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1 Introduction

Consider the linear algebraic system

APz = b(o); where p=(pi, . P 1.1

aij(p) —a1/0+zau,#pua ,b( ) —b10+zb,pPu) (1.2)
n=I1 v=1 :

aij'u,b,-,u € R, LL=0,...,m, ihj=1,...,n

and the parameters p, are considered to be uncertain, varying within given intervals

(pul: :
p e pl=(pl-,[pn))" (1.3)

The dependencies between the parameters in (1.2) can be also nonlinear. Such sys-
tems are common in many engineering analysis or design problems, control engineer-
ing, robust Monte Carlo simulations, etc., where there are complicated dependencies
between the model parameters which are uncertain. The set of solutions to (1.1)—
(1.3), called united parametric solution set, is

5P =5 (4(p),b(p),p)) = (xR | Bp e [Pl APy =b(p)}.  (1.4)

The (united) parametric solution sets generalize the (united) non-parametric solu-
tion sets to interval linear systems; the elements of the matrix and the r.h.side in the
latter are independent intervals. However, the solutions of many practical problems
involving uncertain (interval) data have quantified formulation involving the univer-
sal logical quantifier (V) besides the existential quantifier (3). Examples of several
mathematical problems formulated in terms of quantified solution sets can be found
in [11] and in the vast literature on quantified constraints satisfaction problems, see
e.g. [3] for references to applications in control engineering, electrical engmeermg,
mechanical engineering, biology and various others.

In this work we focus on linear systems involving affine-linear dependencies be-
tween interval parameters and the quantified parametric solution sets where all uni-
versally quantified parameters precede all existentially quantified ones. Such solution
sets are called AE parametric solution sets, after Shary [11]. AE parametric solution

sets generalize both the united parametric solution set and the corresponding non-
parametric AE solution sets. Our goal is to describe the parametric AE solution sets
by inequalities not involving the interval parameters. This is a fundamental prob-
lem with considerable practical importance. The explicit description of a parametric
solution set is useful for visualizing the solution set, for exploring the solution set
properties which helps designing better (sharp and fast) numerical methods and for
finding exact bounds for the solution which helps in testing new numerical methods.

The description of the parametric solution sets is related to quantifier elimination
which stimulated a tremendous amount of research. Since Tarski’s general theory [14]
is EXPSPACE-hard [2], a lot of research is devoted to special cases with polynomial-
time decidability. Apart from quantifier elimination, the only known general way of
describing the united parametric solution set is a Fourier-Motzkin-type parameter
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elimination process proposed in [1] and modified in [8]. The non-parametric 4E $0-
lution sets are studied by many authors, see [11] and the references given therein.
With the exception of [12,13], which consider some special cases of tolerable solu-
tion sets, and [9] considering also a special case, to our knowledge there are no other
studies of the parametric AE solution sets.

In this paper (Section 4) we discuss how to obtain explicit description of paramet-
ric AE solution sets by a Fourier-Motzkin-type elimination of the existentially quan-
tified parameters (called shortly £-parameters). The methodology for elimination of
E-parameters is presented in Section 3. Explicit description of particular classes of -
parametric AE solution sets (tolerable, controllable, any 2D) are given in Section 5.
Based on the explicit description or the properties of the parameter elimination pro-
cess, in this section we prove several properties of the parametric AE solution sets.
Some necessary and necessary and sufficient conditions for a parametric AE solution
set to be non-empty are presented. Discussed are also the shape of the parametric
AE solution sets and some inclusion relations. For simplicity of the notations we
consider square systems. However, all the assertions in the paper are valid for rect-

angular systems. Numerical examples illustrate the parametric AE solution sets and
their properties.

2 Notations

Denote by R”,R"*™ the set of real vectors with » components and the set of real
n x m matrices, respectively. A real compact interval is [a] = [a”,at] ;== {a € R |
a” <a<a'}. By IR",IR"™™ we denote the sets of interval n-vectors and interval
n x m matrices, respectively. For [a] = [a~,a*], define mid-point a := (a~ +a™)/2
andradius d := (a* —a™)/2. These functionals are applied to interval vectors and ma-
trices componentwise. For a given index set IT = {my,...,m}, pir = (Pry,-- - Pmp)-
A and A denote the logical ”And”. For a parametric matrix 4(p), resp. vector b(p),
depending on a number of parameters (1.3), A([p]), b([p]) denote the corresponding
non-parametric matrix, resp. vector

aij([p]) :==aijo+ il aijulpp),  bi([p]) =bio+ i} bi,p[pﬁ]-
. U= V= :

Exactly one non-parametric system A([p])x = b([p]) corresponds to a parametric sys-
tem A(p)x = b(p). However, there are infinitely many parametric systems that corre-
spond to a non-parametric system [4]x = [b].

