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0. Preliminaries

As in the paper [1] we assume Jonquiére polynomials {P,(2)}52, to be defined
by means of the equalities

LAY 1 R
“dz) (1-2) (1-2

As it is mentioned in [1: 0. Introduction and Summary], these polynomials " are
of significance in various branches of mathematics, such as summability, analytic

)

)n+l’

=012, i 2 &GN\ (0.1)

number theory and the theory of structure of polymers”. In [2: 0. Introduction
and summary]| is pointed out that Jonquiére polynomials play an important role
also in approximation theory.

We have e.g. that Py(z) =1, Pi(2) = 2z, Pa(2z) = z(z + 1), P3s(2) = 2(2* + 4z 41)
ete. It is easy to prove that deg P, = n for each n = 0,1,2,... and morcover that
the "leading” coeflicient of P i.e the coefficient of z" in P, is alwais equal to one.
These assertions can be verified by means of the "recurrence” relation

Pupi(2) = (n + 1)2Py(2) + 2(1 — 2)P)(2), n=0,1,2,... (0.2)

which is a direct corollary of the defining equalities (0.1).

Another corollary of (0.2) is the equality P, (1) =n!, n=0,1,2,.... It gives

rise to introduce the polynomials { £, (z)}52, by means of the equalities
En(z) = —=, n=0,1,2,.... (0.3)

Then the relation (0.2) yields that

(n+ 1)En4i(2) = (n+ 1)2Eu(2) + 2(1 = 2)E(2), n=0,1,2,....



In this paper we are dealing with the system of modified Jonquiere polynomials
[En(2)}5%,. In Section 1 we get an asymptotic formula for this system. By using
it in Section 2 we consider series in Jouquicre polynomials.

More precisely we point out that the well-known classical statements abont
power series as Abel’s lemma, Cauchy-Hadamard’s formula as well as Abel’s theo-
rem can be carried out on series in Jonquere polynomials. It is shown also that the
sungularities of series in these polynomials, on the boundaries of their regions of
convergions, are simply connected with singularitics of coresponding power series.

A class of summability methods of Poisson-Abel type is introdueed in Seetion
3. It is proved that these methods are regular as well as that a statement like
classical theorem of Tauber is valid for each of them.

In Section 4 we obtain two generating fun('ti(mq for the modified Jonquere
polynomials and in Section 5 we discuss some o]wu problems”

Throughout this paper we use the notation C for the region C \ (—00,0] (i.e.
the complex plane cut along the nonpositive real semiaxis) and log for the the

.main branch of the logarithmic function in c

1. Asymptotic formula
We define the function w in the region € as

z—-1
log =

w(z) = (1.1)

if z#1and w(1) = 1.

Since lim;— w(z) = 1, it follows immediately that this function is holomorphic
in the region C. 1t is also evident that w is nowhere zero in this region.

We define further

m(z) = (w(2)) " EL(Z) =1, "h =0,1;2,.. " (1.2)

Then the following statement is true:

[1.2] For each (nonempty) compact subset I< of C there exist 0 < Q(I) < co
and 0 < () < 1 such that the inequality

()] < Qq" (1.3)
holds for each n = 0,1,2,... and each z € I\,

Proof. We are going to use series representations of Jonquiere polynomials
which appear as particular cases of the Lindelof - Wirtinger expansions of Jonquere
functions with a complex parameter 3, (7)].

In view of [1, (3.1)] and (0.3) we could write that

(o ¢}

(1 ) :)H»H
En(z) =
) kgoo(.?km—lugz)w’ k)




provided that z € Candn=12 2: 341 ,
Let us denote by En(=) the xwlnt lmml side of (1.4). Then in order to verify

the validity of the series representation (1.4) we have to prove tlmt E(z) = En(z)
whenn =1,2,3,... and = € C.

