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Classical Hermite and Laguerre polynomials
and the zero-distribution of Riemann’s (-function

PETER RUSEV

Abstract. Necessary and sufficient conditions for absence of zeros of the
function ((s),s = o + it, in the half-plane 0 > #,1/2 < 0 < 1 are proposed
in terms of representations of holomorphic functions by series in Hermite
and Laguerre polynomials as well as in terms of Fourier and Hankel integral
transforms.

1. Representation of holomorphic functions by series of
Hermite and Laguerre polynomials

The region of convergence of a series in Hermite polynomials

(1.1) Y GnH(2),

as it is pointed out by G. Szegd [14, 9.2, (5)], is a strip symmetricaly situated
to the real axis. More precissely, let

(1.2) 7o = max{0, — limsup(2n + 1)~/2log(2n/e)"/?|a,|},

n—o0

then:

If 7o = 0, then the series (1.1) diverges in the open set C\R. If0 < 7, <
0o, then it is absolutely uniformly convergent on each compact subset of the
strip S(mp) := {2 € C : |(2)| < 7o} and diverges in the open set C \ S(r).

The equality (1.2), which can be regarded as a formula of Cauchy-Hada-
mard type for series in Hermite polynomials, is a corollary of the asymptotic
formula for these polynomials in the complex plane [14, Theorem 8.22.7].

The C-vector space H(79),0 < 79 < 0o of holomorphic functions, having
an expansion of the kind (1.1) in the strip S(7), is completely described by
E. Hille [4]. In fact, he proved the following assertion:

Let 0 <7 < 00,5(7) := {2z € C: |Qz| < T and define
(13)  n(riz,y) =2%/2—|a|(r* - ), 2=z +iyeS(r).

Then, a complex function f is in the space H(7) if and only if for each
7 € [0, 7) there exist a positive constant H(f, ) such that

(1.4) 1f(2)] = f(@+aiy)| < H(f,7)exp(n(T;2,y)), z=z+1iy e S(r).
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Moreover, if (1.1) is the Hermite polynomial expansion of the function f
in the strip S(7), then

o.¢]

(15)  ay = (Jrn12")! / exp(—22) Ho(2)f(z) dz, n =012, ...

—00

The region of convergence of a series in Laguerre polynomials is the inte-
rior of a parabola with focus at the zero-point and vortex at a point of the
real and negative semi-axes [14, 9.2. (5)]. More precissely, let

(1.6) Ao = — limsup(2y/n) ! log |a,| > 0

n—o0o

and « be an arbitrart complex number, then:

The series
(1.7) > an L) (2)
n=0

is absolutely uniformly convergent on each compact subset of the region
(1.8) A) ={z€C:R(-2)/? < Ao}

and diverges outside it [6, (IV.2.1)].

Let us note, that if 0 < Ay < oo, then A(Ag) is just the interior of the
papabola with focus at the origin and with vortex at the point —\%, and that
A(oco) = C.

Let P ()g),0 < Ay < 0o be the C-vector space of even complex-valued
functions which are holomorphic in the strip S(\o) and have there a repre-
sentation by a series of the kind

(1.9) Z an L{®) (22).

The growth of the functions in the space PO ()) is determined first by H.
Pollard [5, THEOREM A] by means of Hille’s function (1.3). In fact, Pollard
proved that:

A complex-valued function f, holomorphic in the strip S(\),0 < ), <
00, is in the space PO (\o) if and only if to each X € [0, Ao) there corresponds
a positive constant A(f, \) such that for each z = = +1y € S()),

(1.10) 1£(2)] = |f(z +1dy)| < A(f,N) exp(n(X; 7, 7).



0. Szazs and N. Yeardly generalized Polard’s criterion by showing that it
holds for each & > —1 [13, THEOREM A)]. This means that the space P(®)(),)
does not depend on a > —1. Hence, it can be denoted by P(Ag) only.

