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Abstract

Every Walker 4-manifold M, endowed with a canonical neutral metric,
admits a specific almost complex structure called proper. In this note we
find the conditions under which a proper almost complex structure is har-
monic in the sense of C. Wood and as a section of the bundle End(T'M).
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1 Introduction

An almost complex structure on a Riemannian manifold (M, g), dim M = 2n, is
called almost Hermitian if it is g-orthogonal. If a Riemannian manifold admits
an almost Hermitian structure, it has many such structures. One way to see this
is to consider the twistor bundle 7 : 2 — M whose fibre at a point p consists
of all g-orthogonal complex structures J, : T,M — T,M (J? = —Id) on the
tangent space of M at p. The fibre is the compact Hermitian symmetric space
O(2n)/U(n) and its standard metric —1T'race J; o J; is a Kihler-Einstein. The
Levi-Civita connection of (M, g) gives rise to a splitting of the tangent bundle
of the twistor space Z into vertical and horizontal parts: TZ =V & H. The
vertical space at a point J is the tangent space to the fibre through that point
while the horizontal space is isomorphic to Ty(y)M via the differential 7.. Then
we have a natural Riemannian metric h on the twistor space defined as follows.
On a vertical space, h is the metric of the fibre, on a horizontal one — the
lift of the metric of M, and vertical and horizontal spaces are declared to be
orthogonal. It follows from the Vilms theorem (see, for example, [?, Theorem
9.59]) that the projection map = : (£,h) — (M, g) is a Riemannian submersion
with totally geodesic fibres (this can also be proved by a direct computation).
Now suppose that (M, g) admits an almost Hermitian structure J, i.e. a section
of 7 : Z — M. Take a section V with compact support K of the bundle
J*V — M, the pull-back under J of the vertical bundle V — Z. There exists
€ > 0 such that the exponential map exp; is a diffeomorphism of the e-ball in



T; Z for every point I of the compact set J(K). Set J;(p) = exzp,(, [tV (p)] for
p € M and t € (—e,e). Then J; is a section of Z, i.e. an almost Hermitian
structure on (M, g) (such that J; = J on M \ K).

Thus it is natural to seek for "reasonable” criteria that distinguish some of
the almost Hermitian structures among all of them. Motivated by the harmonic
maps theory, C. Wood (10, 11] has suggested to consider as "optimal” those
almost-Hermitian structures J : (M,g) — (Z,h), which are critical points of
the energy functional on sections of the twistor space Z under variations through
sections of Z. In general, these critical points are not harmonic maps, but, by
analogy, in [10, 11] they are referred to as "harmonic almost-complex struc-
tures”. The Euler-Lagrange equation for a harmonic almost-complex structure
Jis

[J,V*VJ] =0, (1.1)
where V*V is the rough Laplacian of (M, g) [10, 11].

Every almost complex structure on a smooth manifold M is a section of the
bundle T*M ® T'M. If a Riemannian metric g on M is specified, we can endow
this bundle with the metric induced by g and define the energy functional on its
sections. The almost complex structures that are critical points of this functional
under variations through sections of T*M @ T'M, i.e. harmonic sections, can
also be considered as " distinguished”. The Euler-Lagrange equation for such an
almost complex structure is [5, 6]

V*'VJ =0. (1.2)

This picture has an analog in the pseudo-Riemannian case. In this note
we shall discuss the equations (1.1) and (1.2) for the so-called proper almost
Hermitian structure (locally) defined on a Walker four manifold.

2 Walker manifolds

A Walker manifold is a triple (M, g, D) where M is an n-dimensional manifold,
g an indefinite metric and D an r-dimensional parallel null distribution [13]. Of
special interest are those manifolds admitting a field of null planes of maximum
dimension 7 = 5. Since the dimension of a null plane is 7 < % , the lowest
possible case is that of (+ + ——)-manifolds admitting a field of parallel null
2-planes.

Recall that, by a result of Walker [13], given a Walker metric g on a 4-manifold
M, around each point of M there exist local coordinates (z,y, z,t) such that
D= (5";, 3%) and the matrix of g in these coordinates has the following form

0 0 1 0
00 0 1

Q(Z,y,z»t) Ao 1 0 a(x,y,z,t) c(:z:,y,z,t) (21)
0:1e e(z,yyzit) bz, y,2,1)

for smooth functions a(z,y, z,t), b(z,y, z,t), c(z,y, z, t).



It is well known that the existence of a metric of signature (+ + ——) with
structure group SO¢(2,2) is equivalent to the existence of a pair of commut-
ing almost complex structures (7], and, moreover, any such pseudo-Riemannian
metric may be viewed as an indefinite almost Hermitian metric for a suitable
almost complex structure. These almost complex structures are not uniquely
determined. However, according to [3, Lemma 6], if M is a 4-manifold with a
metric g with signature (+ + - -) and X, Y are orthogonal null vector fields lin-
early independent at every point of M, then the triple (g, X,Y) determines an
orientation and a unique g- and orientation compatible almost complex structure
J on M such that JX =Y. One such a structure associated with any four-
dimensional Walker metric has been locally given in [8] and called the proper
almost complex structure.