An easy computation gives that (71+1)E,,+,(:) = (n+1)zEn(z)+2 (l—z)E:,(z)

and 1t remains to prove that Ey(z) = =z 1.e. that the equality
Wemi — logz)? (1= z)?
lc:—':\( 57) )

holds when = € €. The last equality is equivalent to the following one

1 s exp ¢ 3
) (C=2kmi)2  (1—expC)?’ (15
il

provided that ¢ € S\ {0}, where S = {( € C:|Im(| < 7}.

It 1s known that the equality

[s. @]

1 1
= e 1.
Z (w—=rkmi)2  sh*w 9
i o
Lholds when w # kmi,h = 0,41,42,.... Then putting w = ¢/2(¢ € S\ {0}) in

(1.6) we obtain (1.5).

As in [1, 3. Jonquicre polynomilas] we rewrite (1.4) as

o2 og o N1
B2 oeyert{le oo m TR 3 8

log 3 — 2km)n+1
Ry 73)

Let us note that the above representation holds in the whole region €. Then
(1.2) and (1.7) give that

l o = n+1 N
iz} Z (og <) - T (£ I RR T T

(log = — 2kmp)+!
e Spikstn YeEE

Let 1/2 < p < La(p) = Xpys R and 0 < A < min(1,(a(p)™).

Since I C € is compact, there exists a positive integer ko = ko(I<) such
that |log z(logz — 2kmi)™'| < Alk|™" whenever |k| > ko and z € K. Let
further gy “=¢ masksgpe [logz(log 2 — 2hmi =8| dniliinge Ml Lo wiand g =

MAaX {1, G2y -+ Yhgr A}
It is easy to sece that g < 1 for each kb = £1,%2,43,....Indeed, K'* = log I{
is a compact subset of the strip S and the image of I'*, under each of the linear
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transformation T(¢) = (¢ — 2km)~ Y |k| = 1,2,3,..., is a compact subset of the
unit disk.

Then (z € K,n 2 1)

l(2)] < Z |log z(log z — 2kma) ™"+ 4 Z |log z(log z — 2kme) ™"

1<|k| <k |k|> ko
< Z qi"H 4 AT Z |k|—(n+l)lt < Z qz A" < (2ko + 1)g".
1<|k| <k, |k|> ko 1< k| <kq

We define () = max{2ky + 1,max,cx |(w(z))™" — 1]} and thus the validity of
the inequality (1.3) is proved. As its corollary we have the following representation

En(2)i=i(w(@))P 4] denn(z) s 10=10; 1 :2vais (1.8)

m the region C, which can be regarded as an asymptotic formula for the (modified)
Jonquiere polynomials in this region.

2. Series in Jonquiere polynomials

2.1 We are going to describe the region as well as the mode of convergence of

a series of the kind
'\x"

> anEn(2) (2.1)

n=0
with arbitrary complex coefficients.
To that end we need to know more about the geometry of the mapping realized
by the function w defined by (1.1).
Let 0 < r < 00,0 < 6§ < 1 and define u(r,6) = Rew(rexpi(m — d)) and
v(r,d) = Imw(rexpi(m —6)). Then
(1+7r)lognr

(r) = li 10 ) = 2.2
u(r) 61_1:(1) u(r,d) Ton 7)1 2 (2.2)

and

(1)

v(r) = gii}:)l’(rvb) == m;;

Let L* be the curve with complex parametric equation w = u(r) + iv(r),0 <
r < 0o. Since v(0) = 0,v(r) > 0 and %1,,9 > 0whenr > 0, Lt is a Jordan arc starting
at the zero point and, with exeption of this point, lying in the upper half-plane.
Moreover, since limy— u(r) = —oo, Lt goes to infinity. More precisely, u(r) > 0

when 0 < r < 1,u(l) = 0 and u(r) < 0 when 1 < » < co. That means the curve Lt
: . ; . Wi i ; : ~1
intersects the imaginary axis at the point i7~'. Since lim,— %l[;— (%) =s:() L+

tuches the real axis at the origin.
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Further as a corollary of the equalities (2.2) and (2.3) we can assert that what-
ever 0 < ¥ < oo be, the image of the segment Z(R,0): z =rexpi(m —§),0 <r <
I 1s a Jordan arc similar to L, provided that ¢ is small enough.