Let £()g),0 < Ag < oo be the C-vector space of complex-valued functions
f, holomorphic in the region A()), with the property that for each A €

[0, \o) there exists a positive constant M (f, A) such that for each z € AN =
{z € C: R(—2)"2 < A},

(1.11) 1f(2)] = |f(z +iy)| < M(f, Np(X;z,y),
whe‘re
(1.12) e(A;z,9)
1/2
L x2+4y2+x_[ x2+2y2+x</\2_\/m—2?—m)]

Since the image of the strip S(A¢) under the mapping z — 22 is the
region A(})g), the following assertion holds true:

A complex function f, holomorphic in the region A()\),0 < A < oo is
representable in this region by a series in Laguerre polynomials with param-
eter o > —1 if and only if it is in the space L(Ag). Moreover, if (1.7) is the
Laguerre polynomial expansion of the function f in the region A()\,), then

L(n+1)

b ™ 2% e () L@ i
(1.13) a, I‘(n+a+1)/0 2% exp(=2) Ly (2) f(z) dzy- n=0,1,2,

Remark. Let A, = {z € C: Rz =k+1/2,2z # k+1/2},k € Z
‘and A = |Jycz Ar- Then, the above assertion remains true provided the
parameter « € C\ A [6, (V.3.6)]. :

There is another approach to the problem of expansion of holomorphic
fuctions in series of Laguerre and Hermite polynomials. Namely, the integral
representations

—a/2 (o]
(114) L() = 22 / P e (I T (VR = 01,2, ..,
. 0
and
A\ 2 (e8]
(L15) Ha(z) = 2n(—")nlexpz / t" exp(—t2 + 2izt)dt, n=0,1,2,...
: —00



give rise to "translate” this problem in the language of Hankel and Fourier in-
tegral transforms. The role of ”mediator” is playing by the class G(7), —oo <
v < oo of entire functons G such that

(1.16) limsup(2y/ful)~* (log |G (w)] — [w]) < 7.

|w|—o00

Evidently, the class G(vy) consists of the entire functions G such that the
estimate

(1.17) G(w)| = O(exp |w| = 2(y — 6)\/[w]), weC

holds whatever the positive d be. Hence, G is a C-vector space.

Closely related to G(v) is the class £(y), —0o < 7y < 0o of entire functions
E such that

(1.18) lim sup(2|w|) ™ (log | E(w)| - [w|*) < —.

|w|—00

It is quite easy to prove that an entire function E is in £(7) if and only
if it has the form

(1.19) E(w) = U(w?) +wV(w?), weC,

where the entire functions U and V are in the class G(vy). Indeed, if E has

the form (1.19), then (1.18) is a corollary of (1.16). Conversly, if E satisfies
(1.18), then we define

U(w) = (1/2)(B(w'?) + BE(-w'?))

and
V(w) = (1/2)w™*(Ew'?) - E(-w'/?)).

Furthermore, the entire functions U,V are in the class G(v) and
E(w) = U(w?) + wV(w?),w € C.

The role of the spaces G(v) and £(vy) is cleared up by the following asser-
tions:

A complex function f, holomorphic in the region A(X),0 < )y < o0,
has an expansion in this region in a series of Laguerre polynomials with
parameter o > —1 if and only if it admits the representation

(1.20) f(2)=2"%expz /000 t/2 exp(—t)G(t) Ja(2V/ 2t) dt
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in the region z € A(X) \ (A2, 0] with a function G € G(\y) [7, Theorem 1; 8,
THEOREM V; 6, (VI.1.3)].

A complex function f, holomorphic in the region S(7p),0 < 79 < 00, has

an expansion there in a series of Hermite polynomials if and only if it admits
the representation

(1.21) f(z) \/_/ (t) exp{—(t — iz)*} dt,z € S(7)

with a function E € (1) [6, (V1.4.1); 8, THEOREM VI].
Remark. The asertion [6, (VI.1.2)] is a criteron the power series

oo

(1.22) > () agw”

n=0

to define an entire function of the class G(7y). I states that this is the case if
and only if

(1.23) limsup(2v/n) ! log |a,| < —7.

n—00

Futhermore, the above criterion and Stirling’s formula yield that the
power series (1.22) defines an entire function of the class £(y) if and only if

(1.24) lim sup(2n)~" log(2n/e)"?|a,| < —7.

n—roo

2. Holomorphic extension by means of series in
Laguerre and Hermite polynomials

For a complex-valued function f, defined on an interval (a,b), —oo <
a < b < oo of the real line is said that it is holomorphically extendable in
the complex plane if there exist a domain D C C and a function F' which
is holomorphic in the region D and such that F(z) = f(z) a.e. (almost
everwhere) in (a,b). Evidently, the uniqueness of the holomorphic extension
F'is a direct consequence of the identity theorem for holomorphic functions
of one complex variable.

