(w)). Then

1. g(w) is a spectral densily matriz;

S

. the [aclorizalion of g(w) is

I : ,
‘/(u)) — Q—W\l}(l"i")( l'\I,((_)lzJ)t’

where W(e™) = (d(e™) @ d(ev)), ' = (G C’);

3. the aulocovariance funcltion of g(w) s IR0, i.c.

ol

(RmR)= [ "“g(w)d (2)

J -7

Proof. Since [ is a spectral matrix it is Hermitian and nonnegative definite
for cach w. It is straightlorward to check that [o) f-inherits these properties
and therelore is also a spectral density matrix. Indeed, let @ = (1 — 1)d +
(r—=1), b= (5= 1)d+(s— 1), where » and s are in the range [1,...,d].
Then (f & [)ap = fijfrs and ([ @ [ = [iifsr. The Hermitian property
of f implies that f;; = f;. Hence (f © [)ia = (f @ [);, and f® [ is also

3



Hermitian. The cigenvalues ol [ @ f are of the form ;= A\ A;, where A; are

the eigenvalues of [ and therefore are nonnegative (f is nonnegative delinite).

Therelore p1;; = 0. Hence [ @ [ is also nonnegative delinite. IFurthermore, if

the rank of f(w) is constant for almost all w then the sameis true for f @ f.
I'he Tactorization of g(w) can be obtained as follows:

2rg(w) = 2r([f(w) O [(w))

27

= S (P(c)G(e™)) @ (P(™)G(c™))
1 . ‘ | |
= 5= (9(e™) @ (e™))(( 2 G)(P(e™) @ d(e™))

since (AB) @ (CD) = (A® C)B®D) ([, p. 108]).

The convolution theorem (1) implies that
F{Rij * R} = 20 F{Ri;}F{ R} = 27 fij(w) fim (w).
Therefore, for k = 0,41,+2,... we have
(Rji# B)ie = FHF v R} 3 (k)
= [ 2 i) fin(w)) de (3)
With the help of the tensor convolution the last equation can be written in

the form

(Rm R = [ e™(2n /() 0 [(w)) de.

J—m

Elementwise comparison establishes (2). lence, (2@ I7)). is the autocovari-
ance sequence corresponding to the spectral density ¢g(w). 0O

In the ARMA case we have the following corollary.

Corollary 1 Let {X;} be multivariate ARMA process with autocovariance
sequence IRy and (causal) representation

O(B)X, = O(B)c,,

where {¢,} is while noisc with covariance malrie ¥ = ey Then R@ R is
the autocovariance function of another ARMA process, specified by the model

o(B)é = B(B)y,
where 1, is while noise, Ly’ =X Q Y, a(B)=d @ d, f(B)=0® 6.



Proof. The spectral density of { X} is ([11, Chapter 2.5, (iv)])

| s 3 T
f(w) = Zf.(b"(ctw)(_)(czur)};((')—l(CmJ)(_)({‘M))*

|
= —¢7'Oxe P,
27

-

where ¢7* is the conjugate transpose of ¢~'. llence

1 1
21(f®f) = 2r(;-97'OL(@7'0)) 0 (-~ OT(e7'0))

1 .
= 5=(P7'ONOT ) @ (PT'ONe D)

N
= O—(q»-' PP THORO)LDL)(OTROT )P @ )
LT

1
= —(Pa®) ()L OL)O®0) (Pad),
b3

which proves the corollary since the last line is exactly the spectral density
Of {65} 0O

In the univariate case { X} {&¢}, &, and 7, are univariate processes, ¥ is
scalar, say 02 = Ee?, o(B) = ®*(B), p(B) = 0*(B), and Eyy' = En? = o!
(see [7] and [8]).

4 Covariances ol the serial correlations

The serial covariances IAZ(I"), ko= 0,1,..., and the serial correlations 7(k),
k=1,2,... fromastretch (.\'y,...; Xy) [rom { X} of length N are defined
as

R(k) = K ‘Zj (X — X)(MEis ity i(k) = Dy it (k)DF?

Al /\f Ko P2 ¥ i P AWK p . = 0 i 0 .

The asymptotic covariances hetween the individual entries of (%), and 7(k)
are delined by the limits:

M e lim‘ 1\’(7()\'(i?ij(L'), i?l,,,(/:))
Yienl2sd s dusiss IJim NCov(r;(k), 7na(h)).

o



The formulae for I'yx(z,7,l,m) and 4 4(7,7,1,m) are traditionally called
Bartlett’s formulae and look as follows ([16])

Fk,h = Oh—-k(i,l,j,m)-*"@’H'k(j,l,iam)

1
Ve, = ;Tab(k)'f‘de(h){Ao(a,d,a,d)+A0(a,6,a,6)

+ Ao(b,d, b,d) + Ao(b,e,b,e)}
— rap(k){Ar(a,d,a,e) + Ap(b,d, b,e)}
— r4e(h){Ak(b,d,a,d) + Ap(b,e,a,e)}
+ Ap_r(a,d,b,e) + Apyr(b,d, a,e),

where

@k(i,jalam) = Rij(u)le(u-I'k)?

M8 Z[V]zz

Ak(z,7,l,m) = rij(w)rim (v + k),

U=—00

= Ok(i, j,1,m){Rii(0) Rj;(0) Ru(0) R (0)} /2.
The quantities O(7,j,l,m) and Ak(7,j,l,m) can be viewed as convolutions
since
> Rij()Rum(u+k) = 3 Rji(~u)Rim(u+k)
= > Rji(k—v)Rin(v) (v=u+k)
= Rji* Rim.
Similarly,
Z R,-j(u)rlm(u + k) = Tji*Tim,

= (Rii(0)R;;(0)Ru(0) R (0)) "2 R;; * Riym,

Comparing the last expressions and (3) we can see that O (s,j,1,m) are
elements of the tensor convolution R@ R. More specifically, ©.(z, 7,1, m) is
the ((¢ —1)d+1,(j —1)d+ m)-th entry of the matrix (R@R);. On the other
hand Corollary 1 shows that in the ARMA case R& R is the autocovariance
function of an ARMA process and therefore can be computed effectively (see
e.g., [4]). This approach should be compared with the individual computation
of Ox(,,1,m) for every necessary combination of k,1, j,! and m.
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