A simple calculation yields that hmp_ {—‘1% arg(w(fexpid)) = 1 uniformly
with respect to 6 € [0, 7). That means the image of the circular arc I'(R,§) : z =
Rexpif,0 <0 <7 —01salso a Jordan are provided that R is large enough.

The function w(x) is positive and strictly increasing when = > 0 i.e. it maps
injectively the segment [0, ] onto the segment [0, w(R)).

Let BY(R,0) be the subregion of € whoose houndary is the union of the seg-
ments [0, R], Z(R,¢) and the circular arc T'(R,8).

As a corollary of the above considerations we can assert that the function w is
univalent in cach region B*H(R,9) provided that R is large and § is small enough.

Let B7(R,¢) be the image of the region B*(R,§) under the mapping z —
Z. Then by the principle of reflection the function w is univalent in the region

B(R,§) = B (R,0) B~ (R,8)J(0, RR]. Since Upgs B(R,8) =C , it follows that
w 1s univalent in the region C. Morcover, the image G of C under w is a simply |
connected region with boundary L* | J L™, where L™ is the image of Lt under the
reflection with respect to the real axis.

Remark. The curve L¥(L7) can be considered as the image of the upper
(lower) bank of the cut (—oo,] under the mapping w. |

2.2 Let 0 < R < oo and define G(R) = {“’ e G: le < IR ie. G(R) =
GOU(0; R), where U(0; R) = {w € C: |w| < R}. Let further D(R) = w™(G(R)).

It is casy to prove that the equation (u(r)?) + (v(r))?* = R? ie. (1 +
r)? = R*(logr)?* 4+ #%) has unique (positive) solution p(R). Let y(R) =
wTHAU(0; R)N G), then OD(R) = 5(R)U[-p(R),0]. ‘

We assume that G(0) =0, G(0) = G.D(0) =0 and D(o0) = C. Let further
D*(R) = C'\ D(R) when 0 < R < 0. D*(0) = C and D*(o0) =0.

Now we are able to answer the question about the region and the mode of
convergence of a series of the kind (2.1).

[2.1] (Abel's lemma) Let the series (2.1) be convergent at a point ( € C.
Then it converges absolutely unuformly on each (nonempty) compact subset of
the region D(|w(C)]).

[2.2] (Cauchy - Hadamard Formula) Let

R= (_limsuplu,,ll/")——l_ : i

N0

Then the series (2.1) converges absolutely uniformly on each (nonempty) com-
pact subset of the region D(R) and diverges at each point of the region D*(R).

Let 0 <6< 1,0 < M < 0o, €C and define A(¢,8,M) = {z € D(Jw(()]): 0 <
|2 = ¢] < (1 =8|, |w(¢) —w(=)| £ M(Jw(¢)] = |w(2)])}. Then we have also the

following statement:



[2.3] (Abel’s theorem) If the series (2.1) converges at a point ¢ € C then it
converges uniformly on each set of the kind A((,6, M).

Proof. We define E}((,2) = En(2)(En(¢))™", n=0,1,2,....

Remark. Since all the roots of Jonquere polynomials are on the nonpositive
real semiaxis, Ey,(¢) # 0 for each n =0,1,2,... and ( € C.

As a corollary of the asymptotic formula (1.8) we have the representation

ENG,2) - Bra(6) = (5) ™ {1 - 2 4 it 00}

where limy— 0 j1(2, () = 0 uniformly with respect to z on each compact subset of

the region C

Let sn(C) = Y koo u‘FL(Q)(n =0,1,2,...). Without loss of generality we can
assume tlm,t limy—o00 sn(¢) = 0 i.e. that tlm sum of the series 23‘;, anEy(C) is
equal to zero.

