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Abstract. Here the Dunkl operators Dy f(z) = dfd(m) + kf(x) — f(—m), k >0, in C'(R)
%

under a nonlocal boundary value condition ®{f} = 0 with an :rbitrary non-zero linear
functional ® in C'(R) are considered. The right inverse operators Ly of Dy, defined by
DyLpf = f and ®{Lxf} = 0 are studied. To this end, the elements of corresponding
operational calculi are developed. A convolution product f * g on C(R), such that Ly f =
{1} * f, is found. Further, the convolution algebra (C(R), *) is extended to its ring My of
the multipliers. (C(R), *) may be conceived as a part of 9; due to the embedding f — fx*.

P
The ring My of multiplier fractions 0’ such that P,Q € My and Q being non-divisor of

zero in the operator multiplication, is constructed.

These operational calculi are used for effective solution of nonlocal Cauchy boundary value
problems for Dunk! functional-differential equations P(Dy)u = f, where ®(Dju) = «; for
j=0,1,2,...,deg P — 1, with given constants ; and a polynomial P. This is done by an
extension of the Heaviside algorithm. The solution of Dunkl functional-differential equations
P(Di) = f in mean-periodic functions reduces to such problems. Necessary and sufficient
conditions for existence of unique solution in mean-periodic functions are found.

The operational calculus, developed here, is a generalization of the nonlocal operational
calculus for Dy = 5= (see Dimovski [5]). In a sense this paper is a continuation of our paper
[6].

Key words: Dunkl operator; right inverse operator; Dunkl-Appell polynomials; convolution;
multiplier; multiplier fraction; Dunkl equation; nonlocal Cauchy problem; mean-periodic
function; Heaviside algorithm
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1 The right inverse operators of Dy in C'(R) and corresponding
Taylor formulae

Let Ly denote an arbitrary right inverse operator of Dy in C(R). First, we consider a special
right inverse Ax of Dy, where y(z) = Agf(z) for f € C(R) is the solution of the equation
Dyy = f(x) with initial condition y(0) = 0.

It is easy to find that

Apf(z) = /Om

where f. and f, are the even and the odd parts of f, respectively .

Indeed, let y(z) = Axf(z) be represented as the sum of its even and odd parts, i.e. ¥ = ye+yo.
Then Dyy(z) = f(z) can be written as

0o+ (4)" ﬁ(t)} , )

2k
?/:: ‘*‘y::+ ?yo = fe+ fo
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Separating the even and the odd parts gives:

2k
Yot —Y = fe
.
Yo = fo
Solving these similtaneous equations and taking into account the condition y(0) = 0 yields

ye(a:)=/ox fo(t)dt  and yo(x)=/0$ (£>2k fe(t)dt.

x

In the general case, an arbitrary right inverse operator Ly of Dy has a representation of the

form
i@ = [ 1o+ (1) o

In order Ly to be a linear operator, the additive constant C' should depend on f and to be a

linear functional {f} in C(R). Hence, an arbitrary linear right inverse operator Ly of Dj in
C(R) has the form

Ly f(z) = Ap f(z) + {f},

with a linear functional ¥ in C(R).

According to the general theory of right invertible operators (Bittner [1], Przeworska-Rolewicz
[12]), an important characteristic of Ly is its initial projector

Ff(z) = f(z) — Le Dy f(z) = ®{f}. (2)

It maps C'(R) onto ker Dy = C, i.e. it is a linear functional ® on C*(R). This identity written
in the form

LDy f(z) = f(z) — ®{f}. (3)

will be used later. Expressing ® by ¥, we obtain
{f} = f(0) - ¥{Dxf}.

Let us note that ®{1} = 1, which expresses the projector property of F'.
Considering the right inverse operator Ly of Dy, it is more convenient to look on Ly f =y as
the solution of an elementary boundary value problem of the form

Dy=f  2{y}=0, (4)

assuming that ® is a given linear functional on C(R) with ®{1} = 1. This restriction of the
class of right inverse operators Ly of Dy is adequate when we are to consider nonlocal Cauchy
problems for Dunkl equations.

The simplest case of such an operator is when @ is the Dirac functional ®{f} = f(0). Then

dt +C.

Lf(@) = Muf@) = [ [fe(t) (E) fo(t)} .