For a Walker metric an orthonormal frame can be specialized by using the
canonical coordinates as follows

1-— 1-b
q=7§m+@ €2 = —cd; + —5—0y + O,
e = ——30, +0, e4 = ——cly — ——0, +

Then the proper almost complex structure is defined by Je; = ea, Jeg = e4
[8]. Thus we have

7 Ty Wl T L e
E (2.3)

a—

5 b(?w +cby — 0,.

JO,,=—81, J(')tr-

3 Harmonic proper almost complex structures

Let (M,g,J) be a Walker four manifold with a Walker metric g and proper
almost complex structure J given in local coordinates by (2.1) and (2.3).

Theorem 3.1 The proper almost complex structure J is harmonic if and only
! Oy + bay + Cox +Cyy =0, g — by = 0. (3.1)
Proof. Note that the Euler-Lagrange equation
[, V*VJ] =0
for a harmonic almost Hermitian structure can be written as
V'VQX,Y)=V'VQUX,JY), X, YeTM,

where Q(X,Y) = g(JX,Y) is the fundamental 2-form of (M,g,J). By the
Weitzenbock formula, AQ = V*VQ + S(Q) where

S(Q)(X,Y) =Trace{Z — (R(Z,Y)Q)(Z,X) — (R(Z,X)Q)(2,Y)}



(see, for example, [4]). We have
(R(Z,Y)Q)(Z,X)=-Q(R(2,Y)Z,X) - Q(Z,R(Z,Y)X)
=g9(R(Z,Y)Z,JX)+ g(R(Z,X)Y,JZ).

Denote by p and p* the Ricci and the *-Ricci tensors of the (pseudo) Hermitian
structure (g, J) (recall that p*(X,Y) = trace{Z — R(JZ,X)JY}). Then

V'VQUX,Y) = AQX,Y) + p(X,JY) — p(JX,Y) — 2p*(X,JY)
Therefore J is harmonic if and only if
AQ(X,Y) - AQJX,JY) =2[p"(X,JY) + p*(JX,Y)]. (3.2)
Lemma 3.2 The Laplacian of the 2-form 2 is given by
AQ = — (agy + bgy)dz Adz + (s + beo)dT A dt
+  (agy + bay)dy Adt — (ayy + by, )dy A dz

1
+ 5(a(azs + bax) +blayy +byy) + 2¢(azy + bay))dz A dt

Proof. To compute the Laplacian AQ = déS2 + §dS2, we note first that the dual
frame {a,...,aq} of the orthonormal frame {e,...,e4} defined by (2.2) is

1+a 1+0b

a; =dz + 5 dz +cdt, a9 =dy+ Tdt
- 1-b
az = —dv + ! Lz - cdt, g = —dy+ Tdt.
Hence
l1—-a 1+a 1-b 1+
dz = 5 a — 7 az —c(az +aq), dy= 5 ay — 5 Qay
dz = a; + a3z, dt=as+ ag.
We have ||ay||? = ||az2||? = 1, ||as||* = ||as]|*> = —1 and the Hodge operator *

of (M, g) acts on the 2- and 3-forms as follows

(a1 Aag) =azAag, *aAas)=aAas, *Aa)=azAay, **=id,
*(ag Aag A ag) = —ag, *(ag Aaz Aay) = as,
x(ag Nag Aag) =g, *(ag AazgAag) = —a.

It follows that
*(dz A dy) = dz A dy + c(dz A dz) + b(dz A dt)

—a(dy A dz) — c(dy A dt) + (ab — c®)(dz A dt)
*(dz Adz) = dy Adt +c(dz Adt), x(dzAdt)=—dz Adt— a(dzAdt),
#(dy Adz) = —dy Adz + b(dz A dt), *(dy Adt) =dz Adz— c(dz Adt),
*(dz Adt) = dz A dt.



and
*(dz Ady Ndz) = dy + cdz + bdt, #*(dz Ady Adt) = —dz — adz — cdt
*(dr Adz ANdt) =dt, *(dyAdzAdt)=—dz.

The fundamental 2-form for the proper almost complex structure is

Q:dmAdt—dy/\ds+%(a+b)dz/\dt.

Therefore, we have

*Q:—d:v/\dt—dz/\dy—-;-(a+b)dz/\dt

Thus 1 1
d*Q = —-2-(a:c + be)dz Adz A dt — §(ay+by)dy/\dz/\dt

Then 1 1
N =—xd*xQ= —E(a,, +b,)dz + 5(% + b, )dt,
which implies |
doQ = —§(agy + bay)dz A dz — 3(ayy, + byy)dy A dz
+3 (i + bez)dz A dt + 3(ayy + bay)dy A dt (3.3)
+3(aye + by + aus + bex)dz Adt.