With the notations 4.y = (aij,u) € R™", boy 1= (bip) ER, L =0,...,m, Ll
system (1.1) can be rewritten equivalently as

. m ‘ m
(A..O + 2 pNA..u> X = b.() + leub.“
? p=1

p=1
For a matrix 4 € R"*", 4,,, denotes the m-th row of 4.

Definition 2.1 A parameter py, 1 <l 5 m, is of 1st class if it occurs in only one
equation of the system (1.1).
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It does not matter how many times a 1st class parameter appears within an equa-
tion. A parameter p, is of 1st class iff the vector b,y p — Aeepx has only one nonzero
component (that is by — Ajepx 7# 0 for exactly onei, 1 <i<n).

Definition 2.2 A parameter py, 1 < [t <m, is of 2nd class if it is involved in more
than one equation of the system (1.1). -

A parameter py, is of 2nd class iff the vector by —A..ux has more than One nonzero
components.

Definition 2.3 A parametric matrix is called row-dependent' if for some pe{l,.. m}
and some i € {1,...,n}, Card(_#) > 2, where G ={l1<j<na;,# 0}
A parametric matrix is called row-independent if for all p € {1,...,m} and all i €

{1,...,n},Card(_#) <2

A row-dependent parametric matrix is denoted by 4 ,4(p) and a row-independent
one by 4,i(p). Examples of row-independent parametric matrices are the symmetric,
skew-symmetric, Hankel, Toeplitz, Hurwitz matrices, as well as the non-parametric
matrices. :

Definition 2.4 For two parameter vectors u € [u] € IR™, v € [v] € IR™, such that
A([u]) = A([v]) = [4] and b([u]) = b([v]) = [b], the system A(u)x = b(u) involves -
more parameter dependencies than the system 4 (v)x = b(v) if:

a) the system depending on u involves more row- dependenmes than the system de-
pending on v, or :

b) it involves some 2nd class parameter u, having more non-zero components in the
coefficient vector Ae.ux — by than the corresponding parameter in the system
depending on v. : :

3 Fourier-Motzkin Type Elimination of £-Parameters

The united parametric solution set (1.4) is characterlzed as.follows by a trivial set of
mequalltres

uni

5P —{xeR”IBpuGR,/,L=\l,...,m:(3.1)—(3.2)hold}, where

AeegXx — b.0+ Z (Aoo},lx_ bop) Pu <0 SAooox—b00+ 2 (Auux_ b-u) Pu (31)
p=1 n=1

P < pu'S Py alt=lisigm (3.2)
Starting from a trivial description of 7 .. the following theorem shows how the ex-

istentially quantified parameters in this set of inequalities can be eliminated succes-
~ sively in order to obtain a new description not involving p y, t = 1,....m

I by analogy with the column-dependent parametric matrices defined in [6].



Explicit Description of AE Solution Sets to Parametric Linear Systems 5

Theorem 3.1 ([8]) Let g3 (x), fry,1(x ), fava (%), Hu(x), A=1,... k(> n) be real-
valued functions of x = (x1,.. ,)c,,)T on some subset D C R", Assume that there exists
anon-empty set 7 C {1,...,k} such that f3,, (x) #0 forall A € F. For my > 1 and
the parameters py, |L =my,...,m varying in R and for x varying in D define the sets
1,82 by :

