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On a maximal sequence associated with simple
branching processes

I. Rahimov* G. Yanev **

Abstract

The number Y, of offspring of the most productive particle in the nth generation
of a Bienaymé-Galton-Watson process is considered. The asymptotic behaviour of Y,
as n — oo may be viewed as an extreme value problem for i.i.d. random variables with
random sample size. Limit theorems for both Y, and EY, provided the offspring mean
is finite are proved using some convergence results for branching processes as well as
transfer theorems for maxima.

Key words: Bienaymé-Galton-Watson branching process; max-stability; max-
semistability; maximum with random sample size; transfer theorems.
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1 Introduction.

Let {Z,} be a Bienaymé-Galton-Watson process which can be defined by the reccurence

Zn—l :
Zn= Xi(n)a 71:1’2""; ZOEl’
=1 .

i

where {X;(n)}, i,n = 1,2,... are nonnegative, independent and identicaly distributed,
integer-valued random variables.

Denote by f(s) = Es*(" the offspring generating function and by f,(s) the nth
fungtionaliiterate: ofiisf(s)diesmifals)i=afi( fisa(8)); ' ni= 1250 0t fols) =6, 0 < s 'L
Additionally let F'(2) = P(X;(n) < @) be the distribution function of the ’offspring variable’
which has mean 0 < m < oo and variance 0 < o? < co.

Define

Yo max Aalnd, dn=ul, a0 Yor=1
| 1< Znc
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[t is clear that this definition is equivalent to

(o]

[ll) 7 }/n S :L E n—l =k Fk('v) fn—l(ﬁ'(w))'

The study of the sequence {Y;} might be motivated in different ways. There have been
several recent works developing results for certain kinds of extremes in branching processes,
and investigating Y}, is perhaps plausible as a contribution to this program. Alternatively, a
natural interpretation within the demografical framework, for example, may be given. Indeed,
the random variable under question is the number of offspring in families having the largest
numbers of children. Thus the asymptotic behaviour of Y, provides some information about
the influence of number of offspring of these families on the size of whole generation. Most
close to our consideration is a recent paper by Arnold and Villasefior (1996), written quite
independent of the work reported here.

2 Transfer limit theorems.

Recall (see e.g. Resnick (1987), prop.0.3) that a nondegenerate distribution function
H(s) is max-stable iff for a distribution function F(z) there exist sequences of real num-
bers {an}y", (an > 0) and {b,};” such that
(2.1) lim F™(anz + bai=cHi(%) 5
weakly. If (2.1) holds then F'(z) is said to belong to the domain of attraction of H(z); in our
notation, F' € MSD(H). According to the classical Gnedenko’s result, H(z) = exp{—h(z)},
say, 1s of the type of one of the following three classes:

(z) h(z)=(-2)* for ¢ € (—0,0) , =1 forze€[0,00),
(2.2) (19} ihia)i= 20 for « € (0,00) , =0 forz€(-00,0],
(132) h(z) =exp{—z} for 2 € (—00,0),

where a > 0. Tt is well-known (see e.g. Resnick (1987), p.54) that F' € MSD(exp{—a7°}),
a > 0 if and only if for a > 0,
(2.3) 165 it O o el 9

where L(z) is a slowly varying at infinity function (s.f.v.).

IFurther on let us have the following three sequences:

(a) {&:(n)} - independent and identically distributed for any fixed n random variables;

(b) {v(n)} - nonnegative integer-valued random variables;

(c¢) {i(n)} - positive integers such that i(n) — co as n — co.

Assume that v(n) is independent of &(n), k=1,2, ... for any fixed n.

For convenience we shall formulate here a transfer limit theorem for a maximum with
random sample size (see Galambos (1987), thm 6.2.2 and Gnedenko and Gnedenko (1982)).

Theorem 2.1 Assume that for z € R,
lim P( max &i(n) < z) = &(z)

n—oo 1<i<i(n) B



and for o505

lim P (”(”) < 1> = A(z),

n—0co i(n)

where ®(x) and A(z) are distribution functions. Then for z € R,

= ["(@@)daw) .

