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INEQUALITIES OF DUFFIN-SCHAEFFER TYPE II

Geno Nikolov

Abstract

Recently we proved that if a polynomial f of degree n has smaller absolute value
than T, the n-th Tchebycheff polynomial of the first kind, at n + 1 points located in
[~1,1] and separated by the zeros of T, then ||f’|| < ||T%||, where ||-|| is the uniform
norm in [—1,1]. This result extends both the famous A. Markov inequality and its
refinement given by Duffin and Schaeffer. Here we prove analogous extension for the
higher order derivatives.

Mathematics Subject Classification: 41A05, 41A17.

1. INTRODUCTION AND STATEMENT OF THE RESULT

Denote by 7, the set of all algebraic polynomials of degree not exceeding n, and by |||
the supremum norm in [~1,1], i.e., ||f|| := supgei—1,1) | f(2)]-
The classical inequality of the brothers Markov ([17, 18]) reads as follows.

THEOREM A. If f € m, satisfies ||f|| < 1, then
IF® < T®QA) for k=1,...,n. (1.1)

The equality occurs only if f(z) = 4Tn(z) = ycos(narccosz), |y| = 1.

In 1941 Duffin and Schaeffer [10] found a beautiful extension of the Markov inequality,
proving that (1.1) remains true under the weaker assumption

()l €1, 5=0,...,n, (1.2)

where n; = cosjni are the extreme points of the Tchebycheff polynimial T7,(z). Since
|7 (n;)] =1 for j =0,...,n, the result of Duffin and Schaeffer may be viewed as a compar-
ison type theorem: the assumption |f| < |T,| at the points {7;}§ induces the inequalities

” f(k)H < “Tr(lk)H for k = 1,...,n. This observation motivated the author to formulate in
(21] the following definition:

DEFINITION. A polynomial @ € 7, and a mesh A = {t,}}_g, (to > t1 > -+ > t,) are
said to admit an inequality of the Duffin-and Schaeffer-type if the assumption f € 7, and
|f] <|Q| at the points from A implies “f(k)“ < “Q(k)” fork=1s . 5n.

For some inequalities of the Duffin- and Schaeffer-type we refer the reader to [4], [5], [14],
(19], [21, 22, 23, 25, 26], [28], [30], [31]. A detailed account on the Markov-type inequalities
is given in the survey paper [3]. The interested reader may find exhaustive exposition on
the topic in [6], (7], [16], [20], and the new book of Rahman and Schmeisser [29].

In a recent paper [24], the author proved the following theorem.



THEOREM B. Let {t,}}_q satisfy 1 > tg > & > t1 > -+ > &y >ty > —1, where {£,}7,
are the zeros of Ty, i.e., &, = cos((2v — 1)w/(2n)). If f € ™, and

|f(t)] < |Ta(ty)| for v=0,...,n,

then
£ < 17 - (1.3)

Moreover, equality in (1.3) is possible if and only if f = cT, with |c| = 1.

The aim of this paper is to extend Theorem B to higher order derivatives. Namely, we
prove the following theorem.

THEOREM 1.1. Under the assumptions of Theorem B, we have
“f(’“)” < HT,&’”“ for k=1,...,n. (14)

Moreover, equality in (1.4) is possible if and only if f = cT', with |c| = 1.

Theorem 1.1 reveals that for @ = T, each mesh A of points in [—1,1] which are separated
by the zeros of 7}, admits an inequality of the Duffin- and Schaeffer-type. On the other
hand, it has been shown in [24, Section 2] that the set of all meshes A enjoying this property
cannot be substantially larger.

The paper is organized as follows: In Section 2 we prove a general inequality (Theo-
rem 2.1), which is the main ingredient of the proof of Theorem 1.1. The proof of Theorem 1.1
is given in Section 4. In Section 3 we establish some properties of 7; ,sk), the derivatives of the
Tchebycheff polynomial of the first kind. Section 5 contains some comments and remarks.

2. A GENERAL INEQUALITY

We shall exploit some observation from V. Markov’s paper [18] about the zero interlacing
inheritance of algebraic polynomials. Let us start with a definition:

DEFINITION. Let p and ¢ be two algebraic polynomials having only real and simple
zeros. The zeros of p and ¢ are said to interlace if one can trace all of them, switching
alternatively from a zero of p to a zero of ¢ and vice versa, and moving only in one direction.
If, in addition, no zero of p coincides with a zero of ¢, then the zeros of p and ¢ are said to
interlace strictly.

Obviously, the interlacing is possible only if p and ¢ are of the same degree or of degrees
which differ by one. In the latter case, if, e.g., p is of degree n+1, q is of degree n, and the
zeros of p and ¢ interlace strictly, we shall say shortly that the zeros of ¢ separate the zeros
of p.

The following simple lemma, due to V. Markov [18], asserts that the zero interlacing
property of two polynomials is inherited by their derivatives (for a proof, the reader may
consult [27, Lemma 2.7.1] or [31]).

LEMMA 2.1. Let p and q (p # q) be algebraic polynomials having only real and simple
zeros. If the zeros of p and q interlace, then the zeros of p' and ¢’ interlace strictly.

In particular, Lemma 2.1 shows that each zero of p’ is a strictly monotone function of any
zero of p. We apply Lemma 2.1 to derive the main result in this section.