Since an Fyp(€) = sp(€) — sn—-1(¢)yn = 1,2,3,..., we have that

n+p+1 n4p+1 n+p+1
S @B = Y GBUQOENC) = 3 (3(C) = sk (C)EL(C )
k=n+1 k=n+1 k=n+1
n4p
= Snap+1(C) Engpi1(¢,2) = sn(C) Enga (€, 2) Z CER(Cy2) = Epyy(C,2))
k=n

and further the proof proceeds as that of the classical Abel’s theorem.

Corollary. If the series (2.1) converges at a point ¢ € C. then

o0 o0
lil]lhzanE"(Z) = ZanE”(C) (2.5)
=6 n=0 n=0

provided that z € A(C,0,M).
Proof. The set A(¢,8, M) = A((,8, M) UJ{C} is compactt and the series (2.1)

converges unoformly on it. Therefore the signs "lim” and ") ~" on the left-hand side
of the equality (2.5) can be changed and thus it follows since lim,_.c Ey(2) = En(Q)
for each n =0,1,2,....

2.3 Let R be defined by the equality (2.4) and suppose that 0 < R < co.Then
the series (2.1) defines a complex function F', which is holomorphic in the region
D(R).

It is easy to prove that the series

(o.¢]

Za,,(w(::))” (2.6)

n=0



converges absolutely uniformly on cachi compact subset of the region D(R) and
deverges at cach point of D*(RR). Let f be the complex function defined by the
series (2.0).

[2.4] A point zy € 4(1R) = OD(J?)ﬂC' is regular (singular) for the function F
iff it is a regular (singular) point for f.

Proof. Let 0 < ry < dist(zg, [=p(12).0]). Then U(zo;10) is a ueishbourhood of

=y such that U(zp;re) € C. Then [1.1] gives that there exist 0 < Q = Q(z0;10)
oo ad 0 < ¢ = ¢(z0;r0) < 1 such that |y, (2)] € Q¢" whenever z € U(zp;10) aud
n=20,1,2,....

Whatever § > 0 be, there exists 0 < r(d) < ry such that the inequality |w(z)| <
(z0)|(1 4+ 8) te. |w(=)] < R(1+ ¢) holds when = € U(zp;7(8)). There exists a
positive integer N = N(¢) such that |a,] < R7"(1 4 6") when n > N. Let us
choose § > 0 so that (1 4+ 0)’¢ < 1. Then the inequality |au(w(z))"yn(z)] <
(14+8)QU(1 4+ 0)%¢)" holds when = € U(zg:1(8)) and n > N. Therefore the series

x‘
1
Z‘ln(~=«'(~'))“+ ()
n=o
1s uniformly convergent in the neighbourhood U(zgir(6)). Let 3(z0;z) be the

Liolomorphic function defined by this series.

The asymptotic formula (1.10) gives that if = € D(R) ([ U(zo;7(8)) then

o0 X

S N 2—‘ 1 2 n 1
f(:) — > (lnE“(:) — (l"(w b ”+ + (l“(w + 7]11(2)
e
n=0 n=u n=0
=w(z)f(z) + (=0 2)
and the statement follows simcee w is holomorphic and nowhere equal to zero in C.

Corollz\ry A point =z € 4() is regular (singular) for the function F iff the
point wy = w(zy) Is regular (singular) for the power series

o

n
ape
d

n=0

Examples: (1) Let a, = (-1)". = (}18520: o Then each point of the
curve (1) is regular for the function dvhne(l in tlw region D(1) by the series

Zn 0( 1”E7l( )

(2) Let {]'H}n 0
(I+7)en, n=0,1,2,... for some 7 > 0. Let {ap J7Z, be a sequence of complex

|)( an increasing sequence of positive integers such that &y 4, >

number such that luusnp”_, Nay, ['/kv = 1. Then each point of 4(1) is smgulav
for the function defined in D(1) |),\_ the series 350 ag, Ey, (2).

-1



3. A class of summability methods

3.1 Let ¢ € € be fixed, then a series

o0
Y an, an€C, n=0,12,... (3.1)

n=0

1s called (.J; ()-summable with (J; ()-sum s if there exists

00
li EX(, t0) = s
’_11113_0”2:%”” n(C,1C)

Remark. It is supposed of course that the series Y 07 an E}(C, z) converges
in the region D(|w(()]).