The general solution of (4) is

@ = [ [0+ (2" 0] - o [ [ro+ (

<

)" 1ot . )
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Definition 1. The Dunkl-Appell polynomials { Ay (z)}5%, are introduced by the recurrences
Agko(z) =1, and DyAgnti1(z) = Agn(z), P{Akn+1} =0,n2>0.

Lemma 1. The Dunkl-Appell polynomials have the representation
Apn(z) = LE{1}(z), n=0,1,2,...

where Ly, is the right inverse (5) of the Dunkl operator Dj.

Proof. By induction. If n = 0, then DyAg1(z) = Ago(z) = 1 = LY{1}(z) and therefore
Ag1(z) = Li{1}(z) since ®{Ak} = 0. Now, suppose that the assertion is true for n > 0. Then

Dy Ag n1(2) = LF{1}(z) = Agn(z), @{Akns1}=0.
Hence Apn+1(2) = LAk (z) = Ly LR{1}(z) = LY 1H(=z). [ |

Lemma 2. (Taylor formula with remainder term) If f € C(™(R), then
f(z) = Z@{D YAk (@) + LE(Dg f)(=) (6)

where Ay j(z) = Lfc{l}(x) are the Dunkl-Appell polynomials.

This formula is an analogon of the particular case of the Taylor formula known as the Maclau-
rin formula.

Proof. Delsarte (3], Bittner [1], and Przeworska-Rolewicz [12] give variants of the Taylor for-
mula for right invertible operators in linear spaces. In our case (6) can be written as

n—1
I=> LiFD]+ L}D}
J=0

where I is the identity operator and F' = I — LiDj. In functional form the above equality takes
the form

ZL’FD f(z) + LED} f(z)

Jj=

where the initial projector F' of Ly (2) is the linear functional ®:
Ff(z) = f(z) — Lk Dif(z) = ®{f}.

F projects the space C(R) onto the space C of the constants. Hence the Taylor formula (6) for
the Dunkl operator Dy with remainder term is

Z@D{D FIL{1}(z) + LDy f (). u
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2 Convolutional products for the right inverses L, of Dy
In Dunkl [9], Theorem 5.1, the similarity operator

T+
= PRO(R)T(k + 1) @

1
Vif(z) = bk / @) )ty b

. : . 'y d: %,
is found, which transforms the differentiation operator D = — into Dj:

dz
VieD = Dy V.
Usually this operator is called intertwining operator.
1d
Denoting Sf(z) = 5 j:i(;)’ the inverse V! of Vj (see Salem and Kallel [2]) has the following
representations:

(i) If k = n+ r is non-integer with integer part n = (k] and r € (0, 1), then

ol
Vitf (@) = ek [ICCIS”Jrl {/0 (z* - yz)"”fe(y)y%dy}

o]
+ sign(z)S"t! { / (z* - yz)"fo(y)y%“dy}] Lm0
0

2y
F(n+tr+4)TA-r)
(ii) If k € No = {0,1,2,...}, then

VT
T'(k+3)

where ¢ =

Vi ' f(z) = [28*(z*7! fe(2)) + S* (@ fo(z))], =z #0.

V) transforms C(R) into a proper subspace 5,; = Vi(C(R)) of it. Vj is a similarity from a

right inverse operator A of Dy = o to Li. In order to specify the operator A let us define the

linear functional

D{f} = (®o Vi){f} (8)

in C. Then define A : Cy — Ck to be the solution Y= Af of the elementary boundary value
problem

Doy(z) =¢'(z) = f(z), @{y}=0.

This solution has the form

A = [Ty -8 [ Far}. ©)
Lemma 3. The following similarity relation holds

Vil = L V.
Proof. Applying Vi to the defining equation D(Af) - f, one obtains

ViD(Af) =Vif=f
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or
Dy(ViAf) =W f = f.

In fact, the boundary value condition O{Af} = 0 can be written as ®{V4xAf} = 0. Hence
u = VkAf is the solution of the boundary value problem Dyu = f, ®{u} = 0, i.e. v = Lif.
Therefore

VAV f =Lef  or  VeA = LiVi. i

The similarity relation (3) allows to introduce a convolution structure * : C(R) x C(R) —
C(R), such that Ly to be the convolution operator Ly = {1} in C(R).

The operator A is defined not only in Cy, but in the whole space C(R). This allows to
introduce a convolution structure % : C(R) x C(R) — C(R).