Sl ={xe€D|Ipp R, =my,...,m:(3.3),(3.4) hold},
={xeD|dpp eR,p=m + l,...;m: (3.5),(3.6),(3.7) hold},

where inequalities (3.3), (3.4) and (3.5), (3.6), (3.7), respectively, are given by

ml—l M{-'l
x)+ 2 flv,l(x)pv + z fkv,Z(x)pV 5
v=1 v=1 ,
Z flp(x)Pu S flm|(x)Pm| P (AT A =1)"')k (33)
H=m+1 : i
pu _.ﬁ/,is Pu Sﬁu‘*‘ﬁu, H-:-M],...,m, : (34)
my— my—1 _
2 fA.V] PV:F 2 fAV,Z(x)ﬁV+flml(x)pm|.:{:|f/1ml(x)|ﬁm|+
v=1 v=1
2 fin()pu SO < - =l ol (315)
p=my+1

andfora,p € 7, a<p

ga(x)fp,,,,(x) faml(x 12, (fﬁml favl() fam|(x)fﬁv,1(x)):P.v =k

V=

'2 (Um0 a6) +fm a9 B0+

Z (faps () fpm, (x) = fﬁu(x)faml(x))pg <0< -+, (3.6)

H=m+1
p#_ﬁ“<_p“ Sp“—}-ﬁu, /,L=m1+1,..f,m.' i 3.7
The - " in the right side inequalities denotes the left side expression in the left

inequality with the bottom sign in front of the terms involving a parameter radius.
(Trivial inequalities which are true for any x € R" can be omitted.) Then S| = S.
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The inequalities (3.5) are called end-point inequalities because they are obtained
by combining (3.3) with (3.4). The inequalities (3.6) are called cross inequality pair& ,
because they are obtained by combining two inequality pairs (3.3). Note that the
resulting inequalities (3.5) and (3.6) have the form (3.3) which allows the elimination
process to continue with the next parameters.

The parameter elimination process resembles the so-called Fourier-Motzkin eli-
mination of variables, see e.g. [10]. It was first proposed in [1] in a form based on the
parameter inequalities (3.2) which leads to a tremendous number of solution set char-
acterizing inequalities. In order to reduce the number of characterizing inequalities,
the modified parameter elimination in Theorem 3.1 is based on the equivalent pa-
rameter inequalities (3.4) in mid-point/radius representation. Thus, in the parameter
elimination process we apply the following relation '

Apu—|App < Apuy < Apu+|A|py, for A € R,

without the necessity to consider the particular sign of A. Therefore, the modified
parameter elimination does not depend on a particular orthant. Furthermore, Theorem
3.1 gives a compact representation of the characterizing inequalities which will be
illustrated bellow. :

Consider the parametric system (1.1)—(1.3), the united parametric solution set
of which is described by the trivial set of characterizing inequalities (3.1) and for
=1,...,m (3.4). Let for MiUM, = {1,...,m}, MyNM, =0, py, L € M, be 1st
class E-parameters and py, [t € M, be 2nd class E-parameters. By Theorem 3.1, the
elimination of all p,, /t € M, updates the inequality pairs (3.1) so that they become

A..Ox—b.0+ Z (A..ux—b.u)puq: Z A..p,x_‘b.p ﬁ;[+
HEM,; HEM,
2 (Aup,x—b.u)pu < 0 Soeee (38)
HEM,

The end-point inequality pairs (3.8) are equivalent to single absolute-value inequali-
ties (3.9) and vice-versa

A..Ox - b.O + Z (Ao-px - bop)pp'*‘
HeM,

sZ'

HEM,

Ao.p,x - b.“

)Y (A--gx —ba) Pu

Pu-. (3.9
HEM, '

Let for py,, vi € My, Fy, € {1,...,n}, Card(Fy,) =k, be the index set of the
inequalities (3.8), resp. (3.9), involving py,. By Theorem 3.1, the elimination of p v
updates the end-point inequalities (3.8), resp. (3.9), which become

Aouox—bo()'*-. 2 (Aooux—bop) pp,+
- peMu{v} .

<

HeM U{v }

Y, (Aeepx—bep) Py
peM\{v} -

AC.’J,x Y b.p.

pu (3.10)
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and for o, B € 7, generate k(k—1)/2 cross inequality pairs

AO,Vl(aHB:x) z Ay, Vl(a B,x )P/,FF

neM

2, (1A (B | Ao x)| +1fv (o, ||fu %)) Aut

HeM,

> A (0,B,X)pu SO+, (B.11)

neM\{v}

wherein fy, (0,x) 1= (Agapx — bay), similarly for £y, (,x), fu(B,x), fv,(B,x), and
AIJ,Vl (G,B »x) ::‘fVl (ﬁ ’x)f#(a’x) —fV1 (a1x)f# (ﬁ)x) for W= {0} UMI orfl = M2 \
{v1}. The cross inequality pairs (3.11) also can be written as equivalent single absolute-
value inequalities.