THEOREM 2.1. Let Q be an algebraic polynomial of degree n, having n distinct real zeros
located in (—1,1). Assume that f € 7, satisfies the inequality |f| < |Q| at a set of n + 1
distinct points in [—1,1], which are separated by the zeros of Q. If k € {1,2,...,n — 1},
then

<k>“ <
”f 0<r<n k+1 ze[ﬂ?ﬁr lll‘Pr(x)l' (2.1)
where .
= =TT (k)
er(z) : gy QW (x)
71> Ty >+ > Tny are the zeros of Q¥(z), and 7_1 =70 =1, Tn_k41 = Tn_ky2 := —1.

Proof. Note first that —po(z) = @n_rs1(z) = Q¥)(z). Without loss of generality we
may assume that the coefficients of @ are real. Let tg > t; > -+ > t, be the n + 1
points in [—1,1] which are separated by the zeros of @, and at which |f| < |Q|. Set
w(z) == (x — to)(x — t1)...(z — tp) and wy(z) = w(z)/(z - t,), v = 0,...,n. From the
Lagrange interpolation formula and the triangle inequality we infer

0 =3 | < 3 2 < 32

(ty)
For each pair of indices (7,7), 0 < i < j < n, the zeros of w;(z) interlace with the zeros of
wj(z), the zeros of w;(x) being smaller than or equal to the corresponding zeros of w;(z).

w,, (:z

Q)| (2.2)

This observation and Lemma 2.1 imply the following arrangement for the zeros {’yf,")}”;’f
(k)

ofwy’(z), v=0,...,m
159 >4 V> 54050 s 540 s 55 5 500 s 1l 23)
Setting

Ioi=(™1), L= (v=1,...,n-k=1) and I :=(-1,72)),

it is easy to see from (2.3) that if z belongs to some of the intervals {I,}"ZF, then
sign {w§” ()} = sign {w{"(z)} = - = sign (¥ (z)} # 0.

By our assumption, the values {Q(t,)}}_ alternate in sign, and so do {w,(t,)}"_,. There-
fore, for z € I, (v =0,...,n — k), the last upper bound for |f(k)(.7:)| in (2.2) is equal to
lQ(k)(m)| and is attained only if f = ¢Q with some constant ¢, |c| = 1.

Our next observation is that the intervals {I,}"Z¢ are separated by the zeros {r}o—y
of Q). Indeed, by assumption, the zeros of Q interlace with the zeros of both wg and w,
and are located between the corresponding zeros of wg and w,. Then Lemma 2.1 implies
interlacing (and the same arrangement) for the zeros of w(()k), Q™) and w(k)

Now we iterate the above reasoning: For v =0, 1,. n k, we select a point from the
interval I, (denote it again by t,). The new points {t Rt Y satisfy

1>tg>T >t > > Tk > thok > —1, (2.4)

and

|f(k)(tu)l < |Q(’°)(t.,)| for v=0,1,...,n—k. (2.5)
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Moreover, in (2.5) equality occurs for either v if and only if f = ¢Q with some constant c,
le] = 1. Denotfe by {¢, Z;S the Lagrange fundamental polynomials for interpolation at the
points {tu}ﬁ;é.

Assume first that zg € (t;,t,—1) for some r € {1,...,n — k}, then

sign {£,(z0)} = (=1)""17¥ for v=0,1,...,r —1

and
sign {¢,(z0)} = (-1)""" for v=r,...,n —k.

Apart from a multiplier +1, the sequences {0, (t,)}2Z¢ and {£,(20)}"Z& have the same sign

pattern, therefore

n—k n—k
I‘PT(JJO)| = Z ’Eu($0)|-|¢r(tu)| > Z |£v(x0)|'|Q(k)(tU)l
v=0 v=0

n—k
>3 (@) O] 2 |10 o).
v=0

Moreover, the same inequality holds if ¢y = ¢, or ¢ = t,—1, therefore
|F®)(@)| < |er(z)] if z€[trtr—a), T=1,...,n—k. (2.6)

On the other hand, if zy belongs to [—1,¢,—%) or (to,1], then both the sequences
{QW)(t,)}7_, and {£, (o) ’l};(’f alternate in sign, thus

n—k n—k
QW @o)| = X_ 1) Wt 2 3 (@) .| f¥(2)] > | ¥ (o).
v=0 v=0

Hence
|fP@)] < |QW(2)| = [po(z)| = |@n-ts1(x)| if 2 € [~1,tn-k) or T € (t0,1]. (27

Now (2.1) follows from (2.6), (2.7) and (2.4). The proof of Theorem 2.1 is complete. O
An obvious consequence of Theorem 2.1 is the following corollary.

COROLLARY 2.1. If, under the assumptions of Theorem 2.1, for some k € {1,...,n—1},

e < 0]

max max
1<r<n—k z€[rr41,7r-1)

o] < o
3. SOME PROPERTIES OF ,ﬁk)

3.1 The ultraspherical polynomials and ,Ek)

The ultraspherical polynomial P,(LA) is the n-th orthogonal polynomial in [—1, 1] with respect
to the weight functions w(z) = (1 — 2%)*~/2, (A > —1/2). Some well-known properties of
the ultraspherical polynomials are (see, e.g. [33, Chapt. 5]) :
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(i) The function y = ,(3)(9;) satisfies the second order differential equation
(1 -2y — (22X + D)z’ + n(n+ 2\)y = 0.