Lemma 4. The operation
() =8{ [ T+t ngryir} (10)

is an inner operation in Cy = Vi (C(R)) such that
Af = {1)5]. (11)
It satisfies the boundary value condition :I;{f* g} =0 for arbitrary f and g in C(R).

The proof of the first part follows directly from the explicit inversion formula for Vj (see Salem
and Kallel [2], Theorem 1.1). The second relation (11) is obvious. The proof of &{ fxg)=0is
also elementary (see Dimovski [4], p. 54).

Theorem 1. The operation

f g = Di"Vil(Vi LR ¥V Lig)) (12)
where n = (k| is the integer part of k is a convolution of Ly in C(R) such that

Lif ={1} * f. (13)
and satisfying the boundary value condition ®{f * g} = 0 for arbitrary f and g in C(R).

Proof. The assertion of the theorem follows from Lemmas 4 and 3 and a general theorem of
Dimovski (4], Theorem 1.3.6, p. 20. This convolution is introduced in Dimovski, Hristov and
Sifi [6). |

From (13) it follows that
Lpttf = {Aga} * f,

where Ay, is the Dunkl-Appell polynomial of degree exactly n. This allows also to state the
Taylor formula (6) with remainder term in the Cauchy form:

Lemma 5. If f € C™(R), then

n—-1

= 5" ®{D]}Anj(@) + (Ak a1 * DE) (),

§=0

where A ;(z), j =0,1,2,...,n— 1, are the Dunkl-Appell polynomials Ay ;(z) = Lfc{l}.
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3 Mean-periodic functions for D; determined by a linear func-
tional

The notion of mean-periodic function for the differentiation operator —, determined by a linear
functional ® in C(R), is introduced by J. Delsarte [3]:

A function f € C(R) is said to be mean-periodic with respect to the functional ® if it satisfies
identically the condition

O {f(t+7)}=0. (14)

In order to define mean-periodic function for the Dunkl operator Dy we need to remind the
definition of the Dunkl translation (shift) operators, introduced by M. Résler [13]. They are a
class of operators M : C(R) — C(R) commuting with Dy in C*(R).

Definition 2. Let f € C(R) and y € R. Then (T} f)(z) = u(z,y) € C'(R?) is the solution of
the boundary value problem

Dk,zu(xay) = Dk,yu(m’y)) u(wl 0) = f(.’B) (15)
Tf: is called the translation operator for the Dunkl operator Dy,.

Such a solution exists for arbitrary f € C(R) and it has the following explicit form (see e.g.

(13}, [2]):

T'(k+3)

(k)T (3)

o+ / Jo (\/m2 + y2 — 2|zy| cos t) h"(m,y,t)sin%'ltdt] .
0

T} f () [/0 fa (\/a:2 + 92 — 2|zy| cos t) he(z,y,t)sin?* 1 tdt

As usually, the subscripts “e” and “0” denote correspondingly the even and the odd part of a

function: fe(z) = w,ﬂ,(z) = w As for h¢(z,y,t) and h°(z,y,t), they
denote respectively
hé(z,y,t) = 1 - sign(zy)cost,
1 —si i~
eIV SIS oy (g,9) £ (0,0),
h°(z,y,t) = V22 +y2 — 2|zy| cost
0 otherwise.

Lemma 6. The translation operators satisfy the following basic relations:

(i)  T¥f(z) = T¢ f(y) (16)
(i)  TYTEf(2) = TETy f(2) (17)
(iii)  DroTy f(z) = TY Dyof(z). (18)

Proofs can be found in various publications, in particular, in our paper [6].
A natural extension of the notion of mean-periodic function for the Dunkl operator is proposed
by Salem and Kallel [2]. Instead of (14) they use the condition

o, {T/f(z)} =0 (19)

to define mean-periodic function f for Dy with respect to the functional ®. Here T} is the
generalized translation operator just defined. The notation M Pg will be used for the spaces
of these mean-periodic functions in C(R) without using additional subscript k for the sake of
simplicity.
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Lemma 7. If f € MPg, then Lyf € M Pg.

Proof. Denote ¢(z) = ®{T}Lif(z)} and use the commutation relation (18) from Lemma 6
Dy T} f(z) = T§ Do f(2) to obtain

Dyp(z) = @ {DxTiLif(z)} = @{Ty DiLi f(z)} = @{Tf ()} = 0.