~—

i P e, 609 <
Further on we will denote by L(z) and ,L;(x) certain s.v.f. and by [a] the greatest integer
less than or equal to a. Denote by r(n): R — R a function, tending to 400 with n. I"inally,
with the convention that the infimum of an empty set is equal to +00, we define the (left
continuous generalized) inverse F*": R — Rof F by F=(y):=inf{z € R: F(z) >y} .
Let {n:(n)} be the sequence of random variables as in (a) which have a common distri-
bution function F'(z). This additonal assumption allows us to prove below a theorem which
seems to be of independent interest.

Theorem 2.2 Assume that (2.1) (with (2.2)) holds. Suppose that there czists a posilive
random variable v with p(u) = Eexp{—uv}, u >0, such that

(2.4) | lim

weakly. j
()If F e MSD (exp{—27%}), a > 0 then for x>0,

nax ni(n)
(2.5) lim P l‘t'u(;) <o =plar
n—Qoo (n
where d, = (1/(1 — I'))~(r(n)) satisfies as n — oo,
(2.6) dy ~ (r(n))/°Ly(r(n)) ,

for Lyi(x) determined (asymptotically uniquely) by limg_.o L1(z/L(x))/L(z) = 1 where L(x)
is defined in (2.3).
(i1) Suppose that convergence in (2.4) holds in probability. Then for x € I,

P
(2.7) lim P | — <.z | = lhlz)),;

s Ay(n).
Proof. (i) Denote U(z)=1/(1—F(x))and d, = U~ (r(n)). We shall prove, using some
arguments by Resnick (1987), p.15, that
(2.8) U(d,) = 1/(1 = F(dy,)) ~ r(n) ,

as n — oo. Indeed, by the definition of U it follows that z < U= (r(n)) il U(z) < r(n).
For € > 0 setting z = U~ (r(n))(1 —¢€) and then z = U"(r(n))(1 + €) we obtain
U)o UG U I(r(n)))
U (r(n))(ie)) T - imn)d o0 = U(UT(r(n))(1 =€)
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Since F' € MSD(exp{—2"%}), a > 0 is equivalent to (2.3), we get U(z) ~ a*/L(z) as + — co.

Thus o A
YO0 _ o OO ()
r(n) n—0o r(n)
and (2.8) follows since € > 0 is arbitrary.
Set x¢ = sup{z : F(x) < 1}. Under conditions (i) it is not difficult to get ¢ = oo (sce
also Resnick (1987), p.15). Hence from (2.8), d, — oo as n — oo and now from (2.3) we
obtain for any z > 0, that

(14¢€)7 < liminf <(l—-¢)™

(2.9) lim r(n)(1 — F(d,z)) = lim 1= Fldnz) = .

n—0c0 n—oo 1 — F(d,)

On the other hand, for a > 0,

(2.10) P( max m(n)Se) = 3 P(v(n) = )Pk, {ni(n) < o))
l<t<u(n) k=0
00 k
= ZP H (ni(n)
k=0 1=
= > P(v(n) = k)F(x)

where v,(s) = Es*(™ and by (2.4)

(2.11) im vn(exp{—u/r(n)}) = ¢(u) , gl
Therefore, by (2.9) - (2.11), for 2 > 0 as n — oo,
(2.12) P(Km<ax ni(n) <duz) = v.(expiin F(d,x)})

= vp(exp{—(1 — F(dnz))(1 4+ 0o(1))})
= va (exp{=27"(r(n)) (1 + 0(1))})

— p(z7%).
Furthermore, since U(z) ~ 2*/L(z) as ¢ — oo we get
(2.13) dp = U (r(n)) ~ (r(n))"/*Li(r(n)) ,

as n — oo, where (cf. Seneta (1976), lemma 1.10, p.27) limz—oo Li(z/L(z))/L(z) = 1 as
¢ — 0. The asymptotically uniquiness of Ly(z) follows by a result due to de Bruijn (see e.g.
Bojanic and Seneta (1971), p.307).

Now, from (2.12) and (2.13), using the continuouty of ¢(x), we see that

Km<a>(\ )7},(71)
lim P = S
rees \(r@i M [ (n)

max n;(n) i
= lim P ( 2Sisiln) < I = o(z™%) .