The elimination of the next 2nd class E-parameters updates similarly the the end-
point inequalities (3.10) and introduces more cross inequalities. The cross inequali-
ties can be more complicated than the inequalities (3.11). However the solution set
characterizing inequalities (both end-point and cross inequalities), obtained by the
Fourier-Motzkin type elimination of £-parameters, have the same general form which
can be presented as follows. '

For A € 7 :={l1,...,n}UZ,, where {1,...,n} is the index set of the end-point
characterizing inequalities and Z is the index set of the characterizing cross inequal -
ities, the set of all solution set characterizing inequalities obtained by the Fourier-
Motzkin type elimination of E-parameters is

N wao@)+ Y ua y®pp— Y, vau®)bp < Y, wau)py <

AeT HEM, HEM, HEM,

up o)+ Y, uau®ppt+ Y, vaux)pu, (3.12)
HEM, HEM)

wherein M, is the index set of eliminated E-parameters, uy o(x), u u(x), va,u(x),
wj, u(x) are corresponding real-valued functions of x = (x1,... xn) ", and M is the

index set of non-eliminated parameters. A more general representation of the inequal -
ity pairs (3.12) is

N\ w M) S Tpemwap®pp < M) (13)

AeT

4 Description of Parametric AE Solution Sets

Definition 4.1 Quantified solution sets to a parametric linear system 4(p)x = b(p),
involving either affine-linear or nonlinear dependenmes between the parameters p =
(P1y--yDm), are sets of the form

xER"| (Qip1 € [p]).- (Cnpm € [P (A(p)x = B(p))},
where Q; € {¥,3}di=slyiy wim
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The total number of quantified parametric solution sets exceeds 2™ sinc‘e""the exi

tial and the universal quantifiers do not commute. In this work we consider on} Xll.sten;
systems involving affine-linear dependencies between the uncertain parametzrmear"
quantified solutions sets of such systems where all occurrences of the universa] o
tifier precede all occurrences of the existential quantifier. After the termino]q e
in [11], we call these solution sets AE parametric solution sets. Thus, a argy use.d
AE solution set of the system (1.1)—(1.3) is defined as o i

28 = {x €R"| (Ypw € [pw])(3ps € [pa))(A(p)x = b(p))} (4.15

where & and & are the index sets of = {t|Vp €lp]}, &:={t|3

et Pr €
that & U& = {1,...,m}, & N& = 0. There are exactly 2™ parametric A[gtl(},isggg
sets.

Theorem 4.1 For given index sets o = {t|\Vpi€pl}and & == {t | 3p, e [p}.
the parametric AE solution set (4.1) of the system (1.1)—(1.3) is described by the ’]}

of inequality pairs o

/\ (”l (x,&) — Z (Wlfu(x)pu = |w1,#(x)|ﬁ“). <0<

reg ped

C(x,8) - Z (Wx,p(x)ﬁuﬂwx,u(x)mu)), (4.2)

LEY

where

Sei= N\ ua(x,&) < Y, wau®)pp < nalx, &)
reT ped
is the set of inequality pairs obtained by Fourier-Motzkin type elimination ofall E
parameters, 7 ={1,...,t}, t>n. ' -

Proof AR
= {x €R"| (Ypur € [Par]) Ope € [ps))(4(p)x = b(p))}

i { R | (Vpur € o)\ 068) € T wau (o < vl<x,g))}

LT ned
= {xeR"| (4.2)}.

The first equality above follows from the Fourier-Motzkin type elimination of all
E-parameters. The second equality follows from the distributivity of the universal
quantifiers over conjunction, the parameter inequality pairs for the A-parameters and
the relation

Vpe[p]:b < < by & by < min f(p) Amax |
P [P] 1 < f(p) ) 2 | el () pE[p]f(p) < b. (4.3)
Corollary 4.1 The elimination of the universally quantified parameters doeg not i
troduce new characterizing inequalities to the description of © f; £ Obtained by eIim‘-
nation of all existentially quantified parameters. : i
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Theorem 4.1 allows us to estimate also the shape of the parametric AE solution
sets, 1.e., the maximal degree of the polynomial equations describing the solution set
boundary.