Before proving that each (.J,()-summation is regular we need to verify the
validity of the following statement:

[3.1] The inequality

holds for each ¢ € C.
Proof. We have (w'(¢)/w(¢) = ¢(¢ =1)"" = (log ¢)~" when ¢ # 1. It is clear

that ¢ = 1 is a regular point for the function (w'(¢)/w(¢) and since lime_,, (¢(C —
)7 — (log ¢)™') = 1/2, the inequality (3.2) holds at the point ( = 1.
Let ¢ = rexpif(0 < r < oco,—7m < 0 < m) and define U(r,0) =
Re{¢w'(¢)/w(¢)}. Then
r? log »
- 1—2rcosl + r? - (logr)? + 62

U(r,8)

when (r,6) # (1,0) and U(1,0) = 1/2.

It is clear that the inequality U(r,6) > 0 holds when 0 < » < 1 and —7 < 0 < 7.
It Lolds also when r = 1 and 0 < |6] < 7 as well as when » = 1 and # = 0. Since
lim, oo U(r,#) = 1 uniformly with respect to 8 € (—m,7), this inequality holds
when » > ry and 6 € (—m, 7) provided that 7o > 1 is large enough.

Let P be the (closed) rectangle in the (r,8)-plane defined by the inequalities
I <»r <rg,—m <6 <. Itis clear that the validity of the inequality U(r,8) > 0,
when 1 <t < ry and —7 < 8 < m, will be proved if we verify its validity on the
boundary of P.

We have already seen that this-is really the fact on the vertical sides of P.
Since U(r,7) = U(r, —n), it remains to prove that the inequality

r? log r

- > () 35
A7) (logr) + 2 \2:5)




holds when 1 < r < ry.
Let » = exp a, then (3.3) 1s equivalent to
exp 2 B

- >-() 3.4
(1 +expur)? re- e ( )

provided that 0 < @ < log rq.

Now we will see that in fact (3.4) holds for eachh » > 0. Indeed, the function
@i(w) = (1 4 exp )™ exp 20 is inereasing in the interval [0,00) and ¢(0) = 1/4.
The function ¢y(x) = w(x? + 7%)~" increases in the interval [0, 7] and decreases in
[7,00). That means the inequality ¢a(r) < 2o(7) ie. pa(x) < (27)7! holds when'
0 < 2 < oo. Since 1/4 > (27)7!, we have that ¢y(r) > kr'»(l') when 0 < z < oo.

[3.2] Each (J,¢)-summation is regular.

Proof. Since Ej(¢,t¢) = 1, it is suflicient to prove that if the series (3. 1) is

convergent with usual sum « quul to zero, then
Bt
I 2 ”nL“(‘\ 1¢) =20
t—1-0
n=0

The proof of the validity of the above equality is quite similar to that of the
statement [2.3]. But now we have to prove that the function ¢(t) = |w(¢) —
w(tO)|(Jw(C)] = Jw(t¢)])™" is bounded when ¢t — 1 = 0.

Taylor’s expansion gives that «w(#¢) = w(() — Cl(C)1 —1¢) + O((1 = t)?) and
therefore |1 — w(¢¢)/w(¢)| = O(1 —t) when t = 1 = 0.

Further,
2 w(tg) 7e(id) (G :
> o =1—-2Re y O((1 —t :
@ =t ) (e a-n+oa-m?
e
“)1® _ 5Re C'I( V(1= 1)+ O((1 = 1)?

when ¢+ — 1 — 0. Therefore. in view of (3 2). we have that

= et/ (O A+ (1) /(1)
1 — [ (tC)/w(C))?

1—¢
- O(z Re{Cw'(C)/w(C)} (1 =1) +O((1 — ¢

when t — 1 — (.

)2)) =0

3.2 The following statement is analogous to the theorem of Tauber for the

(classical) Poisson - Abel summation.