2= | () Lo(r(m) = (@) T La(r())

(i1) The assertion is a consequence of Exercise 2 on p. 360 in Galambos(1987).
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3 . Limat . theorems:for-. Y

(A) Subcritical process (0 < m < 1). It is known (see e.g. Athreya and Ney, thim 1,
p.16) that for subcritical processes

(3.1) lim P(Z, = 7.] Zn > 0) = pj, 3=0,1,...,

n—oo

where {p;} is a probability distribution with generating function ~(s) = 3°2, pjsj, Fel<l;
which is the unique solution of the equation

(3.2) V() =ma(s)+1=m,  4(0)=0,
where f(s) is the offspring generating function. Using (3.1) we prove the following theorem.
Theorem 3.1 If m <1 then for = >0,

lin;o PlYai< | iy >0)= '7(]7'(;1:)),

Yiies -~

where ~y is the unique solution of (3.2) among the probability generating functions.

Proof. Using (1.1) and (3.1) we obtain for > 0 as n — oo,
| e > n-— F(z)) - n—-1(0
By Sia | 2> o) Bl oS tlB @) Jot L)) = Jnci(D)

1- fn_l(O) 3 Lo fn—l(O)
= 1= E(F&(2) | Zn1 > 0) = 1 —y(F(2)).

(B) Critical process (m = 1). Let the offspring generating function satisfy
(3.3) fls) = s+ (1—s)"L(1/(1 = s)),

for 0 <a<1,where 0 <s<1 and L(z)is as.v.f. Slack has proved (sce e.g. Bingham et
al. (1987), p.395) that (3.3) is a necessary and sufficient condition for

(3.4) nll_gl P(@QnZn >y | Zy>0) = P(Z >y), y 20,
where @), = P(Z, > 0), and Z has Laplace transform
(3.5) o(u)=Ee™% =1 — (1 +u">)"Ye, u > 0.

In other words, (3.3) holds iff

(3.6) Tim (1 - fulexp{=u@n}))/Q@n =1 —p(u),  u>0.
In addition, if (3.3) is true then
(3.7) Qn = n~Y*M(n),

where M(n) is a s.v.f. and

(3.8) 111_{1;0 1\/[°($)L(_’1;1/a//\'[($)) 8l
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The special case a = 1 is particularly important: here (u) = 1/(1 + u), so the limit law
is exponential. If 02 < co then (3.3) holds with @ = 1 and L( ') asymptotically constant. [f
0 < a < I then (3.3) is equivalent to (2.3) with @ = 1 + @ and L(z) ~ al(z)/I'(1 — «a) as
& — 0o, where ['(z) is the Euler Gamma function (see Bingham and Doney (1974), thm A,
p.716). Note that (3.3) does not necessarily imply (2.3) with some a in the boundary case
o=l

We proceed to study the asymptotic behaviour of

= Ja-1(F(anz + bn))
@n-1

as n — oo, where {a,}{°, (a, > 0) and {b,}] are certain sequences of real numbers.
Let us first consider the case o? < co. Applying Theorem 2.1 we get the following result.

(39) P()/n > Anl + bn I Zn—-l > 0)

Theorem 3.2 Assume that m = 1 and 0 < co. If (2.1) (with (2.2)) holds then for any
x € R,

7k 2 -1
(Bi10)4: A intaP | AR Gt 0 B it o) 2
2

n—od
n

Proof. We have (see e.g. Athreya and Ney (1972), p.20) for = > 0,
Zn 1

n

lim: P (

n—oo

<q|zn_1>o) P(Z < 2)

weakly, where ¢(u) = Eexp{-uZ} = 1/(1 + 0’u/2).
Now, appealing to Theorem 2.1 with #(n) =n, v(n) = Z,—; and &(n) = (Xi(n)—0,)/a,,
we get, for any real z,

n—aoo (Ln

lim P (yn 0o Sz > 0) =/ exp{—yh(z)}dP(Z < y) = ¢(h(x)).
0

Example. Under conditions of Theorem 3.2, if additionally (2.3) holds then

) ol 7!
‘ . ») n Y 7 e e
(B:11) nl-l—{})]oj <—nl/“[41(n) ezt i 0) = (l + 5 T ) .
where limg_o Ly(2z/L(2))/L(z) = 1 for L(z) defined by (2.3). Indeed, since (2.3) holds we
have F'(z) € MSD(exp{—z~"}). Now, (see also (2.13)) b, =0 and a, = (1/(1 = F'))~(n) ~
n'/%Li(n) as n — oo, which, appealing to (3.10), implies (3.11).

Let us now consider the case ¢? = co.