(ii) If A > 0, then the relative maxima of IP,E’\)I increase as the distance between their

abscissae and the origin increases, and P,S'\) ‘ = P,(l'\) (1) (the opposite behaviour of the

local maxima prevails when —1/2 < A < 0).
Apart from a constant factor, 7, 7(Lk) is equal to the ultraspherical polynomial P,(;li)k (this

observation applies also to the case £k = 0). In particular, — T,Sk)(l), and the

differential equation for T,(Lk) reads as
(1 - 2)TE+D(z) - (2k + 1)2zT*+) (z) + (n® — k2T (z) = 0. (3.1)
From (3.1) we have the following relation between the norms of T,Sk) and T,(lkH):

s Tk (1). (3.2)

(k+l)(1) ]

3.2 An upper estimate for the largest local extremum of sl

According to what was said above, the local maxima of |T,$k)| increase as their abscissae in-
crease in absolute value. It seems an interesting task to compare the largest local maximum
of || and

LEMMA 3.1. Let 1 <k <n—2, and let T be the largest zero of T,(,kﬂ). Then

lﬂ“ﬂ_ TT). (3.3)

2k +

Moreover,

2k -1
2k + 7

|T('” T,(1) if 7> 7, where 7:=

8
(n)} < (2k + 1)(2k +7)
Proof. From the differential equations for T and T(k+1) and TFY (1) = 0 we infer
1 = 7HTE(7) = (2k + 3)r T (1), (1 - r)TED (1) = —(n2 = K)TH(r).  (3.4)

On using (3.4) and the fact that T2 is convex in [r,1], we obtain

m“Wn=/3ﬁMMﬁzu—ﬂﬁ“Wﬂ+ﬂﬂ)
> (1) [1#+3(r) + ST ()]

=(1=7) [1 + (52%3);] T+ (1)
2k +5)T + 2

£ (n2 o k2)( 2(1 o |T(k l



This inequality combined with (3.2) implies

2(1+2)?

5 1 v
1T (1) € =——=T® (1)g(r), where g(z):= @k+5z+2

—2k+1"" )

The function g(z) is continuous in [0, 1], and has a unique point of local extremum therein,
which is a minimum. Therefore

max g(z) = max{g(0), g(1)} =1,

z€[0,1]
and this together with (3.5) proves (3.3). The remaining claim of the lemma follows from
the fact that g(7) = g(1) = 8/(2k + 7). The proof is complete. O

Notice that (3.3) holds true for k = 0, too. In the cases ¥ =0 and k = n — 2 it becomes
an equality.

3.3 An inequality relating ¥ and T

T;gk)H < ‘T,(IHI)” for k =1,...,n— 1. It turns out that,

for 2 < k < n — 2, the factor 1 — 22 suffices for the reverse inequality to hold true, i.e., the
function

As is seen from (3.2), we have .

Yi(z) = (1 - 2T ()

already has a smaller uniform norm in [-1,1] than T,(,k) . Specifically, we prove the following
lemma.

LEMMA 3.2. For every k € {2,3,...,n — 2} we have

il < (1= ) |

(k)
ok 2/ 15

| . (3.6)

For the proof of Lemma 3.2, we shall need some information about the local extrema of
Y (z). We show below that, despite of the factor 1 — 22, the local extrema of ¥y (z) still

have the same behaviour as those of T,gk).
LEMMA 3.3. If2 < k < n—2, then the local mazima of | (x)| increase as |z| increases.

Proof. The proof of Lemma 3.3 makes use of the following beautiful result of Sonin -
Polya (see, e.g., [33, Paragraph 7.31]):

LEMMA 3.4. Let u(z) satisfy the differential equation
(p(z)u') + P(z)u = 0, (3.7)

where p(x) > 0, P(xz) > 0, and both functions p(x) and P(z) have continuous derivative in
an interval (a,b). Then the relative mazima of |u| in (a,b) form an increasing or decreasing
sequence according as p(x)P(z) is decreasing or increasing in (a,b).

Using (3.1), one readily verifies that u = v (z) satisfies the differential equation (3.7) with

p(z) = (1 - z2)* 12, P(z) = (1 — g?)*5/2 [{n2 — (k- 1)1 - 2?) - 2(2k - 1)]. (3.8)



To apply Lemma 3.3 to u = ¥ (z), we check first that the function P(z) defined in (3.8) is
positive in the interval (—¢&, ), where £ is the largest critical point of 1, (). Indeed, assume
the contrary, then P(z) < 0 for every z € (£,1). The function

q(z) = p(x)Px(x)Yr ()

satisfies ¢(§) = ¢(1) = 0, and by Rolle’s theorem there would exist a point 1 € (£,1) such
that h/(n) = 0. However, we have

¢(z) = (p(@)()) Ye() +p(2) (Ui ()" = p(2) (Y(2))* = P)¥(z) > 0 in (£,1),
a contradiction. This means that the largest critical point & of 1, (z) satisfies

(2k 1)
- (k-1)*

and P(z) > 0in (—§,£). An easy calculation reveals that

1=£2> (3.9)

(p@)P(@)) = ~4a(1 == [(k = Dln® - (k= 1?1 = 27) - (2k - 1)(2k - 3)].