Hence ¢(z) = C = const. But ¢(0) = ®,{T}Lxf(0)} = ®{TPLif(t)} = ®{Lxf(t)} = 0. Hence
C=0. B

Further we will be interested in the solvability of Dunkl differential-difference equations
P(DgJu=f (20)

with a polynomial P in the space of the mean-periodic functions M Py, defined by (19). We
intend also to propose an algorithm for obtaining such solutions.

To this end we are to develop an operational calculus for Dy in C(R) and to extend the
Heaviside algorithm for it. The following result plays a basic role in the application of this
algorithm for solution of Dunkl equations in mean-periodic functions.

Theorem 2. The class of mean-periodic functions M Py is an ideal in the convolutional algebra
(C(R), ), i.e. if f € MPgp and g € C(R), then f xg € MPs.

Proof. Assume that f € M P, i.e.
DTt f(z)} = 0.

From Lemma 7 it follows that LZ“f € MPg forn=0,1,2,..., ie.
BTLLI f(2)} = 0.

Since Lxf = {1} * f, then L;‘“f = Agn * f, where the Dunkl-Appell polynomial Ay, is of
degree exactly n. We have

O {Ti(Akn * f)(2)} =0
and then we can assert that
B {T(P * f)(z)} =0
for any polynomial P. By an approximation argument it follows that
O {Tx(9* f)(z)} =0
for arbitrary g € C(R), i.e. that g x f € M Ps. [ |

4 The ring of multipliers of the convolutional algebra (C(R), %)

The convolutional algebras (C(R),*) with convolution product (12), are annihilators-free (or
algebras without order in the terminology of Larsen [10], p. 13). This means that in each of
these algebras f * g =0, Vg € C(R), implies f = 0.

Definition 3. An operator A : C(R) — C(R) is said to be a multiplier of the convolutional
algebra (C(R), ) iff

A(f*xg)=(Af)*g (21)
for arbitrary f,g € C(R).
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As it is shown in Larsen [10], it is not necessary to assume neither that A is a linear operator,
nor that it is continuous in C'(R). These properties of the multipliers follow automatically from
(21). Something more, a general result of Larsen [10], p.13, implies

Theorem 3. The set of the multipliers of the convolutional algebra (C'(R), *) form a commuta-
tive ring M.

The simplest multipliers of (C'(R), *) are the numerical operators [a] for a € C, defined by

[a)f = af, VfeC(R), (22)
and the convolutional operators f* for f € C(R), defined by
(f*)g=f=*g, VgeC(R). (23)

Further we need the following characterization result for the multipliers of (C(R), %):

Theorem 4. A linear operator A : C(R) — C(R) is a multiplier of (C(R), *) iff it admits a
representation of the form

Af = Dg(m * f), (24)
where the function m = A{1} is such that m * f € C1(R) for all f € C(R).

Proof. Let A : C(R) — C(R) be a multiplier of (C(R), *). The operator Ly f = {1} * f is also
a multiplier. Then, according to Theorem 3,

ALy = L A.
Applying A to L f = {1} = f, we get
LyAf = ALpf = A({1} = f) = (A{1}) * /.
The identity
Ly(Af) =mx f (25)

with m = A{1} is possible only if m % f € C*(R) for each f € C(R). It remains to apply Dy to
(25) in order to obtain (24).

Conversely, let A : C(R) — C(R) be the operator defined by (24), i.e. Af = Dy(m * f),
where m € C(R) is such that m * f € C*(R) for all f € C(R). Then

A(f * g) = Di(m * (f * g)) = Di((m * f) * g).
But m x f = LgDg(m * f) due to formula (3) since ®(m * f) = 0 by Theorem 1. Then
A(f % g) = DiLg[Dr(m = f) x g] = (Af) x g.
Hence A is a multiplier of the convolution algebra (C(R), ). |

The specification of the function m = A{1} is, in general, a nontrivial problem even in the

case of the simplest Dunkl operator Dy = o (the usual differentiation). This could be confirmed
by the following two examples:

Example 1. If ®{f} = f(0), then m is a continuous function of locally bounded variation, i.e.
m € BV NC(R) (see Dimovski [4], p. 26).

Example 2. Let ®{f} = fol f(z)dz. Then m € C(R) can be arbitrary.