Theorem 3.3 Assume that o* = co and (3.3) holds.
(i) If 0 < a < 1 then for x > 0,

(3.12) lim P (? L H BV AR 0> =1—-(1+ palitaly=i/e.

n (o]
b n



where dy = (1/(1 = I7))=(Q;!) and as n — oo,
(3.13) dn ~ QML (QRY)

and @, satisfies (8.7) and limg—o, L1(z/L(z))/L(z) = 1, where L(2) s from (2.3).
(it) If a« =1 and (2.3) holds, then (3.12) is still valued.
P(X,(1) > n)

3. i o)
(3:4) A e Y STt )

then for x>0,
(3.15) JLTOP(QnU(Yn)S‘T,Z -1 >0)=1_(1+x)_1a

where @, satisfies (8.7) and U(z) = 1/(1 — F(z)).

Proof. (i) Since 0 < a < 1 then (3.3) is equivalent to (2.3) with a = 1 + « (see the notes
after (3.8)). Hence F € MSD(exp{—z~(*®}, z > 0. To make use Theorem 2.2 we let
ni(n) = Xi(n) and vy = Zy1I{Zn-1 > 0}, where I{A} denote the indicator variable of the
event A. Appealing to (3.4) and (3.5) it is easily verified that Theorem 2.2 implies (3.12).

(i) Since 0% = oo and (2.3) holds we have that a < 2 (see e.g. Stoyanov et al. (1988),
ex. 17.10, p.122). If @ < 2 then (see the notes after (3.8)) (3.3) holds with 0 < @ < 1. Hence
a = 2 and, similarly to (i), we obtain (3.12).

(iii) Since limpeo @n = 0 we have (cf. Leadbetter et al. (1983), p.24) that (3.14) is
necessary and sufficient condition for the existence of a sequence {u,} such that for z > 0,

. 1= F(uy)
3.16 lim ———= =
( ) N—00 Qn

Since limp_oo(l — F(un)) = 0 we get by (1.1) and (3.6) that
L= facr(F(un)) _ 1= fa-r(exp{ln F(u.)})

P(},n > Unp l Zn—l > 0)

! Qn—l Q”"‘
_ 1= faa(exp{=(1 = F(ua))(1 + o(1))})
% Qn-l
Ay Jn-1(exp{—2Qn-1(1+ 0(1))})
Qn—]
gl — tp(:l,) )

as n — 00, where ¢(z) is defined by (3.5). Now, from (3.16) (u, are chosen to be not integers)
using Lemma 2.2.1 by Galambos (1987) one can obtain for x > 0,

- F(Y,
lim P (-ITL——)- <@l Zexn > 0)

n—00 1
Ly PR b (734 )
=i < +z————| 2,1 >0
nﬂg ( Qn-l o Qn—l : Qn-—l l :
= lim P(F(Y) 2 F(ua) | Zos > 0)
— nll—po]o P(Yn > Up I Zﬂ-—l > 0) =1- ‘P(Iv) $

7



From here, taking into account (3.5), we get (3.15).

Examples. Now, we shall consider two examples when the normalizing constants d,, can
be obtained explicitly. In the first example for the offspring generating function f(s) we put
in (3.3) L(s) = logs, while in the second one we assume that the "tail” of the distribution
function of the ’offspring variable’ satisfies (2.3) with L(z) = logz.

(i) Assume that 0 < @ < 1 and (3.3) holds with L(z) = logz. Then by Bojanic and Seneta
(1971), p.309, Q, ~ a~/*n=Y*(logn)~'/* as = — oco. One can see that L(z) = clogz (see
the notes after(3.8)) and hence L;(z) ~ logz as ¢ — co. Now, it is not difficult to obtain
that (3.12) holds with d, = a(t-e(+a)/(a(l+a))yl/(a(1+a))(|og p)(1+a(i+a))/(@(1+a))

(i1) Let @ = 1 and (2.3) holds with L(z) = log . By Bingham and Doney (1974), prop.
A(ii) we have that L(z) = [ logu/udu = (logz)?/2. Now, using (3.7) and (3.8) one can
obtain that 2Q, ~ n(logn)? as n — oco. Finally, L,(z) = logz. Therefore,

1imP(Lgx|zn_l>o) =1—(1+2%)".

e vn/2 (logn)?