Then (3.9) shows that, for £ > 2, (p(z)P(z))’ > 0 in (—&,0) and (p(z)P(z))’ < 0 in (0,§).
Now the claim of Lemma 3.3 follows from Lemma 3.4. a

Notice that the local maxima of || have just the opposite behaviour. This can be seen
from the above expression for (p(z)P(z))’ and application of Lemma 3.4.

Proof of Lemma 3.2. The case k = n — 2 is easily verified, making use of the repre-
sentation T,S"'2)(x) = 2"3nl[222 — 1/(n — 1)]. We therefore assume that 2 < k < n — 3.
According to Lemma 3.3, we have [[¢x| = ¥x(§), where £ is the last zero of ¥;. From
Y1 (€) = 0 and the differential equation (3.1) we find

T = LZTEE, T = ZIETE. (10
From (3.10), we have
Yi(€) =T (8), (3.11)
where A (n2 X kz)(l b, 62)
T (2k=-1E

We consider separately two cases.

Case I: 3 < k < n —3. Making use of (3.10) and the fact that T(m)(:c) (m>k+1) are
positive to the right £, we obtain

1

T(1) T 2 (L~ HTHI(+8/2) 2 (1= | THI(E) + > TH(e)

_ (=890 +28) k41 (1 +28)n )
e e T () = TTe? 1L (3]

and hence
Tk (¢) <

1426 i
Lf £—W) 7

7 : I sisoums



Together with (3.11) this yields

, Y (k) Ui (k)
Y(€) < L7 Q) < —-T" Q)
L ((11++2€E))'~’77 L+gn "

and obviously Lemma 3.2 will be proved if we show that

Ui 1
—_ e
1+3n =" (2k+1)%
or, equivalently, if
(n? - k%)(1-¢€?) < dk(k +1)(2k - 1)
& k2 +k+1

To prove (3.12) we need an estimate for £ from below, and we derive it from (3.10) and the

(3.12)

differential equation for TT(LkH) as follows:

0< (1= )T (E) = (2k + 3T (E) - [0° — (k + DTV ()
= [202% +3)€%/(1 - €) = n? + (k + 1] THHV(E).
Since T,(lkH)(E) > 0, the term in the square brackets must be positive, too, and this yields
the (equivalent) inequalities

n? — (k +1)?
n2—k2+2k+5’

(compare with (3.9)). We see from these inequalities that (3.12) will hold true if

2(2k + 3)
n?—-k24+2k+5

R L

e >

2 k2 ok4+5)nd -k -2k —1)]"
(n + 2k +5)(n ) o (R +k+1)(2k +3)

nZ — k2 = ok(k+1)(2k—1) (3.13)

By our assumption, the quantity y = n? — k? belongs to [3(2k + 3),00). A straightforward
calculation shows that the left-hand side of (3.13), considered as a function of y for a fixed
k, has exactly one local extremum in this interval, which is a maximum. Consequently, the
minimum on the left is attained for y = 3(2k + 3) or y = co. It is easy to see that this
minimum is greater than 1 for k = 3, and greater than 2v/2/3 for k > 4. The right-hand
side of (3.13) decreases with respect to k; it is less than 1 for k = 3, and is less than or
equal to 33/40 for k > 4. Hence (3.13) is established, as 33/40 < 2v/2/3. Lemma 3.2 is
proved in the case 3 <k <n —3.

Case II: k = 2. The cases 5 < n < 10 are verified numerically, so we assume in what
follows that n > 11. Since T,gm)(x) (m > 3) are convex to the right of &, it follows from a
familiar property of the trapezium rule that

1—

7 _ it 2 TS " _(1_5)2 (4) _m(4)
TH() - THE) 2 —[T(e) + T ()] - S [10() - ().

2
This inequality together with (3.2) and (3.10) yields
1 29
1 -5z + 4251(112—4) 2

Ty(€) < s e 419
L+ 186(1+€) ©

8



where
z:= (n? —4)(1-¢).

Hence
1.2 n2-9 3
Z— 152 t mpr—n?
1/)2(1,‘) < 3 AE+3 T1/1.I(1)
1_+€E + _§_76(1+E) Z

AL 0 (3.14)
z2— 152" + w52

TI(1).
3 7 n
T4 T 2%

In view of (3.14), the case k = 2 of Lemma 3.2 will be settled if we manage to prove that

g sy TN K.
Z— 5% T 1352 <24

3 7 = 9gp?
1—_55 + ﬂz 25
or, equivalently, if
1, 1, 18 72¢
= —2" - —Z —2 < = ’
Mo =567 ~ 67 t 7S Bt e {5:15)
To this end, we prove that &, the largest zero of ¥5(z), satisfies
1.1 1.04
cos TW < € < cos ?LW for n > 11. (3.16)

On using Ty(cosa) = cos(na), T)(cosa) = nsin(na)/sina and the differential equation
(3.1), we find the following representation of 15(x):

n? cos(na) [tan(na)

f
cos o) =
11)2( ) sin? o

To prove (3.16), it suffices to show that for n > 11
Yn(cos(1.04m/n)) > 0 and 5(cos(l.1m/n)) < 0.