Corollary 1. Let M : C(R) — C(R) be an arbitrary multiplier of the algebra (C(R),*). Then
M(MPg) C MPg, i.e. the restriction of M to M Py is an inner operator in M Pg.

Proof. Let f € MPg. Since MPy = Di(m x f) with m = M{1}, then, by Theorem 2,
m# f € MPp N CY(R). Then Dx(m * f) € M Ps, i.e. f € MPg implies M f € M Pg. |
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5 Nonlocal operational calculi

Our aim here is to develop a direct operational calculus for solution of the following nonlocal
Cauchy problem for the operator Dy: Solve the equation P(Dy)u = f with a polynomial P and
a given f € C(R) under the boundary value conditions ®{Dju} = v, 7 =0,1,2,...,deg P - 1,
where a; are given constants and ® is a nonzero linear functional on C(R).

This is a special case of the problems considered by R. Bittner (1] and D. Przeworska-Rolewicz
(12] for an arbitrary right invertible operator D instead of Dj.

Our intention here is to propose constructive results and to obtain an explicit solution of the
boundary value problems considered. This is done by means of an operational calculus essential
part of which is an extension of the Heaviside algorithm.

This operational calculus is developed using a direct algebraic approach based on the con-

volution (12). Instead of Mikusinski’s method [11] of convolutional fractions g, we follow an

A
alternative approach of multiplier fractions B where A and B are multipliers of the convolution

algebra (C(R), *) in the ring of the multipliers My, i.e. A, B € My and B is a non-divisor of
zero in the operator multiplication. :

The nonlocal Cauchy problems arise in a quite natural way when we are looking for mean-
periodic solutions of Dunkl equations. Each mean-periodic solution of the equation P(Dy)u = f
satisfies the homogeneous boundary value conditions @{Diu} =0,7=0,1,2,...,deg P—1 and
it may be obtained explicitly.

Let us consider the ring 9% of the multipliers of the convolutional algebra (C'(R),*). The
correspondence « +— [a] is an embedding of C into ;. The correspondence f — fx* is an
embedding of (C(R), *) in 9. Hence, we may consider C and C'(R) as parts of 9.

My, is a commutative ring (Theorem 3). The subset Ny of My, consisting of the non-zero
non-divisors of zero with respect to the operator multiplication in 9, is nonempty. Indeed, at
least the identity operator I and the right inverse Ly of Dy belong to M. In addition, 91 is a
multiplicative subset, i.e. if A, B € M, then AB € M.

Consider the Cartesian product

M x N = {(A4,B) : A € M, B € Ny}
and introduce the equivalence relation
(A,B)~ (A',B') & AB' = BA'. (26)

Definition 4. The set My = My x Ni/~ obtained by factorization of My x Ny with respect
to the equivalence relation (26) is said to be the ring of multiplier fractions.

M. may be considered both as an extension of the field C of the complex numbers and of
the ring (C(R), *). Formally, this is seen by the embeddings
(o]

oo and f'—>l}>i

In the sequel we denote the identity operator I simply by 1. The multiplication operation of
the two elements P and @ in My will be denoted simply by PQ. Therefore, instead of f*g we
will write fg.

For our aims the most important elements of My are

L= {1} and Sk:LL.
k
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The fraction Sy with the identity operator as numerator and with Ly as denominator will be
called algebraic Dunkl operator. Its relation to the ordinary Dunkl operator Dy is given by the
following theorem:

Theorem 5. Let f € C'(R). Then
Dif = Skf — @{f}. (27)
Note that identity (27) should be interpreted as
(D f)* = Si(f*) — [2{f},

where (Dgf)* and (f*) are to be understood as convolution operators and [®{f}] as the nu-
merical operator determined by the number ®{f}. Sy is neither convolutional nor numerical
operator, but an element of M.

Proof. In Section 1 (equality (3)) we have seen that
Lkaf = f 35 q){f}i

where ®{f} is the corresponding constant function {®{f}}. Considered as an operator identity,
this can be written as (LD f)* = f * —{®{f}}* or Lg[Dk(f*)] = f * —®{f}.Ly. Hence

Lp(Dif)x = (f*) — {f}Ly.
It remains to multiply by Sk to obtain (27). |

Relation (27) may be characterized as the basic formula of our operational calculus. Using
it repeatedly, we obtain

Corollary 2. Let f € C™(R). Then

n—1
Dpf=Spf—> {Difysp=~". (28)
3=0

Remark 1. The last formula is equivalent to the Taylor formula (6) in Section 1.