Sufficient conditions for existence of holomorphic extensions of complex
functions of a real variable in terms of Jacobi, Laguerre and Hermite polyno-
mials are given in the paper [9] as well as in CHAPTER V of the monograph
[6]. The assertions we need further are the following:



Suppose that for a mesurable complex-valued function b, defined on the
interval (0,00), there exist > 0,0 < 1 and o > —1 such that the function
exp(—dz)b(z) is essentially bounded on the interval (r,c0) and, moreover,

(2.1) /r z%|b(z)| dz < co.

0
If
Xo(b) = — limsup(2y/n) " log |b{® (b)| > 0,

n—o00

where
(2.2) b (b) = / z® exp(—z) L (z)b(z) dz, n=0,1,2,...,
0

then b has a holomorphic extension. More precisely, there exists a function B
holomorphic in the region A(Ag(b)) and such that B(x) = b(z) a.e. in (0, 00).
Moreover, for each A € [0, A\g(b)) there exists a positive constant M (b, \) such
that

(2.3) |b(z)] < M(b,\) exp(z/2 — A\V/z) a.e. in (0,00).

Suppose that for a mesurable complex-valued function ¢, defined on the
real line, there exist > 0 and § < 1 such that the function exp(—dz?)c(z)
is essentially bounded for |z| > r and, moreover

/ ol
If 7o(g) = — limsup,,_, . (2n + 1)"2log(2n/e)"/?|c,(c)| > 0, where

(2.4) eale) = /oo exp(—?)Hy(z)c(z)dz, n=0,1,2,...,

—00

then ¢ has holomorphic extension. More precisely, there exists a complex-
valued function C' which is holomorphic in the strip S(79(g)) and such that
C(z) = ¢(z) a.e. in (—00,00). Moreover, to each T € [0,7(g)) there corre-
spond a positive number N(c,7) such that

(2.5) le(z)| < N(c,7)exp(z?/2 = 7|z]) ae. in (—o0,00).

In order to prove the first of them we define the complex-valued function
B by

(2.6) B(z) = i %"—tﬂ—bﬁl“’ (D)L (2),



Then, Stirling’s formula yields that

—limsup(2v/n) "' log |(T'(n + 1) /T(n + a + 1))b (b)| =

n—o0

— lim sup(2v/n) " log |6 (b)| = Ao (f).

Hence, the series in (2.6) converges absolutely uniformly on each compact

subset of the region A(Ag(b)), i.e. the function B is holomorphic in this
region. Futhermore,

(2.7) / B®(z)L®(z)dz =0, n=0,1,2,...,
0
where
(2.8) B@(z) = z*exp(—z)(B(z) — b(z)), 0<z < oo.
Indeed,
/ B@®(z) L\ () dz
0

['(n+1) £
Lo N RS )i p () / &t s (a) 2. pla) _ L
'n+a+1)* Jy 2% exp(—a){L5"(2)} dz—b =0, n=0,1,2,....

Since degLﬁf‘) = na # -1,-2,-3,...n = 0,1,2,..., the system of
Laguerre polynomials with parameter > —1 is linearly independent. Hence,

it is a basis in the space of the algebraic polynomials with real coefficients.
Then, from equalities (2.7) it follows that

(2.9) / B@(z)z"dz =0, n=0,1,2,....

0

Let B (z) be the Fourier transform of the function B(®(z), i.e.
(2.10) B@(w) = / B®)(z) exp(—iwz) dz.
0

There is a positive constant D such that the inequality |b(z)| < D exp(dz)
holds a.e. in the interval (r,00). Since the function B is in the space L(Ao(b)),
from (1.12) it follows that |B(z)| < M (b,0) exp(z/2) for z € [0,00). Hence,
|B@ ()| < Qexp(—(1—¢)z) a.e. in (r,00) where @ = max{M (b,0), D} and
g = max(1/2,6). Therefore, the integral in (2.10) is uniformly convergent on
each closed strip 5(7) = {w € C : |[Sw| < 7} with 7 € [0,1 — g), i.e. the
function B@ is holomorphic in the strip S(1 — ¢). Furtermore, because of
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the equalities (2.9), this function and each of its derivatives vanishes at the
point w = 0. Hence, the function B(® is identically zero and the uniqueness
property of Fourier transform yields that B® ~ 0, ie. B@)(z) = 0 a.e.
in (0,00) which immediately gives that B(z) = b(z) a.e. in (0,00). Since
(A x,0) = /2 — A/ for z € [0,00), (2.3) is a consequence of (1.12).