Corollary 4.2 The elimination of the universally quantified parameters does not in-

uence the shape of X%, obtained by elimination of all existentially quantified pa-
p AE y p
rameters.

The application of Theorem 4.1 will be illustrated in the next section where we
consider some classes of parametric AE solution sets, give their explicit description
and derive some of their properties.

5 Properties of the Parametric AE Solution Sets

We start this section by some general assertions which were proven in [9] not basing
on the description of the parametric AE solution sets. The following theorem gives
a set-theoretical description of 4E parametric solution sets (4.1) and generalizes a
corresponding theorem, c.f. [11, Theorem 3.1], for nonparametric AE' solution sets.

Theorem 5.1 ([9])
Zhe= {in AJofxeR |A(P.d:Pé') =b(pw,pe)}-
P Elpur) PsElpes)

Next theorem gives some analytic necessary conditions for a general AE para-
metric solution set to be nonempty.-

Theorem 5.2 ([9]) If a parametric AE solution set (4.1) is honempty, then

Y (Aeavx = bev)[Pv] C bao = Asesx+ Y, (Bop = Aeepx) [Pu]- (5.1)

ved HEE

The interval inclusion (5.1) is equivalent to the inequality ‘

4B =) <. Buldeeux = boutdn, 52
u=l .

where 8, :={lifueé,—lifue o}

The inequality (5.2) presents the end-point inequalities in the explicit characteriza-
tion of a parametric AE solution' set. The following theorem and corollary follow
from Theorem 4.1 and a property proven in [8] that the elimination of Ist class £-
parameters does not generate any cross inequalities.

Theorem 5.3 A parametric AE solution set of the linear system (1.1)- (I 3) is non-
empty iff the solution set describing inequalities (4. 2), defined in Theorem 4.1, hold
true.
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Fig. 5.1 The parametric AE solution set for the system from Example 5.1

Corollary 5.1 Let the definition of a parametric AE solution set to the linear system
(1.1)—(1.3) involve only Ist class existentially quantified parameters. Such parametric
AE solution set is non-empty if and only if the inequality (5.2) holds true.

In lots of situations it is not necessary to check the solution set describing inequalities
and we can immediately say that the AE solution set is empty. For example, if there
is an equation which does not involve any £-parameters, all parametric AE solution
sets will be empty because there will be only negative terms in the right side of the
corresponding end-point absolute-value inequality. If a parametric system involvesg
only one 2nd class £-parameter which occurs in all equations of the system, all para-
metric AE solution sets will be also empty because the cross inequalities? describing
the solution set will not contain this parameter. Therefore there will be only negative
terms in the right sides of the corresponding absolute-value cross inequalities.

The non-empty parametric AE solution sets from Corollary 5.1 have linear shape
but they are not convex in the general case.

Example 5.1 Consider the parametric linear system A(p)x = b(g), where

N 2py +sdpid= R _(2q
A(p)—(2'5p2]+p2 PZ ) b(q)— 2q )

1- 3 7 17 13::17
o @ . 0.11 et R i
plG[z,zl,pzé[lo,10],P12,P21 €0, ],q€[6 , 6].

The solution set Zyy3p,,py,p12,p; 18 Presented on Fig. 5.1. Its boundary is linear byt
neither the whole solution set nor its intersection with the fourth orthant is conyex.
Furthermore, the solution set is unbounded in the fourth orthant.

It is well known that a parametric united solution set is a subset of its correspond-
ing non-parametric solution set, but we have never seen a formal proof of this fact.

2 with respect to this parameter
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Bellow, for the sake of completeness, we give the proof of a more general inclusion
relation. :

Theorem 5.4 For two parameter vectors u € [u] € IR™, v € [v] € IR™, such that
A([u]) = A([v]) = [4]) and b([u]) = b([v]) = [b], if the system A(u)x = b(u) involves
more parameter dependencies than the system A(v)x = b(v) then

Zuni(A(u),b(u), [4]) € Zuni(A(v),b(v),[V]) C -+ C Zuni([4], [b])-

Proof In case of Definition 2.4 a) the inclusion relation follows from the inequality

[ iopx = big| S| D, aijux; = bip| + |auwur]

j=1j#k
applied to the right-sides of the corresponding absolute-value end-point inequalities
involving the parameter u, having more row-dependencies.