[3.3] If the series (3.1) is (J, ()-summable and moreover limy, oo na, = 0, then
it is convergent.

Proof. It is very much like to that in the "classical case™. Let S, =
dok=ors n = 0,1,2,... and define F((,z) = Y ,_,anE}((, z) provided that
z € D(|w(Q)]).

Let 0 <t < 1, then

n O
Sn— F((,t¢) = ) ap{l = ER(G,80)} — D arEL((,1C).
k=1 k=n+1

As a corollary of the asymptotic formula (1.8) we obtain that

5 WOV
].—E* ,t =1—(—':—) +,\.(,t,
1 (G, 1C) W0 k(C,1)
where A.(¢,t) = O(1—1t) uniformly with respect to k =1,2,3,..., whent — 1 — 0.

Ifep =(k+1)|ag],k=0,1,2,... then

n

’i“k{l—Eif(C,tC)}‘ < !1-“’(( ]Z CEOZ Y e

k=0 k=1

i.e.
n

IZ(IL{I-EL(Q ()} l—()l——f) £l
k=1

whent — 1 —0.

Let & be an arbitrary positive number. Since limk_.\ £ = 0, we can choose
the positive integer N = N(¢) so that e, < e andn™'(ey +e34 - +¢p) < € when
n > N. Then

n o .
< w(tC) [k
ISn—F(C,f-C)ISO(I—t)ZeH()(sn" > |‘—”—(~§--)
k=1

=0(1 - t)ZEk +en'O((1 -t)™)
k=1

and choosing t = 1 — 1/n we obtain that |S, — F((,(1 — 1/n)¢)| = O(e) when
n:2"N,

10



4. Generating functions

4.1 We are going to use the series representations (1.4) for getting generating

functions for the (modified) Jonquicre polynomials,

A (formal) change of summations gives that

NG N
R SR s (1_:)n+lwn

E ll' = .
> . h=—ng =1 (2kmr — 1()g £ N4l
= i (1 —z2)w?
= — (log = = 2kmri(log = + (1 — z)w — 21””_),

provided that z € C'\ {1} and |w| is small enough.
Further we have that
1
(log =z = 2kmi)(log =z 4+ (1 — z)w — 2k77)

B 1 f T 1 }
B (1 -z Uog s —2kmi log =4+ (1= 2w — 2kmi

and after some computation we obtain that

—

%E S = +L 2log =
2 Eml=) 0g = (log z)* + 4k2x2

_log 2

Then as a corollary of the series representation

t —l+
cO 1g —k ("1.‘ i

we have that

N Y 1 R
Y Ep(z)w" = =2 :
,2_4[ ) 1—zexp((1 = 2)w)

Since Ey(z) =1, (4.1) gives that

o
Y Enl B(z.10)
=0 f
where it
E(z,w) = T
1= zexp((l = z)w)

l()u *)2
— z)w a L {logz 4+ (1 —2)w)? +4k"’772}'

(4.15

(4.2)

11



If = € Cis fixed then the function (=) is Liolomorphic in the disk {w € C
luvl < u(:)l—'}. Indeed, the roots of the equation 1 — zexp((1 = 2)w) = 0 are
wp(z) = (=)™ 4 2k7i(z = 1)7' k€ Z and it is casy to sce that Jwy(z)| =
2|7 < |y ~)| for each = € C\ { band each k€ 2 =2\ {0}.

L(‘t w # 1 then lime—y E(z,w) = (1 —w)™' I we assume that E(1,w) =
(l —w)7!" then E(1,w) will be holomorphie in the unit disk i.e. in the disk
{w 2 Jw] < ()71}

Let 2 be the region in the space €7 defined by the conditions 2 € C
lw] < Jw(=)]7". The tanction E(z,w) is holomorphie in the region §2 and has there

an expansion of the kind

.‘ln(:)”'”. (4-3)

Remark. It is clear that all the coetficients of the "power™ series in (4.3) are
Liolomorphic in the region C.