By means of (27) and (28) it is possible to “algebraize” the nonlocal Cauchy boundary value
problem

P(Dy)u = f, @{Dju}=cv-,j=0,1,2,...,m-—1,
k J

where P(\) = apA™ + A b amo1 A+ am, ag # 0, and @ is a non-zero linear functional
on C'(R).

Definition 5. The problem for solving the Dunkl functional-differential equation
P(Dg)u=f, feC(R)

under the boundary value conditions
®{Diu} =aj, j=0,1,2,...,m—1

is called a nonlocal Cauchy problem determined by the functional ®.
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The simplest nonlocal Cauchy problem for Dy, determined by a linear functional ® in C(R)
concerns the functional-differential equation

Diu(z) — Mu(z) = f(z) (29)

with the boundary condition ®{u} = 0.
It is known that the solution of the homogeneous equation

Dru(z) — Au(z) =0

under the initial condition u(0) =1 is

. . AT .
ug(Az) = ]k_%(z/\m) + 2k—+-—1-jk+%(1/\23) (30)

(see Salem and Kallel (2], p.161), where j,(z) denotes the modified (normalized) Bessel function

Ja(z)

el

ja(z) = 2°T(a + 1)

z # 0 and j,(0) = 1.

We introduce the Dunkl indicatrix of the functional ® as the following entire function of
exponential type:

BN = {100} = B¢ {00 + 525y (1) | (31)

The linear operator Ly ) defined as the solution u(z) = Ly f(z) of the nonlocal Cauchy
boundary value problem

Diyu—Mu=f, ®{u} =0,

is said to be the resolvent operator of the Dunkl operator under the boundary value condition
P{u} = 0.

Theorem 6. The resolvent operator Ly 5 admits the convolutional representation

u(Az)
Er(N)

Liaf(z) = Le(X z)  f(z), where () z)= : (32)

Proof. We will use the formula

Di(f *g) = (Drf) * g+ ®{f}g

which is true under the assumption f € C'(R). It follows from a more general result of Dimovski
(4], Th. 1.38, but in our case it can be verified directly. It gives

Di{lr(A, ) * f(z)} = Dili(X, ) * f(z) + Re{le(X, €)}f (2) = MUk(A, 2) * f(2)} + f(2).

Hence u = {lx(A,z) * f(z)} satisfies the equation Dyu — Au = f. It remains to verify the
boundary value condition ®{u} = 0. But it follows from the basic property ®{f x g} = 0 of the
convolution (Theorem 1). [ ]

The resolvent operator Ly exists for each A with Ex(A) # 0. The zeros of E(\) are the
eigenvalues of the boundary value problem Dyu— Au = 0, ®{u} = 0. They form an enumerable

set {A1, A2, ..., An,...} except in the case when ® is a Dirac functional ®{f} = f(a), when
E()) # 0 for all X € C.
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It is easy to find the solution of our problem in M. Using the basic formula of the operational
calculus (see Theorem 5), we have Dyu = Sgu since ®{u} = 0, and then

Sku—Au=f or (Sk—ANu=f.
In order to write the solution

1
S - /\f

we must be sure that S, — A is non-divisor of zero.

u

Lemma 8. S — A is a divisor of zero in My iff Ex()\) = 0.

Proof. Let S — A be a divisor of zero in M. Then there exists a multiplier fraction — such

B
that A # 0 and
A
(Sk i /\)—E = 0,

which is equivalent to (S — A)A = 0. Since A # 0, then there is a function g € C(R) such that
Ag =v # 0. Then .

(Sk — /\)’U = 0.
Multiplying by Ly we get
(1=ALg)v =0 or v — ALgv = 0.

Since ®(Lv) = 0 by the definition of Ly (Section 1), then ®{v} = 0.

Applying Dy, we get Dyv — Av = 0, ®{v} = 0. According to Salem and Kallel [2], all the
non-zero solutions of Dyv — Av = 0 are v = C(jk_%(i)\m) + m;\%jk+%(i/\x)) with a constant
C # 0. The boundary value condition ®{v} = 0 is equivalent to Ex(A\) = 0.