The proof of the criterion for holomorphic extension by means of series

in Hermite polynomials proceeds in a similar way. We define the function C
by

o0

(2.11) ) =Y _(Vani2®) ey (c) Ha(2).

n=0

Since
— limsup(2n + 1) log(v/mn!2")~1(2n/e)"?|c, (c)| =

n—oo

— limsup(2n + 1) "2 log(2n/e) "?|ca(c)| = To(c),
n—o00
the series in (2.11) is absolutely uniformly convergent on each compact subset
of the strip S(7o(c)), i.e. its sum is in the space H(7o(c)). Moreover,

oo
/ T(z)Hy(z)dz =0, n=0,1,2,...,

—00

where T'(z) = exp(—z?)(C(z) — ¢(z)),—00 < & < oco. Futhermore, the
Fourier transform 7' of the function T', which is holomorphic in the strip
S(1 — q), turns out to be identically zero. Hence, 7'~ 0 in (—00, c0) which
yields that C(z) = ¢(z) a.e. in (—o0,00).

3. Applications to the zero-distribution
of Riemann’s (-function

It is well-known that the function ((s), s = o+it, defined in the half-plane
o > 1 by the Dirichlet series

(3.1) ((s) = Z;ll—

n=1

is analytically continuable in the whole complex plane as a meromorphic
function with unique pole at the point s = 1. Indedeed, from (2.6) it follows
that

8

(3:2) (1-217)¢(s)




for Rs > 1. But the series on the right-hand side is uniformly convergent
on each closed half-plane o > § > 0. Hence, its sum Z(s) is a holomorphic
function in the half-plane o > 0. Assuming that ((s) = (1 —2'7%)7'Z(s) for
0 <o <1and s # 1, we obtain the continuation of the function ((s) as a

meromorphic function in the half-plane o > 0 with unique pole at the point
1. Furthermore, the functional equation

72T (s/2)(s) = 7 O-ID((1 - 8)/2)¢(1 — 5)

holds in the strip 0 < o < 1. But, in fact, it realizes the continuation of
the function ((s) as a holomorphic function on left of the imaginary axis.
Its direct consequence is that this function has simple zeros at the non-zero
poles of the function I'(s/2), i.e. at each of the points —2k,k = 1,2,3,....
These are the so called trivial zeros of the function ((s).

It is well-known, that it has infinitely many zeros in the strip 0 < Rs < 1,
called non-trivial. The conjecture that all the non-trivial zeros of the function
((s) are situated on the line o = 1/2 is the famos hypothesis of Riemann. Till
now it is neither proved, nor disproved. Moreover, it is not known whether
these zeros are in a closed strip of the kind 1/2 — 6 < 0 < 1/2+ ¢ for some
§ € (0,1/2). It is clear that this is true if and only if the function ((s) has
no zeros in the half-plane ¢ > 6 for some 0 € [1/2,1).

It is also well-known that the function ((s) has no zeros on the closed
half-plane o > 1. Hence, there is a region (2 containing this half-plane and
such that ¢(s) # 0 for s € Q. Therefore, the function

(3.3) B(s) = _CC_'% o

is holomorphic in the region 2. Moreover, the integral representation

(3.4) B(s) = /1 BB

:L‘3+1

holds on the closed half-plane o > 1, where 1) is one of the Chebisheff func-
tions [2, Section 3]. More precissely, the integral in (3.4) is absolutely and
uniformly convergent on this half-plane and the function @ is bounded there.

Indeed, since ¥(z) — z = O(z exp(—c(log z)'/?)),c > 0, as z — oo [s.e.g. 3,
Section 18. (1)], we have that for o > 1 and —oo0 <t < o0,

|®(s)| < /loo lib—(j—z;—l dz =0 (/jo 27! exp(—c(log z)'/?) da:)

=0 (‘/Ooo exp(—cz'/?) da:) = O(1);
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It turns out that the function
. *P(t) —t .
(3.5) ®(1+1i2) = /1 %— dt, z=uz+1y,

is holomorphic on the closed half-plane Sz < 0. Moreover, it is bounded there
and, in particular, on the real axis. Hence, there exist the Fourier-Hermite
coefficients of the function ®(1 + iz), —00 < z < 0o, namely

(3.6) a,(®) = /_oo exp(—z?)H,(2)®(1 +iz)dz, n=0,1,2,....

o.¢]

Let us define
(3.7)  A.(¥) = / t"exp(—t>/4 — t)(Y(expt) —expt)dt, 0,1,2...,
0

then the eqialities

(3.8) an(®) = V(=) An(¥), n=0,1,2,...
hold [10, (3.6)]. If

70(®) = —limsup(2n + 1)"2 log(2n/e) ™2 |an(D)|
and
To(y) = — limsup(2n + 1)~/ log(2n/e) ™/*| A, (¥)],

n-—o00

then, (3.8) yields that

(3.9) 70(®) = To(¥).