Next we compute dd2. We have
1
dQ = %(aw + by)dz Adz Adt + E(ay + by)dy A dz A dt.
Hence 1 ]
*d() = 5((11 + bw)dt - E(a,, ar b,,)dz.
This gives
d*dQ = §(azz + beg)dz A dt + 1(agy + bey)dy A dt — 3(azy + bey)dz A dz
—%(ayy + b,,y)dy ANdz + %(au + ay + bzz + byp)dZ Adt.
Therefore
0dQ = —xdxdQd = %(am + by )dz Adt — 3(auy + bay)dz Adz
+1(agy + bay)dy A dt — §(ayy + byy)dy A dz
+%(a(am + bys) + 2C(a:cy -+ bmy) e b(auy + byy)
—Qg; — Ayt — byz — by)dz A dt

Now the result follows from (3.3) and (3.4). =

(43}



Lemma 3.3 The *-Ricci tensor of (M, g,J) is given by

p*(0z,0z) = p*(8y,0y) = p*(0,0y) = p*(9y,0z) =0,
P*(82,0:) = p*(81,8,) = — 4 (Bue — Cay),
p*(82,0:) = —p*(8:,8y) = —(azy — Cux)
p*(0y,0:) = —p* (0, 0:) = =5 (bey — cyy),
£ (84, 81) = p*(8:,82) = — 1 (ayy — cay)

p*(0:,0:) = §lazbz + ay(by — c) + byca + cy(as — bs) — c2 — 2
+2¢(@zy — Czz) — (a — b)ayy — 2ay; — 2b;. + (@ — b)cyy + 2¢4: + 2¢y2)
p*(0:,8:) = —4(a — b)(azy — czz) — jc(ayy — czy)
p*(0r,0:) = $(a = b)(bay — cyy) — Se(baz — Cay)

p*(8:,8;) = %lache + ay(b, — c.) + byc. + ¢y (a, — bs) — c2 — 2
2¢(bzy — cyy) + (@ — b)bez — 2ays — 2bz. — (@ — b)egy + 2¢2¢ + 2¢4,).
Proof. The traceless *-Ricci tensor pj = p* — 74—. g and the *-scalar curvature

7* = Trace p* have been computed in (1, 2]. The formulas there easily imply
the lemma. m

Proof of the theorem. Clearly, if equation (3.2) is satisfied for (X,Y), it also
holds for (JX,JY). Moreover, the identity p*(X,Y) = p*(JY, JX) implies that
both sides of (3.2) are skew-symmetric and that (3.2) is automatically satisfied
when Y = JX. It follows that (3.2) holds for every X,Y if and only if it holds
for X = 8;,Y = 9, and X = 9,,Y = J8,. Thus the theorem follows from
Lemmas 3.2 and 3.3.

Theorem 3.1 and (8, Theorems 2 and 3] imply the following.

Corollary 3.4 (i) The proper almost complezx structure is almost Kdhler and
harmonic if and only if

az + bz =0, ay+by=0; c:l::::+cyy=0$ axx—by!l=0"

(i1) The proper almost complez structure is integrable and harmonic if and only
if

Qp — bx = 2Cy, (l” S b” = —20,,,, a:cy + b_'l:y o 0\ Qg — b,ll‘,l/ o O'
Theorem 3.1 and (2, Theorems 4, 5, 9 and 11| give

Corollary 3.5 If the proper almost complex structure J is integrable, it is har-
monic provided one of the following conditions holds:

(1) The Walker metric g is self-dual;

(2) The proper Hermitian structure (g,J) is locally conformally Kdhler;

(3) The structure (g, J) is *-Einstein;

(4) The metric g is Einstein.



Theorem 3.1 and (1, Theorems 2, 3 and 7| imply

Corollary 3.6 If the almost Hermitian structure (g,J) is almost Kdahler, the
proper almost complex structure J is harmonic provided one of the following
conditions holds:

(1) The Walker metric g is self-dual;

(2) The structure (g,J) is *-Einstein;

(8) The metric g is Finstein.