Indeed, this guarantees the existence of a zero of ¥4 in (cos(l.17/n),cos(1.047/n)), and
we claim that £ is there. If this was not the case, then 5 would have at least three zeros
located to the right of cos(1.17/n). Since the zeros of ¥, and 7 interlace, so do the zeros
of ¥4 and T}". Therefore, if 95 had three zeros to the right of cos(1.17/n), then T} would
have at least two zeros there, which is false.

Our next arguments involve the well-known fact that

{nsin(a/n)}nzy /o, {ntan(a/n)}nzy N a, 0<a<2m.

To prove that ¥5(cos(1.17/n)) > 0, we need to show that the term in the square brackets
in (3.17) is negative for a = 1.17/n. We observe first that

(9cot? a — 4n® +7) —9cot2a+n2—4]. (3.17)
ntana

9cot?(1.1m/n) — 4n? + 7 < cot?(1.17/n) {9 — 1.217%(4n% — 7)/n2] < 0.
Therefore, for n > 11 we have

tan(1.1m)
ntan(l.lw/n)
< [9cot?(L.1m/n) — 4n® + 7] /11 — 9 cot?(L.1m/n) +n? — 4

[9cot?(L.1m/n) — 4n* + 7] — 9cot?(1.1m/n) + n? — 4

< % cot?(1.17/n) [(n tan(1.17r/n))2 s -97—0]
< % cot?(1.17/n) [(11 'can(0.17r))2 - g_?—] <0.

9



Analogously, 14 (cos(1.047/n)) < 0 exactly when the term in the square brackets in (3.17)
is positive. The estimation is done as follows:

tan(1.047)
ntan(1.047/n)
n tan(0.047)
—  1.04r
> 0.038666 (9 cot?(1.047/n) — 4n® + 7] — 9cot?(1.047/n) + n? — 4

> 0.845336 cot2(1.047 /n) [(nQ — 4.412) tan?(1.047 /n) — 10.235]

(9 cot?(1.047/n) — 4n? + 7] - 9cot?(1.04m/n) + n* — 4

[9cot?(1.047/n) — 4n® + 7] — 9cot?(1.047/n) +n* — 4

> 0.845336 cot*(1.047/n) [(1.04«)2(722 - 4.412)/n? - 10.235} > 0.
With this (3.16) is established. Now we proceed with the proof of (3.15). At first, we
estimate z = (n? — 4)(1 — €) with the help of (3.16).

2

(n* —4)(1 - €) > (n® — 4)(1 — cos(1.047/n)) = p ; ! (nsin(1.047r/(2n)))2

> 2345sin%(1.047/22) > 5.123,

712—

n2

(n? —4)(1 - €) < (n® —4)(1 - cos(1.17/n)) = 2 ! (nsin(l.l7r/(2n)))2
< 1.217%/2 < 5.972.

A straightforward calculation shows that the function A(z) in (3.15) is monotone decreasing
in the interval (5.123,5.972), and therefore

h(z) < h(5.123) < 1.385.
For the right-hand side of (3.15) we have, in view of (3.16),

T2€ 72 cos(0.17)

2B(1+€)  25(1+cos(01r)) ~ 10

With this (3.15) is established, and the proof of Case II of Lemma 3.2 is completed . [

3.4 An upper bound for the largest zero of ultraspherical polynomials

There have been many publication devoted to the extreme zeros of the classical orthogonal
polynomials. For earlier results the reader may consult Szegd’s book [33, Chapt.6], while
for some newer contributions in this direction we refer (without any claim for completeness)
to (1], [2], [8, 9], [11], [12], [13], [15]. We give below an upper bound for the largest zero

zn1(A) of the ultraspherical polynomial P, due to Elbert and Laforgia [12] (see also [11]):

(n=1)(n+2\+1)
(n+ A)? '

z2 (A <

o A>0. (3.18)
The best so far upper bound for z,1(A) when the parameter X is large was obtained recently
by Area, Dimitrov, Godoy and Ronveaux ([1, Theorem 4.3]). However, this upper bound
looks too complicated to be quoted here.

Although the above mentioned estimates may turn out good enough for our purposes,
we decided to incorporate another upper bound for z,;()\). This decision is motivated by
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two reasons. The first one is that our proof is very elementary. The more important, our
estimate is sharper than (3.18), and the numerical experiments indicate that it is superior
even to the estimate given in [1, Theorem 4.3].

LEMMA 3.5. For any A > —1/2, the following estimate holds true:
(n=1)(n+2X+1)
(R+A)2+3X+5/4+3(A+1/2)2/(n-1)

Proof. The proof exploits an idea from [33, Paragraph 6.2, based on the following
observation of Laguerre: If f is a polynomial of degree n having only real and distinct
zeros, and f(zg) = 0, then

3(n — 2)[f"(z0)]* — 4(n — 1) £ (z0) £ (z0) > 0.

We substitute in this inequality f = P and zg = zn1(A), and replace f'(zo) and f"'(zq)
from the differential equations for f and f’ as follows:

z2 (\) < (3.19)

/ o e (E% " " N (2)‘ T 3)1:0 (TL i 1)(” +2A + 1)] "
(20) = gm0 M@0 = [ AT D | @)
Then we cancel out the factor [f”(zo)]? and solve the resulting inequality with respect to
z2. This yields exactly (3.19). The proof of Lemma 3.5 is complete. a

As we already mentioned, T,(Lk) is equal, apart from a constant multiplier, to the ultras-
pherical polynomial PT(l}i)k. We shall need the following consequence from Lemma 3.5.