Tlie validity of the equality (4.2) will be verified if we show that A, (2) = Ey(z)
for cach = € € and cach n = 0,1.2..... To that end it is suflicient to prove that
the equality '

(nm+DAp(z)=((n+1)z4,(2) + =(1 - :).—l;,(:) (4.4)

Lholds when =€ C, n=0.1,2,... and morcover that Ay(z) = 1.
An casy computation shows that the function E(z ) satisfies the partial dif-
ferential equation

OF JIFE
l—zw)=——32(1=2)——-zE =0 4.5
( u)Ow ( )0~ | (4.5)
m the region .
l)m ):' = A\»:‘n\::n(“ *F ])"17'-01(‘:'}"'11' =0 ‘.::/: S LAY u(” +1)zA0(2 )“' and % (” =

PR l/ ()™ when (2, w) € Q and the equi |11t} (4.4) 18 @ (()1()11(11} of (4.5). Sm(‘(-
Ao(2) = 1, from (0.4) and (4.4) it follows that A,(z) = Eu(z) when z € C and
n=0,1,2,

4.2 Since Ey(0) = 0 for each 1t''= 1,2.3.7... the polynomial E,(2) is not
reciprical when o > 1, but the polynomials

Filal = Eeailsfaiin st 19 (4.6)

Lave this property. Indeed, (4.1) and (4.6) eive that

1 —exp((1 = ) s :
@) 1)( Jue i /v 7”( ___)”‘n+l. e C.
1—'-‘4\1)((1 R LIAD ;1_~-—T;



We substitute 27! for z and zw for w and thus obtain that

o0

1= exp((1 — 2)w) n Z 2 Fy(1/ )™
1 —zexp((l —2)w) 4= #1103 b '

Then the uniqueness of the Maclorin expansion of a holomorphic function gives
that 2" Fy,(1/2) = Fu(z), n=0,1,2....

4.3 Let define the complex function W(z,w) by means of the equality

o0

W(z,w) = Z Mw" (4.7)

n!
n=0

provided that z € C.
As a corollary of the asymptotic formula (1.8) we easily obtain that whatever
z € C be, W(z,w) is an entire function of the complex variable w and moreover

that W is of order p = 1 and type o = |w(z).

A formal change of suunmations gives that if = € C\ {1} then

o0
. (1-—2)2 (1-2)w
Wi(z,w) = BXPY s 4.
(z,0) Z (2kme — log z)? (‘\P{ 2km — log ~} (
s

o
~—r

Remark. In fact (4.8) holds when z = 1.

If = € C is fixed, then the series on the right-hand side of (4.8) converges
(absolutely) uniformly on each compact subset of the complex plane. Therefore

l O"W(z,w)
n!  gwn

(0 0] (1 . :)n+'z
Z (2k7i — log z)"+2 = Ens1(2)

=0 e
w k=..00
and thus the validity of the series representation (4.1) of the function (4.7) is
proved.

5. Comments

- It seems that the region of convergence of the series (2.1) is the "whole”
mterior of the Jordan curve y(R)|J{—p(R)}. This could be established if the

asymptotics of Jonquiere polynomials on compact subset of the ray (—o00,0] is
known.

- The statement [2.4] and especially its Corollary gives a full answer of the
question about the singularities of the series (2.1) lying on the curve 5(R). State-
ments like Jentsch’s and Ostrowski’s theorems also can be proved but other prob-
lems, as analytical continuation of Jonquiere seires e.g. by Borel's or Mittag-
Lefler’s type methods, are still open.



- It seems that each two (J,()-summability methods are equivalent. It is quite
sure that each (J,()-summation is stronger than any Cesaro’s summation huth
the "correlation” with the classical Poisson - Abel suummation is not known.

- The generating functions (4.2) and (4.8) seems to be new ones. The author
hopes that they will be usefull by studying the completeness of systems of Jon-
quicre polynomials {E} (2)}32¢ in spaces of complex functions holomorphic in

suitable subregions of the complex plane cut along the ray (—o0,0].
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