(C) Supercritical process (1 < m < o0). It is well-known (see e.g. Athreya and Ney
(1972), p.30) that if 1 < m < oo then there exists a sequence of constants {C,} with
limy oo C = oo such that {Z,/C,} converges almost surely to a non-degenerate limit .
The Laplace transform (u) = Eexp{—uW}, u > 0, of the limiting random variable, is the
unique (up to a scale factor) solution of the equation

‘ oy : St
(3.17) | v =1 (v(2)) -
The constants C, take the form (see Cohn (1982), thm 4)
(3.18) Ca=m™ /Ly (m?),

where Lo(z) = [ P(W > y)dy is a s.v.f.

I'urther, we will also require the following extension of the class of max-stable distributions.
A nondegenerate distribution function G(s) is max-semistable (under linear transformation)
iff for a distribution function F'(z) there exist two sequences of real numbers {a;}}°, (@, > 0)
and  {0x}5° such that 2
(3.19) lim *(agz + b)) = G(z) ,

k—o0

weakly, where k runs over the sequence of positive integers k(1) < k(2) < ... subject to the

condition En)

:(n
(3.20) g e
The case r = 1 corresponds to max-stable laws. If (3.19) (with (3.20)) holds, then F'(z)
is said to belong to the domain of attraction of G(z); in our notation, F' € MSSD(G). By
Theorem 2 in Grinevich (1992), G(z) = exp{—g(z)}, say, is of the type of one of the following
three classes:

(i) g(z) = (u—2a)’r(In(u —z)) for x € (—oo,u) ,
(321) (i) 9(c) = (e — 0 Pr(ln(z —w), forz € (u,00),
(ii1) g(x) = exp{—pz}r(z), for x € (—o0,00) ,

8



for w e R, B =|clnr |, where c is certain constant, and =(z) is peroidic positive and
bounded function satisfying certain conditions (see Grinevich (1992), thm 2). Necessary and
sufficient conditions for ' € MSSD(G) are established by Grinevich (1993).

We shall prove the following result.

Theorem 3.4 Assume that 1 < m < co.
(i) If (2.1) (with (2.2)) holds then for z € R,

(3.22) lim P (Y—"b—‘i- < 1) = ¥(h(z)) .

n—00 ac,

(i) If (3.19) (with (3.21)) holds and r = m then for z € R,

im P (22081 <o) = (o).
n—00 a[Cn]

Proof. (i) Since {Z,/C,} tends almost surely, and hence in probability, to W and
limp_eo Cry1/Cr = m > 1 we get (3.22) from Theorem 2.2(ii) with 7;(n) = X;(n), v(n) =
Zndandn(n) =Gy

(ii) Since (Cny1 — 1)/Crn < [Ca41)/[Cn] £ Crt1/(Cn — 1) we get limp—co[Crsa1]/[Cn] =
limp—oo Cry1/Cr = m > 1. Hence F € MSSD(exp{—g(z)}), where k(n) = [C,]. Further,

we have for z > 0,

P(%gx)>1><[g] )>P(§n x(l—é:)) :

Since {Z,/C,} tends almost surely, and hence weakly, to W which has an absolutely contin-
uous distribution on (0,00) (see e.g. Athreya and Ney, cor. 12.1, p.52) we get for o > 0,

23
CHGE

Now, it is casily verified that by Theorem 2.1, setting i(n) = [C,], v(n) = Z,-, and
Ei(n) = (Xi(n) = b))/ aqe,), it follows that for any real ,

) = P(W < z).

fii (_’ bieu <1) = [7 expl-yg()}dP(W < y) = Y(g(x) .
n—00 a[C,,] 0

Remark. It is known (cf. Galambos (1987), cor. 2.4.1) that if (3.14) does not hold
then there are no constants a, > 0 and, b, so that (Y, — b,)/a, may tend weakly to a
nondegenerate limit. So, if /' € MSD(H) then (3.14) is fulfilled. Hence the assumptions
of Theorems 3.2 - 3.4 also imply (3.14). It is not difficult to verify that (3.14) is not true
for geometric and Poisson distributions (see e.g. Galambos (1987)). On the other hand, by
Theorems 3.48 and 3.50 in Wilms (1994) we have that if the distribution function F'y of a
random variable X belongs to the domain of attraction of H(z) = exp{—27*}, 2> 0, a > 0
then so does F[X]' Furthermore, Fy € MSD( e\'p{-—exp{—r}} r € RIiff l[‘\} &
MSD(exp{—exp{—z}}), @ € R provided zo =sup{a: Fy(z) <1} =