COROLLARY 3.1. The largest zero 71 = Tn1(k) of g satisfies
2 n? — (k+1)?
1= n243k+5/4+3(k+1/2)2/(n—k-1)
For k = 2 and k = 3 we obtain sharper upper bounds, taking advantage of the explicit form
of T,, and T, and arguing as in the proof of (3.16).
LEMMA 3.6. (i) The largest zero 11 = Tn1(2) of T satisfies

1.43
71 < cos . W.

(ii) The largest zero 71 = Tq1(3) of T, satisfies
71 < CoS n
LT i
We leave the proof to the reader.
4. PROOF OF THEOREM 1.1

As was already mentioned in Section 1, the case k = 1 of Theorem 1.1 has been estab-
lished in [24]. The cases k = n —1 and k = n follow trivially, as in these cases ||f®*)|| is
attained for z = 1 or z = —1 (see [24, Section 4]). Therefore, we assume that 2 < k < n-2.

In what follows, we adopt the following notation: 71 > 79 > -+ > 7, are the zeros of
), T_1 =10 1= 1, Toks1 = Taks2 := —1, and
1—
Py () = m—T—;_'—x-T,(,k)(x), BRI AR L | (4.1)
— v

We need one more lemma.

11



LEMMA 4.1. (1) If2<r<n-k -1, then
max er(z)| < T ().

ZE[Tr41,Tr—1]
(i) Ifr =1 orr =n—k, then

s [g,(0)] =T
Z’E[T1+l Tr— l

and the maximum is attained only for x = 179 and T = Tp—k4+1, respectively.

Proof. We begin with the proof of part (i). Due to symmetry, we shall restrict our study
only to half of the polynomials {¢,}, say, those with indices 1 <r < |[(n —k +1)/2]. It is
clear that maxge(r, ,, r_,) lor(2)] = lor(8)|, where 6 := 6, is the unique zero of ¢/ in the
interval (7,41,7r—1). We verify first the case r = (n — k+1)/2 (i.e., n — k is odd). In this
case § = 0, and

k) (| [ 21 |(k—1) n?— (k=12 -1 (k)
()] = [TFDO)] = [22 - (- 1] [T¢D(0)] < S ELr0 ) = T,
where we have used the differential equation for T,Ek_l), the fact that 2 = 0 is a point of a
local maximum for |T,(lk—1)| (not the largest one), and Lemma 3.1.

Next, we assume that 2 <7 < (n—k)/2 (and, as a consequence, 0 < 7 < 1). With the

help of (3.1) we find

200(77) = (1 — )T (1) — 20, TR (77) = (2K — 1) 7 T+ (7).
This yields sign {.(7r)} = sign{¢r(7+)} = sign {T,(lH'1 (+)} = (=1)""!, and we deduce
that 6 € (7, 7r—1). From ¢.(6) = 0 we get
(1= 76)(6 - )T (0) = (1 = )LL), (42)
whence sign {Tn 0)} = sign {T(k+1)(9)} = (=1)"". Since sign {T,ﬁ"“)(r,_l)} = (-1)""2,

we conclude that T ™" has a zero (ie., T has a local extremum) in (6,7,-1). On using
(4.2) we find a second representation of |, (6)|:

or(0)] = 522 T (0)]
" (4.3)
. (11—_7;2) T4+ (g)]

Now we are prepared to prove part (i) of the lemma. We consider two possibilities.

If (1-7.0)/(0 —7r) < 2k + 1, then we take into account that T,gk) has a local extremum
to the right of ¢, and apply Lemma 3.1 to obtain
1— 7,0 () _
= |p.(0)| = & —n kg
o |er(@)] = lior(0)] = 5 i = ()

On the other hand, if (1 — 7.0)/(6 — 7) > 2k + 1, then we make use of the second
representation of |p,(6)| in (4.3) and Lemma 3.2 to arrive at the same conclusion:

(
—[T06)] < 2k +1)

— 7,6)?2
max |gr(2)] = |or(6)] = ‘i——elmk%n

TE[Tr4+1,Tr—1) 1
(1-76) (1—7.60)2
= T-a-m 0= Trap- e O
< Tomere el < TP,
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With this part (i) of the lemma is established. .

For part (ii), it suffices to consider only ¢, in view of the symmetry. We shall show
that ¢;(z) is monotone increasing in [r2,79] = 72,1]. This is all we need, as (1) = 0
and ¢1(1) = 7sk)(l). So, our goal is to prove that the last point of local extremum of ¢, is
situated to the right of z = 1, i.e., that ¢j(1) > 0. It is easily seen with the help of (3.2)

that this is equivalent to the inequality

147 n2—k?
1-7 2k+1°
In the proof of (4.4) we shall distinguish between the cases k = 2, k = 3 and k > 4.

Case 1: k = 2. The verification for 4 < n < 8 can be performed by a computer.
According to Lemma 3.6 (i), 71 < cos(1.437/n), and (4.4) will hold true if

2 1.4371'

(4.4)

(n* — 4) tan > 5.

This inequality is verified numerically for 9 < n < 21. For n > 22 we have

1437 _ n%-4 480
2 2 2
LA S ittt & BT ¢
0 > y™ (1.437)° > 1936(1 3m)*>5
Case 2: k = 3. Again, the cases of small n (5 < n < 7) can be verified by a computer.