Conversely, if Ex(A) = 0, then there exists a solution v # 0 of the eigenvalue problem
Div — A =0, ®{v} = 0. For this v we have

(Sk—=ANv=0
and hence S; — A is a divisor of zero in M. |

Theorem 7. Let A € C be such that Ex(\) # 0. Then

Skl_ - = ()b = E:W {jk_é(i/\z) & élg\—i—lijr%(iAz)} i (33)

Proof. We have seen that

Lpaf(z) = {le(M z)} = f.
But for the solution w = Li ) f of the boundary value problem Dyu — Au = f, ®{u} = 0, in the
case Ex(A) # 0 we found

1
T Sk — )\f'
Since the convolution * is annihilators-free, then (33) follows from the identity

1
5o/ = Uzl + £ u

Corollary 3. If Ex(\) # 0, then

1 1 8m-—1
Sk — 2™ {(m —1)! 6)\'"-1lk('\’m)}} o (34)

U
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6 Heaviside algorithm for solving nonlocal Cauchy problems for
Dunkl operators

Now we are to apply the elements of the operational calculus developed in the previous section
to effective solution of nonlocal Cauchy boundary value problems of the form

P(Diu= f, @(Dku) =aqaj, j=0,1,2,...,degP — 1, (35)

with given «; € C.

To this end we extend the classical Heaviside algorithm, which is intended for solving initial
value problems for ordinary linear differential equations with constant coefficients to the case of
Dunkl functional-differential equations.

The extended Heaviside algorithm starts with the algebraization of problem (35). It reduces
the problem to a single algebraic equation of the first degree in M.

Let P(A\) = aoA™ + ayA\™ ! + -+« + aj—1 A + ap, be a given polynomial of m-th degree, i.e.
with ag # 0.

The consecutive steps of the algorithm are the following:

1) Factorize P()) in C to

P(A) =ao(A = 1) (A = p2)™® ... (A — )™,

where p, po, ..., us are the distinct zeros of P(A) and s, 3g,. .., are their corresponding
multiplicities.

2) Represent each of the terms of the equation by the the algebraic Dunkl operator Si. This
is done by the formulae

chu = S,JCU - S,Jc._la() — Si—zal e AR Skaj._z - Q-1 , j = 1,2, R 11
Thus we obtain the following equation in My:
P(Sk)u= f+Q(Sk), degQ <degP, (36)
with
m—1m—j—1 ) m—1 /m—pu-—1
Sk) = Z Z aja[S,Tcn_J_l_l = Z ( Z auam-p—-u——l> S;:
j=0 1=0 pu=0 \ v=0

3) Verify if P(Sk) is a non-divisor of zero in My, by checking if Ex(p;) # 0forall j =1,2,...,s.
4) If P(Sk) is a non-divisor of zero, then write the solution u in Mj:

Q(Sk)
(Sk)f 3 P(Sk)

1 Q(Sk) . : .
d t tial fract :
5) Expand BiSy) an P(Sy) into partial fractions
j=1 =1

L]

ZZ

]lll

Sk — /‘J)l
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6) Interpret the partial fractions as convolution operators

- S U B R
© Bilw) {“—%(”‘ﬂ) ! mm%wm} y

1 1 0
= k(A z g e 2 By
(5~ ) {(l —y k) A} *

7) Write the convolutional representation

= ~inial _ Q(Sk)
uw(z) = (G * f)(z) + R(z), where G = FS)’ 7= PSy)

Example 3. Let P()) has only simple zeros py, po, ..., tm. Then

1 = 1 1 i
P(Sk) _ZPI(#j)'Sk":u'j £ {;

I

lk /LJ’:B) *

and

Then the solution u takes the functional form

Z P/ lk(:“']) f() +Z P’ k(K> 2).

The result of this section can be summarized in the following

Theorem 8. The nonlocal Cauchy problem (Definition 5) for a Dunkl equation P(Dg)u = f
has a unique solution in C(™(R), m = deg P, iff none of the zeros of the polynomial P()\) is a
zero of the indicatriz Ex(X), i.e. when

(A: PN =0}N{\: Ex(\) =0} =0

Remark 2. The term “nonlocal” should not be understood literary The assertion of Theorem
8 is true also when ® is a Dirac functional, i.e. ®{f} = f(a) for a € R. For us the most

interesting is the case ®{f} = f(0). Then Ex()\) =1 and from the theorem it follows that the
initial value problem

P(Di)u=f, u(0)= ao,(Dxu)(0) = en,..., (DR 4)(0) = an-1,

always has a unique solution. We will use this fact in the following section.