The first of our results concerning the distribution of the non-trivial zeros
of Riemann’s (-function is the following assertion:

The function ((s) has no zeros in the half-plane o > 6,1/2 < 0 < 1 if
and only if Ty(v)) > 1 — 6 [10, (I)].

If Ty () > 1 — 6, then (3.9) yields that 70(®) > 1 — 6. Hence, the function
®(1 + iz), —00 < & < 00, has a holomorphic extension at least in the strip
S(1 — 6). This means that the function ® has no poles in the half-plane
o > 0, i.e. the fuction ¢ has no zeros in this half-plane.

The assumption that ((s) # 0 when ¢ > 0,1/2 < 6 < 1 implies that
P(z) = x4 O(2 log? ) as £ — oo [3, Section 18], i.e.

(3.10) P(z) =z +0(@"*), z— oo,

10



whatever the positive € be.

The proof that To() > 1 — 6 if ((s) # 0 for o > 0, given in [10], is based
on the asymptotic estimate (3.10), Hille’s theorem and Cauchy-Hadamard’s
formula for series in Hermite polynomials. But, there is a more direct proof
of this fact which avoids the whole "machinary” of Hermite’s series repre-

sentation of holomorphic functions including Hille’s theorem. Indeed, from
(3.7) and (3.10) it follows that

A,(8)] = O ( /0 et 128 dt)

=0 (2"/2 /Ooo exp(—t2/2 — V2(1 — 0 — &)t) dt)

and the integral representation [12, 8.3, (3)]

rexp(=zt/4)#fife 5 2 '
D,(z) = —W—/o t exp(—t“/2 — zt)dt, Rv <0,

of Weber-Hermite’s function D, (2) gives that

[4n(¥)| = O (2%2D(n + 1)D) s (VE(L - 0~ €)) ).

Furthermore, Stirling’s formula as well as T.M. Cherry’s asymptotic formula
1, 8.4, (5)]

Du(z) = 5 expl(v/2)log(=v) = v/2 = (=0)!22)(1 + O(l| 1),

|arg(—v)| < 7/2, |v|— 0
yield that

(2n/e) 2| An(¥)] = O(exp(—(2n + 1)/2(1 = 0 — €))), n — .

Hence, the inequality Tp(1)) > 1 — 6 — € holds for each positive e < 1—6, i.e.
To(y) > 1 6.

It is clear that Tp() < 1/2. Otherwise 7o(®) = Typ(¥) > 1/2 and the
function ®(1 + iz), —oo < = < oo would have a holomorphic extension at
least in the strip S(7o(®)) which is impossible. Hence, we may allow us to
formulate the following assertion: :

Riemann’s hypothesis is true if and only if Ty(¢)) = 1/2 [10, (II)].

The next assertion is ”insipred” by the integral represenation (1.21) of
the functins from the space H(70),0 < 70 < oo. It sais that:

11



The function ((s) has no zeros in the half-plane o > 0,1/2 < 0 < 1 if
and only if the Fourier transform of the function
(3.11) exp(—22/4)®(1 +iz), —o0 <z < 00,

is of the form

(3.12) V2exp(—u?)E(u)
with a function E € £(1 — 0) [10, (III)].

If {(s) # 0 when o > 6, then the function ®(1 +iz) € H(r(®)). Hence,
the representation

(1 +iz) = \/LE /_ " B(u) exp(—(u — i2)?) du

holds in the strip S(7o(®)) with E € £(7o(®)). Futhermore, if z = z €

(—00,00), then (1.21) and the inversion formula for the Fourier transform
yield that

(3.13) V2exp(—u?)E(u) = % /_oo ®(1 + iz) exp(iuz)) dz.

It is quite easy to verify that A > p implies £(\) C E(i). Then, since
To(1) > 1 — 6 and E(7o(P)) = E(To(1)), the entire function E is in the class
E(1-0).

Conversly, let the Fourier transform of the function (3.11) be of the form
(3.12) with E € £(1—6). Then, (3.13) holds and again the inversion formula
yields that

1 o0
O(1 +1iz) = —/ E(u) exp(—(u +iz)*) du, —o0 <z < oo0.
( \/—7F —00 '
Furthermore, whatever the positive € < 1 — 0 be, the integral

/ E(u) exp(—(u +iz)?) du
is uniformly converegent on the closed strip S(1 — 0 — ). This means that
the function ®(1 + iz) has a holomorphic extension in the strip S(1 — 6).
Hence, the function ((s) has no zeros in the half-plane o > 0.