9



4 Asymptotic behaviour of £Y,.

. Using the results of Section 3 and an approach to study the moment convergence of sample
axtremes (see e.g. Resnick (1987), p.77) we shall investigate the asymptotic behaviour of £Y,.
More precisely we shall obtain conditions on F'(2) only, under which,

B b :
(4.1) JﬂgE( Z |Zn_1>0>=EY<oo,
provided
}n e n
(4.2) nl-i__.ngoP < - b Gl AR S 0> =.Pa<‘z).="R(z] May:

for some sequences {0,}5°, {@¢.}5°, (a, > 0) and distribution function R(z).
Set Vi, =| (Yo — bn)/an |. If (4.2) holds then it is clear that for any N > 0,

nN—0oo

N
lim B (VaI{Vy < N} | Zpy > 0) =/ zdR(z) .
0

(4.3) ‘E(v,, | Zosy > 0) = [ 2dR(z)
<|E(Va| Zn-1>0) = E(VbaI{Vh S N} | Zy1 > 0) |

N
] ‘E(V,J{Vn < NY| Zacy > 0) —/o 2dR(z)

-t

/0 AR / * zdR(z)

0

To prove (4.1) it is sufficient to show

(4.4) im limsup E(VpI{V, > N} | Z,-1 >0) =0

|
N—co N=—r OO

(then the right hand side of (4.3) has limit equal to 0). We have

Va
EVoI{Ve > N\ Zosi > 0)i=B (Z I{Va>N}.| Zn-1 > 0)
j<)

N o
= (Z HVie Nz 0) +E ( SRV >N, Va3 i)} | Zea 0)

j=1 j=N+1
= NP(Vis Ni|Zna >0+ Y. P(Va>35|Zn1>0)
j=N+1

= Au(N) + Bu(N) , say.

Let us now consider separately three cases: 0 <m < 1, m =1 and 1 <m < co.
(A) Subecritical process. Set b, = 0 and a, = 1 in (4.2) and hence Vi, = Y,. Applying
Theorem 3.1 we prove the following result.

10



Theorem 4.1 If0 <m <1 and EX;(1)log(1 + X1(1)) < oo then

(=]

lim B(Y, | Zpoy > 0) =D (1 —(F(k)) < o0,

n—oo
k=1
where 7 is the unique solution of (9.2) among the probability generating functions.

Proof. From Theorem 3.1 we have
EY =3 (1 —~(F(k)) £my'(1) <0,
k=1

since 7'(1) < oo iff EX;(1)log(l + X;(1)) < oo (cf. Athreya and Ney (1972), cor.2. p.45).
Hence, appealing to Theorem 3.1,

(4.5) dim limsup Ay(N) = lim NP(Y > N)=0.

—00 n-—00

Consider B,(N). We get for j = 1,2, ...

o0

(4:0) PS> -2, 50)0 = Yt R(Z4ni= k| Zaoy > O)P(lr??g)i Xi(n) > g+ Zzsy 30)

x>
!_l_

P(Zpoy = k| Zoey > 0)(1 = F¥(5))

I
M8

=
Il
—

P(Zn-1 =k | Zn-1 > 0)k(1 — F(5))

IN
.Mg

k=1
= (1= F(G)E(Zn-1 | Znr > 0).
Therefore
(4.7) lim limsup B,(N) = A}im limsup ) P(Yn>j|Zu-y >0)
= n—oo —00 n—oo j=N+1
=" lim const, .} '(1=F(7)=0.
iAo, j=N+1

By (4.5) and (4.7) it follows that (4.4) holds and hence also (4.1).
(B) Critical process. We shall prove the following theorem. Let B(z,y) be the Beta
function.