In case of Definition 2.4 b), the elimination of the parameter having more non-
zero components in the coefficient vector will generate additional characterizing cross
inequalities which may additionally restrict the solution set.

5.1 Parametric Tolerable Solution Sets

Denote by X,(4ri(p), [p] [6]) the tolerable solution set of a system involving a
row-independent parametric matrix and a right-hand side vector with independent
interval components. Since A4([p]) is the interval hull of 4,;(p) and in view of the
Definition 2.3, by Theorem 4.1 the two tolerable solution sets Z,,;(4([p]),[?]) and
Z01(4ri(p),[p],[b]) have the same explicit representation -

Zot(A(P), (0]) = Ziot (4ri(p), [pL,[8]) = {x €R" | |Ax—b| <b—Alx|}.

Forp = (p1,.--,pm,) and ¢ = (q1,--.,9m, ), the general parametric tolerable so-
lution set is defined by ' : ;

Z01(A(p),b(9),[p), lg]) := {x € R" | ¥p € [p],3q € [q],4(p)x = b(q)}.

Proposition 5.1 Ifqi,...,qm, are Ist class parameters, then

.Z,OI(A(P),b(Q),[P],[Q]) = {x € R" I |Ax—b| = 22 Q‘Plb'l;ll —,’glﬁ#IAullxl} )

K=l

where Z“ ,qulb.yl = rad(b ([Q]))

If the parametric tolerable solution set involves 2nd class E-parameters, then its de-
scription contains cross inequalities with respect to these parameters. However, since
all 2nd class E-parameters (if any) are involved in the right-hand side of the system,
the cross inequalities with respect to these parameters will be linear, which proves
the following theorem.
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Theorem 5.5 The parametric tolerable solution sets have linear shape.
Next we prove some inclusion relations between different telerable solution sets.

Theorem 5.6 Let A,i(u),A,q4(v) € R™" and [4] € ]IIR""” be such thatfor given pa-
rameter vectors u € [u] € IR™, v € [v] € IR™,

Ari[u]) = 4ra(]) C [A]-

If the parameters q € [q] € IR™ be of Ist class, then

Zo1([4],6([9))) S Zior(4([u]), b([q])) =
Zio1 (Ari(u), [u],0((91)) S Zior (4ra (v), V), 5((q))).  (5.3)

If A(u), A(v) be such that A(v) involves more dependencies than A(u) and A([u]) =
A([v]), then for an arbitrary q € [q] € IR™ which may involve 2nd class E -parameters

Ziot (A(u), b(q), [u], [9]) S Zior(4(v),b(q), V], [q). Sy S.4)

Proof The equality relation in (5.3) follows from the equivalent explicit description
of the two solution sets.

We prove Z;o/(Ari(u), [u], b([9])) € Zror(Ara(v), ], b([g])). Let for fixed 1 < i <
there exists a parameter pj, A € {1,...,m}, such that 4(p) is row- dependent Then
the i-th characterizing inequality of 2,01( rd(v), V], b([q])) is

[4(p)x = b, < rad(bi([q])) Z [{Auen}ix| By

Since the i-th characterizing inequality ofE,ol( i(u), [u] b([q]))

m

[Py =bl; < radbilla)) = X [{Aewnbix| b= ({Aur 2l o),
p=1,u#A

the inclusion follows from [{A .1 }ix| < {{A4een }il |%]-
The inclusion relation in (5.4) follows by similar considerations for the characterlzmg
cross inequalities for the 2nd class E-parameters.

We prove Z;,([4],5([q])) € Zrot (A([u]),b([g])). If [aij] 2 au( ul), there exist at least
one interval [t] # [0, 0] such that [a;;] = a;;([u]) + [t] and a a,j = dj([u)) +7. Then the
inclusion follows from —a;; < —a;;([u]).