Remark. The twistor space Z of an oriented four-dimensional Riemannian
manifold (M, g) is a unit sphere bundle over M. A section o of a sphere bundle
of radius r over a Riemannian manifold is a harmonic section if and only if
V*Vo = %||o||?c where V is the Levi-Civita connection of the base manifold
(see, for example [12]). Thus in the four-dimensional case a compatible almost
complex structure J on (M, g) is harmonic if and only if

v*'vJ = ||J||?J. (3.5)

It follows that this equation is equivalent to (1.1) in dimension four. This
can directly be seen as follows. Clearly (3.5) implies (1.1). Suppose that J is a
compatible almost complex structure on (M, g) satisfying condition (1.1). Let £
be the fundamental 2-form of the almost Hermitian structure (g, J) normalized
with unit length. Then (1.1) can be written as V*VQ(X,Y) = V*VQ(J X, JY)
for every X,Y € TM while (3.5) is equivalent to V*VQ = ||o||?Q. If we endow
M with the orientation determined by J, Q2 is a section of the rank 3 bundle
ALT*M of self-dual 2-forms. Take a local orthonormal frame of T'M of the
form E,, E; = JE,, E3, Ey = JE3. Let J, and J3 be the (local) almost complex
structures for which JoFE, = E3, JoE4 = E2 and J3F), = Ey, J3E; = E3. These
structures are compatible with the metric g and we denote by Q; and Q3 their
normalized fundamental 2-forms. Then Q; = Q, Q9,3 is an othonormal frame
of the bundle A.T*M. Thus, there are 1-forms «, 3, such that

VO =aQs + BQ3, Ve = —aQy +9Q3, VQ3 = -0 —¥Qs.
Note that V*VQ = —TraceV?Q. For every X € TM we have
V4 xQ=VxVxQ - Vg, xQ=—[a(X)? + B(X)?
+HX (a(X)) = a(Vx X) = BX)v (X))
+HX(B(X)) = B(Vx X) — a(X)v(X)]s.

It follows that ‘
V*VvQ = ||Q||2Q — Koy — K38y

where k2 and k3 are the traces of the quadratic forms X (a(X)) — a(Vx X) —
B(X)y(X) and X(B(X)) — B(VxX) — a(X)y(X). Thus

IQIPQUX,Y) — £2Q2(X,Y) — £3Q3(X,Y)
= |QIPQJIX, JY) - k2Q(J X, JY) - k3Q3(J X, JY)



for every X,Y € TM. For X = E;, Y = Ej this identity gives ko = 0; for
X = E\, Y = E4 it implies k3 = 0. Thus V*VQ = ||Q]|2Q.

In the pseudo-Riemannian case equation (1.1) is no longer equivalent to
(3.5). Indeed, the proper almost complex structure on any Walker 4-manifold
satisfies (3.5) since ||J]|* = Si_, ||Jei||* = 0 while it not always satisfies (1.1)
(Theorem 3.1).

4 Proper almost complex structures as harmonic
sections of T"M ® TM

The Euler-Lagrange equation V*VJ = 0 is equivalent to V*VQ = 0. By the
Weitzenbock formula, the latter equation is equivalent to

AQX,Y) = p(JX,Y) - p(X,JY) +2p*(X,JY), X,YeTM. (41)

Theorem 4.1 The proper almost complex structure J on a Walker 4-manifold
(M, g,J) is a harmonic section of the bundle T*M ® TM if and only if it is a
harmonic almost complex structure.

Proof. The Ricci tensor p has been computed in [8, Appendix B]. The formulas
therein and Lemmas 3.2, 3.3 imply that equation (4.1) is satisfied if and only if

Qqy + b.'cy +Cox+Cyy =0, Qpu — byy =0.

Thus the result follows from Theorem 3.1. m

5 Examples

1. Let a(z,t), B(z,t), v(z,t) be smooth functions depending only on the coor-
dinates z and t. Set

(1) a =22 +y? +a(z,t), b=-z?—-y*+z+B(zt), c=7(zt)
(i) a = 22 + y® + a(z,t),” b=x2+y? + B(z,t), c=zy+(z1t)
(i) a =22 + 2 + a(z,t), b=22+y®+B(zt), c=(zt)
() a =22+ % + a(z,t), b=-22—-y%+0(zt), c=17(zt)

Consider the Walker metric g whose canonical form is defined by means of the
functions a, b, c. In all four cases the proper almost complex structure J is
harmonic. In view of Corollaries 3.4 -3.6, let us note that the Walker metric is
not self-dual or Einstein and the proper Hermitian structure (g, J) is not locally
conformally Kahler or #-Einstein. In the cases (i) and (i¢) J is not integrable
and (g, J) is not almost Kéhler. In the case (iii) the proper almost complex
structure J is integrable and (g, J) is not almost Kéhler. In the case (iv) it is
almost Kéhler while J is not integrable.



2. Clearly every Kéhler complex structure is harmonic. Using [9], it is shown
in the proof of [3, Theorem 7] that every complex 2-dimensional torus and ev-
ery primary Kodaira surfaces admit Walker metrics which are Kihler-Einstein.
Moreover, around every point of each of these surfaces there are local coordi-
nates in which the metric has the form (2.1) with a = b, ¢ = 0 and the complex
structure is given by (2.3), so coincides with the corresponding proper complex
structure.
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