7 Mean-periodic solutions of Dunkl
equations

Theorem 9. A function u € M Py N C™(R) is a solution of the Dunkl equation P(Dy)u = f,
provided f € M Py and w is a solution of the homogeneous nonlocal Cauchy problem

P(Dy)u=f, ®{Dju}=0, j=0,1,2,...,m—1, m=degP.
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Proof. The condition f € M Py is necessary for the existence of a solution u € M Pg. Assume
that a function u € M Py N C(™(R) is a solution of the Dunkl equation P(Dg)u = f. Then
mean-periodic are all the functions D,qu, 7=0,1,2,...,m—1,ie.

o {T¢YDlu(z)} =0, (37)

since the operator Af(z) = ®,{T} f(z)} commutes with D) (Dimovski, Hristov, and Sifi [6]).
For z = 0 from (37) we get

®,{TYDlu(0)} = 0.
But T,i’Diu(O) = T?D}u(y) ((16), Lemma 6) and hence
&{Dlu} =0, §=0,1,2,...,m—1. (38)

In order to prove that a solution u of P(Dx)u = f with f € M Pg, which satisfies conditions
(38), is a mean-periodic function, we consider the function

v =0, {TYu(z)} = Au.

Since the operator A commutes with Dy, then applying it on the equation P(Dg)u = f, we get
P(Dy)v =0 due to Af = 0. It remains to find the initial values D}v(0), j =0,1,2,...,m - L:

Div(0) = ADJu(0) = &, {TY Diu(0)} = &, {TL Diu(y)} = ®,{Dju(y)} = 0.

At the end of the previous section we have seen that the initial value problem P(Dy)v = 0,
D}v(0) =0, j=0,1,2,...,m — 1, has only the trivial solution v(z) = 0. Thus we proved that
®,{TYu} =0, i.e. u is mean-periodic. |

Now we can use operational calculus method for solving nonlocal Cauchy problems for Dunkl
equations to find explicitly the mean-periodic solutions of such equations.
To this end, we are to solve the homogeneous nonlocal Cauchy boundary value problem

P(Dy)u=f, @®{Diu}=0,=0,1,2,...,m—1, (39)
with f € M Ps.

In the ring My of the multiplier fractions it is reduced to the single algebraic equation for u

P(Sk)u = f. (40)

As we have seen in Section 5, P(S) is a non-divisor of zero in My iff none of the zeros of the
polynomial P()) is a zero of the Dunkl indicatrix Ex(A). If P(S) is a divisor of zero, then, in
order to ensure the existence of solution of (40) and thus of (39), additional restrictions on f
should be imposed. This is the so called resonance case, which we will not treat here.
Thus, let P(Sk) be a non-divisor of zero in Mg, i.e. {A: P(A) =0} N{\: Ex(\) =0} = O.
Then the formal solution of (40) in My
L

P(Sk)

can be written in explicit functional form. Using the extended Heaviside algorithm of Section

1 :
6, we represent ——— as a convolutional operator

P(Sk)
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Then
u=Gx*f _ (41)

is the desired mean-periodic solution of the Dunkl equation P(Dg)u = f. The verification is
straightforward. Indeed, G * f € M Py according to Theorem 2, since f € M Ps.

Our considerations of the problem for solving Dunkl equations in mean-periodic functions
can be summarized in the following

Theorem 10. A Dunkl equation P(Dy)u = f with f € M Pg has a unique solution in M Py iff
none of the zeros of the polynomial P()) is a zero of the Dunkl indicatriz

Ay Aw
Ex(\) =@ {jk_%(l)\.’r) 3 mjk_*_%(l/\x)} .

In the end, it is possible the Duhamel principle to be extended to the problem for solving
Dunkl equations in mean-periodic functions.

Theorem 11. Let H(z) be the solution of the homogeneous nonlocal Cauchy problem P(Dy)H =
1, @{DiH} =0,7=0,1,2,...,m—1. Then

u= Di(H * f)

is a mean-periodic solution of the Dunkl equation P(Dy)u = f with f € M Pg.
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