Example 5.2 Consider the non-parametric interval linear syStem [4]x = [b], where

[O 1] [2’2 L [*1»2]
= ([ 2,0 (1,2) P1=\[-33):
The non-parametric interval matrix 4] presents an interval hull of the following para-
metric matrices (and of infinitely many other parametric matrices)

_[(an a2 [ anvads fa a4+
Al—<a2| l+an)’ _A2-(_2a1+a11), 4= < 2al+a)
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b)

-1

Fig. 5.2 Inclusion relations between the parametric tolerable solution sets from Example 5.2: a) the in-
clusions (5.5), b) the inclusions (5.6) :

where ajy,a € [0,1], a1 € [%,%], az € [—2,0]: Since both 4, and 4, are row-
independent matrices with the same interval hull, the parametric tolerable solution
sets Xyo/(A1,(b]) and X, (A7, [b]) have the same explicit description which is equiv-
alent to the description of the corresponding non-parametric tolerable solution set
X,01([4],[b]). The parametric matrix 43 is row-dependent and has the same interval
hull as the matrices 41,4;. Therefore, by Theorem 5.6 relation (5.3),

. Etul([A])[b]) 5o ZIOI(AI)[b]) =T E_lol(AZ)[b]) @ Etol(Alh[b])'

[0,1] [-4,1]

If we consider a system with matrix [B] = ([_2 0] [1,2)

> which encloses the ma-

trix [4], we obtain the inclusions

Zlol([B]:[b]) C Etol([Alf[b]) = ol (Ala[b]) = Ztol(AZ’ [b]) c ZIOI(A3) [b]) (5.5)

The last inclusion chain is presented on Fig. 5.2 a), where Z,,([B],[b]) is the most
inner white polyhedron, £,,;([4], []) is the polyhedron in light gray and X, (43, [b])
is the parallelogram with black corners.

Now, consider parametric systems involving the same matrices (4], 41, 42, A3 and
a right-hand side vector depending on a 2nd class parameter, that is b(¢) = (¢ 1,91 —
q2)", where q1,92 € [—1,2] and b([g]) = [b]. For the tolerable solution sets of these
systems we have the following inclusion relations :

(5.4) Thm5.4 '
Zoi(V,b(q)) C Zioi(43,b(q))  C Zii(4s,[b]) (5.6)

EatVb@) " BaB) € Sl 8],

wherein ¥ € {[4],41,4>}. On Fig. 5.2 b) Z,5/(43,[b]) is the black parallelogram,
%01(A3,b(q)) is the parallelogram’in gray and ,,/(¥,b(q)) is the most inner white
polyhedron.

Next theorem gives a better description of the shape of the parametric tolerable
solution set than Theorem 5.5.

Theorem 5.7 The parametric tolerable solution set is a convex polyhedron.
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Proof First we consider the special case where all £-parameters g = (g,... qm,) are
of Ist class. Then, defining [b) := b([g)), by Theorem 5.6 we have -

2,,,/(A(p),b(Q),[p],[Q]) = EIOI(A(p)>b([QD)[p]) :
= {xeR"| (Vp € [p])(4(p)x € [b])}

= {x €R"| (Vp € [p]) (A.;ox+ g (A..,lx)p,; = [b]) } .

H=1

Define & :={A = (A1,...,Am) | u € {=,+}, = 1,...,m}. The relation (4.3)
implies Ayco b1 < 7(p*) < b, for a linear function f(p)andp e [p] € IR¥. Thus

Zo1(A(p),b([g)), [p]) = {x ER"| A b7 <duox+ g (Auou)p < b+} ,(5.7)
AeY p=1

which proves the theorem since a convex polyhedron is expressed as the solution set
for a system of linear inequalities. ‘ :

If the parametric tolerable solution set involves 2nd class E-parameters, their
elimination will generate cross inequalities with respect to these parameters. How-
ever, since all 2nd class £-parameters are involved in the right-hand side of the sys-
tem, all cross inequalities with respect to these parameters will be linear involving ad-
ditional (new) affine-linear dependencies between the parameters p. Then, the proof
will continue the same way as for Ist class £-parameters above but with an enlarged
matrix A’ having 7 + k rows and a vector [b'] € IR™, where k is the number of the
cross inequalities.