In view of Lemma 3.6 (ii), (4.4) will hold true in this case if

(n* — 4) tan

o T
2 2
—9)tan® — > 7.
(n ) tan o
This inequality is verified numerically for 8 <n < 11, while for n > 12 we have

T _ 49(n?® - 9) 6615
2 2 2 2
—-9)t =t >
S it ey e = T
Case 2: k > 4. The inequality (4.4) is equivalent to

n?— (k+1)?
n?—k2+2k+1’

and, in view of Corollary 3.1, this inequality will be certainly true if

>T.

1 <

n? = (k +1)? = n? - (k+1)° )2.

n2+3k+5/4+3(k+1/2)2/(n—k—-1) ~ \n2-k2+2k+1 (4:6)

Clearly, (4.5) is a consequence of

n? — (k+1)? - ( n? — (k+1)? )2
n?+3k+5/4 - \n2—-k2+2k+1/ "

It is an easy exercise to verify this last inequality, and the situations in which it is true are

described in the next table (note that, by assumption, n > k + 2).

k n >
4 13
5-6 10
7-10 | k+3
>11 | k+2
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Finally, in the cases not covered by this table, (4.5) is verified to be true directly. 0

Proof of Theorem 1.1. Theorem 2.1 applied to @ = T, with k € {2,...,n — 2}, implies
that, for any f € m, satisfying the assumptions of Theorem 1.1,

(k
”f )“ 0<renk+1 xe[rrf,l,n N [er (@),
with {¢,}g~ ¥+1 as defined in (4.1) (and —@p = @n_k+1 = T,Sk)). Lemma 4.1 asserts that
the maximum on the right is equal to T,gk)(l), and is attained only for z = +1. With this
the inequality of Theorem 1.1 is established. It remains to clarify in which cases it becomes
an equality. Tracing back the proof of Theorem 2.1, we see that, for z € [—1, 1], the equality
If(" 1 =7 ( ) is possible only if x = £1, and only if f = cT}, |c| = 1. a

5. REMARKS AND COMMENTS

1. In Theorem 1.1, the assumption that the "check” points {t, }{ interlace strictly with
the zeros of T, was imposed only to avoid unimportant complications in the proof (the same
applies to Theorem B). Moreover, a closer look to the proof of Theorem 1.1 reveals that we
have established a more general statement. Namely, the following theorem holds true.

THEOREM 5.1. Let Q = PV, where A € Ny, and let f € m, satisfy |f| < |Q| at n+ 1
distinct points in [—1,1], which are separated by the zeros of Q. Then

“f"“’” < l]Q(’“)“ for k=1,...,n

and equality occurs if and only if f = cQ, |c| = 1.

To see this, one only has to realize that the polynomials {¢,(z)}; ~5+1 that appear in
Theorem 2.1, and depend on @ and k, remain unchanged if @ is replaced by Q™ and k
by k —m, 0 < m < k. Since the ultraspherical polynomial Q@ = Pn\), A € N is equal,
apart from a constant multiplier, to T(+)/\, we can derive the analogue of Lemma 4.1 for the

polynomials {¢,(z)},—; ~k+1 generated by Q = P,S’\), from Lemma 4.1 itself (notice that the
restriction k£ > 2 drops in this case).

2. Let us mention that the method of proof of the case k = 1 in Theorem 1.1 (i.e.,
Theorem B) given in [24] is hardly applicable to the higher order derivatives. On the other
hand, our approach in this paper does not work in the case k = 1, as in this case Lemma 4.1
is not true.

3. As was pointed out in [24], inequalities of the Duffin- and Schaeffer-type may find
application to the estimation of the round-off error in the Lagrange differentiation formulae.
Let

£9a) ~ Y- €9(&) () = S(f:2)
v=0
be an interpolatory differentiation formula, where the nodes {t, }% lie in [~1,1] and interlace
with the zeros of 7y, (z). Assume that, instead of the true values {f(t,)}§ we have in our
disposal inaccurate data {f(t,,)}g, and know that |f(t,) — f(t,) <€, v=0,...,n. Then,
for the round-off error R(f;z) := |S(f — f;x)| we have the following sharp estimate:

R(f;z) < M.TF(1) for every z € [~1,1], where M = max &/|Tn ()]
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In view of Theorem 5.1, a similar estimate for the round-off error holds if T}, is replaced by

ultraspherical polynomial Q = P,s’\), A € N. Regarding the truncation error in the interpo-
latory differentiation formulas (i.e., the error caused by the fact that f is not necessarily
polynomial), we refer the reader to the nice work of Shadrin [32].

(1]
2]
(3]

(4]
(5]
(6]

(7l
(8]

9]
[10]
1]
12)
[13]
[14]
[25]
[26]
[17)

[18]

REFERENCES

I. Area, D. K. Dimitrov, E. Godoy, and A. Ronveaux, Zeros of Gegenbauer and Hermite poly-
nomials and connection coefficients, Math. Comput. 2003, to appear.

S. Ahmed, M. E. Muldoon, and R. Spigler, Inequalities and numerical bounds for zeros of
ultraspherical polynomials, SIAM J. Math. Anal. 17 (1986), 1000-1007.