Theorem 4.2 Assume that m =1 and (2.3) holds with a > 1.
(i) If 0? < oo then
: 1 2 l/a/
A -1>0)=(2
dim, Ry L Y | Zer > 0)=(2/0Y)' |
where limgz_oo L1(2z/L(2))/L(z) = 1.
(it) If 0 = 00 and 1 < a < 2 then

fEx o0 1 1
e E(Y, | Zu > 0)=(a-1) [ (1+x°‘°‘”)“"“'”d‘”=3<~,1+ )

1D, e [y () 0 e’ " ala-1)

co 2 E
<1+%-:c"“> dm:B(l,l+—l—),

where Ly(n) ~ n'/ @=L (Q:1)/QN* asn — oo is s.v.f. since (3.7) holds.
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Proof. Under the condition (2.3), from Theorems 3.2 and 3.3 we get (4.2) with b, = 0
and a, = d,, where d,, = (1/(1 =3 F))"’(Q;"l) Hence V,, = Yn/dn. Now, from Theorems 3.2
and 3.3 it follows that

(4. 8) lim limsup A,(N) = lxm llmsupNP(-)-/—- >N | Zn > 0)— 11m NP(Y:> N)=0,

N—= n—aoo N—=oo npn—oo d

since the integrals in the second parts of (i) and (ii) are finite.
On the other hand, similarly to (4.6), one can obtain

(4.9) P(Z/—" >J | Zn-1>0) £ (1= F(jdn))E(Zn-1 | Zn-a > 0) = I—Qi(_];du)
(1 — F(jdn))(1 = F(dn))
(1= F(dn))@n1

By the properties of regularly varying functions we have for a given ¢ > 0 and large n the
[ollowing inequality:

(4.10) —lli‘h;,(gij)) < (L 4e)grates

Additionally, from (2.8) and (3.13) we get

(4.11) lim sup -1-—_-—-}-:1(-1-'1—) < 00.
n—oo Qn
Now, from (4.9) - (4.11) we get

(o e]

T
(4.12) lim limsup B,(N) = lun limsup Y P(==>j|Zn-1>0)
- n—oo N—co n—oo j=N+1 dn
' o e
= lim > eeel.
: 1=N+1

Finally, from (4.8) and (4.12) we obtain (4.4) and hence (4.1) holds.
Example. Let m = 1 and 1 — F(z) ~ 2 %logz as ¢ — oo. Then similarly to Example
(i1) after Theorem 3.3, one can obtain by Theorem 4.2(ii) that

lim ————— (Y, | Zuc1 > 0) = 5
neinl2 (logn)? 2

(C) Supercritical process (1 < m < o).

Theorem 4.3 Assume 1 <m < co and (2.3) holds with a > 1. Then

(4.13) lim ——-—-—1—-—E(Yn 233 > 0)= /ooo(l —p(z™%)dz

n—oo mn/a [ (mn)

where limg_.oo Ly(2/L(2))/L(z) = 1 and the Laplace transform y(z) is the unique (up to a
scale factor) solution of the equation (3.17).



Proof. Applying Theorem 3.4(i) (note that under (2.3) with a > 1 we have C,, = m") we
get (4.2) with b, = 0 and a, = m™*L,(m"). Hence V, = Y,/a, (see also (2.6)). Now, from
I'heorem 3.4(i) it follows that

4. 14) lim limsup A,(N) = lim limsup NP(L SN N y5>0) .= llm NEP(Y >Ny .

N—oo n—oo N—oo n—oo Qyn

where P(Y > N) = (1 — ¢(z™%))/(1 — q), setting lim,—co P(Z, > 0) = 1 — ¢. Since, under
(2.3), 1 —4p(u) ~u as u — 0 (cf. Athreya and Ney (1972), p.27) we have that the integral in
the second part of (4.13) is finite. Now, by (4.14) it follows that

(4.15) lim lim'sup An(N) =0 .

—0 n—co
On the other hand, similarly to (4.6), one can obtain

(1= F(ja,))m"
Qn-—l

Y g
(4.16) P('C't"' >j | Zn-1>0) < (1= F(jan))E(Zn-1 | Zn-1 > 0) =

)
(1 = F(jan))(1 = F(a,))m"
(1 = F(an))@n-1

5mce (2.3) holds with @ > 1, we have that in (3.18) C;, = m" and hence from (2.8) we get

1 £is F n
(4.17) lim sup L filen) < 00

n—00 m

Now, appealing to (4.10), from (4.16) and (4.17) we obtain for € > 0,

oo y'
(4.18) lim limsup B,(N) = lim limsup Y P(==>j|Zu >0)
-0 n—oo N—oo N=—00 i=N n
i=N+1
e |
= lun Cai ) ;tf =0,
o 1=N+1

Finally, from (4.15) and (4.18) we get (4.4) and hence (4.1) holds.
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