The assertion of Theorem 5.7 and the left two relations in (5.3) are considered in
[12,13] for the special case of row-independent parametric matrix and right-hand
side with independent components. Theorem 5.7 and relation (5.4) of Theorem 5.6
address the most general case of parametric tolerable solution sets. Note, that (5.7)
gives another description of the parametric tolerable solution set by n2 ™ +1 inequal- -
ities. This description is equivalent to the description given in Proposition 5.1 that
contains only » absolute-value inequalities. '

5.2 Parametric Controllable Solution Sets

The general parametric controllable solution set is defined by

Zeom (A(p),b(q), [P),[g]) == {x € R" | (Vq € [4])(3p € [p])(4(p)x = b(q))},

where p € [p] € IR™, g € [q] € IR™ are two independent parameter vectors,

It follows from Theorem 4.1 that the explicit description of a parametric contro]-
lable solution set can be easily derived from the explicit description of the united
parametric solution set for a system with the same parametric matrix and a right-
hand side vector [b] = b([q]). So far we know the explicit description of the united
parametric solution set for systems with symmetric or skew-symmetric matrix [4],
as well as for arbitrary 2-dimensional parametric matrices [8] or systems involving
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only Ist class E-parameters [9]. The next theorem is obtained by applying Theorem
4.1 to the explicit description of the united parametric solution set for a system with
skew-symmetric matrix from [4].

Theorem 5.8 The controllable solution set to a system with skew-symmetric matrix
and independent right-hand side vector L& = {x € R" | Vb € [b],34**" € [4)],
Askevx = b}, is described by -

|/ix—-b| < /ix—@,
n v n
< Z Ix,'xj'(ul—VJ')léij—Z|xi(ui+Vi)lbi)

i,j=1 i=l

Vu,v € {0,1}"\ {0}, u <jex v,

n
Z Miuxi(ui+vi)

i=]

where M = Ax — b.

For an arbitrary controllable solution set we have the following equality relation

Seon (A(£), b() (2], {a]) = Zeon(A(p),5((a), [£1),

which can be combined with the inclusion relations from Theorem 5.4.

It follows from Corollary 4.2 that the parametric controllable solution set has the
same shape as the parametric united solution set for a system with the same paramet-
ric matrix and a right-hand side vector [b] = b([g]). In the special case when A4(p)
involves only 1st class parameters the parametric controllable solution set has linear
shape. An example of parametric controllable solution set is given in the next section.-

5.3 2D Parametric AE Solution Sets

In [8] we studied the elimination of 2nd class existentially quantified parameters from
two characterizing inequalities. The next theorem, giving explicit description of the
parametric AE solution sets to any 2D linear system, follows from [8, Theorem 4.1]
and Theorem 4.1. '

Theorem 5.9 A parametric AE solution set (4.1) to a 2-dimensional linear system
(1.1)—(1.3) is described by the following inequalities

14(p)x — b(p)| si Syl Aasyx=bay

Pu; (5.8)
u=1
m mA
|40+ D, Auipul £ Y Suldwilpu,  i€M, (5.9)
p=1,u#i pu=1,u#i

where 8, := {1 if L € &, —1if u € &}, M is the index set of the 2nd class existen-
tially quantified parameters, Aq g(x) := fa,1(¥)/p2(*) — fa,2(%)fp,1 (%), and fj 1(x),
/1,2(x) are the components of the coefficient vector f; (x) := A,43x — bsy, of the pa-
rameter p, for A € {o,B}. :
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X

Fig. 5.3 The controllable non-parametric solution set a) and the parametric controllable solution set b) for
the system from Example 5.3

For a system of two equations the above theorem implies: a) any parametric AE solu-
tion set is described by 2 + m| absolute-value inequalities, where m is the number of
2nd class E-parameters; b) the maximal degree of the polynomial equations describ-
ing the boundary of a 2D parametric AE solution set is not greater than 2.

Example 5.3 Consider the parametric linear system 4 (p)x = b(q), where

A(p) = (ﬁ; _p’:z>, b(q)=(23), pr1€(-2,2,;pp€[-1,2],9€[1,2].

The parametric controllable solution set is described by the inequalities

X 3|x
'3+-23‘ < +2|x11+|72|, |—3x1 = 333 < —xy +x2] + 22 + 23|

X\ 3)X1[ x2
3__l<_, 2 el 1) . |
‘ 5| S-1+ x| + 3

X e 3
2 2

3x; —3x; — 5

< —|x1—x|+3

The left two inequalities above are the so-called end-point inequalities which de-
scribe the non-parametric controllable solution set Zcom (4([p]),b([q])). Since for
p=1(2,2)7 or p=(-2,2)" both A(p) and A([p]) are singular, both controllable
solution sets are unbounded. The non-parametric one is presented in gr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>