B. Bojanov, Markov-type Inequalities for Polynomials and Splines, in: Approzimation Theory
X: Abstract and Classical Analysis (Charles K. Chui, Larry L. Schumaker and Joachim Stéckler,
Eds.), Vanderbilt University Press, Nashville, TN, 2001, 31-90.

B. Bojanov and G. Nikolov, Duffin and Schaeffer type inequality for ultraspherical polynomials,
J. Approz. Theory 84(1996), 129-138.

B. Bojanov and Q. Rahman, On certain extremal problems for polynomials, J. Math. Anal.
Appl., 189(1995), 781-800.

P. Borwein and T. Erdélyi, Polynomials and Polynomial inequalities, Springer Verlag, Berlin,
1995.

R. A. DeVore and G. G. Lorentz, Constructive Approzimation, Springer Verlag, Berlin, 1993.

D. K. Dimitrov, Connection coefficients and zeros of orthogonal polynomials, J. Comput. Appl.
Math. 133 (2001), 331-340.

D. K. Dimitrov, Convexity of the extreme zeros of Gegenbauer and Laguerre polynomials, J.
Comput. Appl. Math. 153 (2001), 171-180.

R. Duffin and A. Schaeffer, A refinement of an inequality of the brothers Markoff, Trans. Amer.
Math. Soc. 50 (1941), 517-528.

A. Elbert, Some recent results on the zeros of Bessel functions and orthogonal polynomials, J.
Comput. Appl. Math. 133 (2001), 65-83.

A. Elbert and A. Laforgia, Upper bounds for the zeros of ultraspherical polynomials, J. Approz.
Theory 61 (1990), 88-97.

K.-J. Forster and K. Petras, On estimates for the weights in Gaussian quadrature in the ultra-
spherical case, Math. Comput. 55 (1990), 243-264.

C. Frappier, On the inequalities of Bernstein-Markoff for an interval, J. Anal. Math.
43(1983/84), 12-25.

L. Gatteschi, New inequalities for the zeros of Jacobi polynomials, SIAM J. Math. Anal. 18
(1987), 1549-1562.

G. G. Lorentz, M. V. Golitchek, and Y. Makovoz, Constructive Approzimation. Advanced Prob-
lems, Springer Verlag, Berlin, 1996.

A. A. Markov, On a question of D. I. Mendeleev,Zap. Petersburg Akad. Nauk, 62(1889), 1-24
(in Russian).

V.A. Markov, On functions of least deviation from zero in a given interval, St. Petersburg, 1892
(in Russian). German translation: Uber Polynome, die in einem gegeben Intervalle méglichst
wenig von Null abweichen, Math. Ann. 77(1916), 213-258.

15



(19]

[30]
31]

(32]
[33]

L. Milev and G. Nikolov, On the inequality of I. Schur, J. Math. Anal. Appl., 216(1997),
421-437.

G. V. Milovanovi¢, D. S. Mitrinovi¢, and Th. M. Rassias, Topics in Polynomials: Extremal
Problems, Inequalities, Zeros, World Scientific, Singapore, 1994.

G. Nikolov, On certain Duffin and Schaeffer type inequalities, J. Approz. Theory, 93(1998),
157-176.

G. Nikolov, Inequalities of Duffin-Schaeffer-Schur type, Annuaire Univ. Sofia, 90(1998), 109~
123.

G. Nikolov, An inequality for polynomials with elliptic majorant, J. Ineq. Appl., 4(1999), 315—
325.

G. Nikolov, Inequalities of Duffin-Schaeffer type, SIAM J. Math. Anal., 33(2001), 686-698.

G. Nikolov, Snake polynomials and Markov-type inequalities. In: Approzimation Theory: A
volume dedicated to Bl. Sendov (B. Bojanov, Ed.), Darba, Sofia, 2002, 342-352.

G. Nikolov, An extension of an inequality of Duffin and Schaeffer, Constr. Approz. (to appear).
T. Rivlin, The Chebyshev Polynomials, John Wiley & Sons, New York, 1974.

Q.I. Rahman and G. Schmeisser, Markov-Duffin-Schaeffer inequality for polynomials with a
circular majorant, Trans. Amer. Math. Soc. 310(1988), 693-702.

Q.I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press,
Oxford, 2002.

Q.I. Rahman and A.Q. Watt, Polynomials with a parabolic majorant and the Duffin-Schaeffer
inequality, J. Approz. Theory 69(1992), 338-354.

A.Yu. Shadrin, Interpolation with Lagrange polynomials. A simple proof of Markov inequality
and some of its generalizations, Approz. Theory Appl. 8(1992), 51-61.

A.Yu. Shadrin, Error bound for Lagrange interpolation, J. Approz. Theory 80(1995), 25-49.
G. Szegd, Orthogonal Polynomials (Fourth Edition), AMS, Providence, RI, 1975.

Geno Nikolov

Department of Mathematics
University of Sofia

5 James Bourchier Boulevard
1164 Sofia, Bulgaria

E-mail: geno@fmi.uni-sofia.bg

16



	Image00295
	Image00296
	Image00297
	Image00298
	Image00299
	Image00300
	Image00301
	Image00302
	Image00303
	Image00304
	Image00305
	Image00306
	Image00307
	Image00308
	Image00309
	Image00310
	Image00311