As a corollary of the last assertion we can formulate the following one:

Riemann’s hypothesis is true if and only if the Fourier transform of the
function exp(—az?/4)®(1+iz/2), —00 < & < oo is of the form exp(—u?)E(u)
with a function E € £(1/2) [10].
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As a consequence of the integral representation (1.20) it can be obtained
a criterion a complex function to have an expansion in a series of the poly-
nomials {LS{)‘) (22)}22,. More preciesely:

An even complex function f, holomorphic in the strip S(\g),0 < Ay < 00,
is in the space P ()\q), > —1 if and only if the representation

(3.14) 222 exp(=2%) f(2/V2)

i / T2 g (g2 F(2)2) () V2 (2t) dt

holds in the half-strip S*(Ao) = {z € S(\) : Rz > 0} with a function
F € G(\) [13, p.].

Let us suppose that the function ((s) has no zeros in the half-plane Rs >
0,1/2 < 6 < 1. Then, the function ®(s) = ®(s) + ®(2 — s) is holomorphic
in the strip § < s < 2 — 6 and is bounded in each closed half-strip 0 +
e < RNs < 2—-0—¢€ provided 0 < € < 1 — 0. Hence, the even function
®*(2) = ®(1+iz)+ ®(1 —iz) is holomorphic in the strip S(1 —68). Moreover,
it is bounded on each closed strip S(1—60—¢) with & € (0,1 —6). This means

that it is in the space P(®) (1 — @) for each o > —1, i.e. there is a function
F € G(1 — ) such that :

(3.15) 2*T1/2 exp(—2%)®*(2/V2)

ki / 12 e (22 P8 /2) (2t) /2 o (2t) dit

for z € ST(1 — 0). Then, the inversion rule for the Hankel transform yields
that

(3.16) 10+ exp(—t2/2)F(£2/2)

= /om 142 exp(—a?/2) 8" (v/V/2) (t2) /2 Ju t).

Well, if ((s) # 0 for Rs > 0,1/2 < 0 < 1, then the Hankel transform
with kernel w'/2J,(w),« > —1, of the function in the left-hand side of (3.15)
is the function in the left-hand side of (3.16). The converse is also true.
Indeed, if the function F is in the class G(1 — 6),1/2 < 6 < 1, then the
asymptotic formula [1, 7.13.,(3)] for the function J,(z) yields that whatever
e € (0,1 — ) be, the integral in the right-hand side of (3.15) is uniformly
convergent in the strip S(v/2(1 — @ —¢€)) and defines a holomorphic function
in the strip S(v/2(1 — 0)). This means that the function ®*(z) has a holo-
morphic extension in the strip S(1 —0), i.e. the function ®(s) is analytically
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continuable in the half-plane Rs > 6. Hence, the function {(s) has no zeros
in this half-plane. Thus it is proved that:

A nessesary and sufficient condition that ((s) # 0 in the half-plane Rs >
0,1/2 < 6 < 1, is the Hankel transform with kernel w'/?.J,(w) of the function
(3.15) to be of the form (3.16) with a function F' € G(1 — 6) [11].

A direct consequence of the last assertion is the following criterion:

Riemann’s hypothesis is true if and only if the Hankel transform with
kernel w'/2J,(w) of the function (3.15) is of the form (3.16) with F' € G(1/2)
[11].

The absence of zeros of ((s) in the half-plane Rts > 6,1/2 < 0 < 1 can be
ensured also by the growth of the Fourier-Laguerre coefficients of the function
®(1 +1y/z),0leqz < oco. Indeed, let define

A2 (@) = — limsup(2y/n) ™" log |a) (®)],

n—o00

where
0@ (B) = / 2% exp(—2) L (2)8(1 + iv/3) dz, 0 > —1,n = 0,1,2, ...
0

Then:
Riemann’s (-function has no zeros in the half-plane Rs > 60,1/2 < 0 < 1,
if and only if A\ (®) > 1— 6 [12).

Since Ag")(@) < 1/2 whatever @ > —1 be, one can formulate the following
criterion:

Riemann’s hypothesis holds true if and only if /\ga)(é) = 1/2 for some
a>—1[12).
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